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Abstract. In the present paper we introduce a new type of statistical con-
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1. Introduction

One of the most important and basic results in approximation theory is the
classical Bohman–Korovkin theorem (see for instance [1,2,16,19,28,31]). This
theorem establishes the uniform convergence in the space C([a, b]) of all the
continuous real functions defined on the interval [a, b], for a sequence of pos-
itive linear operators (Tn) acting on C([a, b]), assuming the convergence only
on the test functions 1, x, x2. Also, other finite classes of test functions were
considered, in both one- and multi-dimensional case. Several extensions were
then considered, giving formulations of the Korovkin theorem to other func-
tional spaces, like Lp, Orlicz or, more generally, modular spaces (see also
[8,10,21,25,32,33,38,47]) and in other directions, for example fuzzy analy-
sis (see also [3,5]) and quantitative versions (see also [41,42]). More recently,
general versions of the Korovkin theorem were studied, in which a more gen-
eral notion of convergence is used. In particular, the use of statistical conver-
gence had a great impulse in recent years. Statistical convergence was first
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introduced independently by Fast and Steinhaus (see [27,44]), and then de-
veloped by many authors (see for instance [4,5,22,23,26,30,34–36,40]). Some
Korovkin-type theorems in the setting of a general notion of convergence in-
volving abstract filters were given in [6] and [24] (see also [7,12–14]).

For double sequences of positive linear operators, statistical convergence
and some of its generalizations to convergence generated by summability ma-
trix methods, were carried on by Demirci and Dirik in [18], [20], and the present
article is a continuation of these researches. In particular, here we introduce a
new kind of statistical convergence, called triangular A-statistical convergence,
which is based on a new concept of triangular A-density. We show that this
new kind of convergence is not comparable with the other ones, known in lit-
erature. For this new convergence we state a Korovkin type theorem, together
with a study of suitable rates of convergence, in the space of the continuous
functions defined on compact sets of R

2. Our result applies to those double
sequences which are neither A-statistical convergent in the usual sense nor in
the Pringsheim sense, and we give some meaningful examples in this direction.

In the last section we will indicate another useful extension, which gives
a “spectrum” of A-statistical convergences, depending on a suitable choice of
a function Φ : N × N → Z, which determines a suitable set of matrix values
A = (ai,j).

2. Preliminaries

We begin with some definitions and notations which we will use in the sequel.
Let A = (ai,j) be a two-dimensional matrix transformation. For a double
sequence x = (xi,j) of real numbers, we put

(Ax)i :=
∞∑

j=1

ai,jxi,j ,

if the series is convergent. We will say that A is regular if it maps every
convergent sequence into a convergent sequence with the same limit. The well-
known characterization for regular two-dimensional matrix transformations is
known as the Silverman–Toeplitz conditions (see also [5,15,17,45]):

(i) ‖A‖ = sup
i∈N

∞∑

j=1

|ai,j | < ∞,

(ii) lim
i

ai,j = 0 for each j ∈ N,

(iii) lim
i

∞∑

j=1

ai,j = 1.

A double sequence x = (xi,j) is said to be convergent in the Pringsheim sense
if there exists a real number L such that for every ε > 0 there exists a positive
integer N , with |xi,j − L| < ε whenever i, j > N . The number L is called the
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Pringsheim limit of x and denoted by P -lim
i,j

xi,j (see [37]). More briefly, we

will say that such an x is P -convergent to L. A double sequence is said to
be bounded if there exists a positive number K such that |xi,j | < K for all
(i, j) ∈ N

2 = N × N. Note that, in contrast to the case for single sequences, a
convergent double sequence is not necessarily bounded. We denote the set of
all convergent double sequences by c2.

Let now A = (an,m,i,j) be a four-dimensional summability method. For
a given double sequence x = (xi,j), the A-transform of x, denoted by Ax :=
((Ax)n,m), is given by

(Ax)n,m =
∞,∞∑

i,j=1,1

an,m,i,jxi,j ,

provided the double series converges in the Pringsheim sense for (n,m) ∈ N
2.

Recall that a four-dimensional matrix A = (an,m,i,j) is said to be RH-
regular if it maps every bounded P -convergent sequence into a P -convergent
sequence with the same P -limit. The Robison–Hamilton conditions (see also
[29,39]) state that a four-dimensional matrix A = (an,m,i,j) is RH-regular if
and only if
(i) P -lim

n,m
an,m,i,j = 0 for each i and j,

(ii) P -lim
n,m

∞,∞∑

i,j=1,1

an,m,i,j = 1,

(iii) P -lim
n,m

∞∑

i=1

|an,m,i,j | = 0 for each j ∈ N,

(iv) P -lim
n,m

∞∑

j=1

|an,m,i,j | = 0 for each i ∈ N,

(v)
∞,∞∑

i,j=1,1

|an,m,i,j | is P -convergent for every (n,m) ∈ N
2,

(vi) there exist finite positive integers A and B such that
∑

i,j>B

|an,m,i,j | < A

for every (n,m) ∈ N
2.

Let A = (an,m,i,j) be a nonnegative RH-regular summability matrix. If
K ⊂ N

2, then the A-density of K is given by

δ2A(K) := P - lim
n,m

∑

(i,j)∈K

an,m,i,j ,

provided that the limit on the right-hand side exists in the Pringsheim sense.
A real double sequence x = (xi,j) is said to be A-statistically convergent to L
and denoted by st2A-lim

i,j
xi,j = L if, for every ε > 0,
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P - lim
n,m

∑

(i,j)∈K(ε)

an,m,i,j = 0,

where K(ε) = {(i, j) ∈ N
2 : |xi,j − L| ≥ ε} (see also [20,34]). If we take

A = C(1, 1), then C(1, 1)-statistical convergence coincides with the notion of
statistical convergence for double sequences (see also [35,36]), where C(1, 1) =
(cn,m,i,j) is the double Cesàro matrix, defined by cn,m,i,j = 1/nm if 1 ≤ i ≤ n,
1 ≤ j ≤ m, and cn,m,i,j = 0 otherwise. We denote the set of all A-statistically
convergent double sequences by st2A.

Our main aim in this paper is to present a new kind of statistical conver-
gence for double sequences, called triangular A-statistical convergence. Later
we give some examples, showing that triangular A-statistical convergence and
A-statistical convergence overlap, neither contains the other, and we give a
Korovkin-type approximation theorem for double sequences of positive linear
operators.

3. Triangular Statistical Convergence

Let x = (xi,j) be a double sequence, neither A-statistical convergent nor con-
vergent in the Pringsheim sense. Then the question whether there is any kind
of statistical convergence which is different from both A-statistical and Pring-
sheim convergence naturally arises. To answer this question we consider two-
dimensional regular matrices for double sequences.

Let A = (ai,j) be a nonnegative regular summability matrix, K ⊂ N
2 be

a nonempty set, and for every i ∈ N, let Ki = {j ∈ N : (i, j) ∈ K, j ≤ i}. Let
|Ki| be the cardinality of Ki. We define the triangular A-density of K by

δT
A(K) := lim

i

∑

j∈Ki

ai,j ,

provided that the limit on the right-hand side exists in R.
In a manner similar to the natural density, we can give some properties

for the triangular A-density:

i) if K1 ⊂ K2, then δT
A(K1) ≤ δT

A(K2),
ii) if K has triangular A-density, then δT

A(N2 \ K) = 1 − δT
A(K).

Definition 1. Let A = (ai,j) be a nonnegative regular summability matrix.
The double sequence x = (xi,j) is triangular A-statistically convergent to L
provided that for every ε > 0

lim
i

∑

j∈Ki(ε)

ai,j = 0,

where Ki(ε) = {j ∈ N : j ≤ i, |xi,j − L| ≥ ε} and this is denoted by stTA-
lim

i
xi,j = L.
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We should note that if we take A = C1, the Cesàro matrix, then the
triangular C1-statistical convergence coincides with the triangular statistical
convergence.

The triangular density δT (K) is given by

δT (K) = lim
i

1
i
|Ki|,

or equivalently by

δT (K) = lim
i

(C1χKi
(j))i =lim

i

∞∑

j=1

ci,jχKi
(j),

if it exists (here and in the sequel, χ denotes the characteristic function of
the set involved). The number sequence x = (xi,j) is triangular statistically
convergent to L provided that for every ε > 0 the set K(ε) := {(i, j) ∈ N

2 :
j ≤ i, |xi,j − L| ≥ ε} has triangular density zero; in that case we write stT -
lim

i
xi,j = L.

We denote the set of all triangular A-statistically convergent sequences
by stTA. Our preliminary result considers the problem of comparing triangular
statistical convergence with statistical convergence.

Example 1. Take A = C1 and the double sequence x = (xi,j) given by

xi,j =

⎧
⎪⎪⎨

⎪⎪⎩

1, i = j = k2

k
3(k+1) , i = 2k + 1, j = 2k − 1

k
2(k+1) , i = 2k, j = 2 (k + 1)
0, otherwise,

k ∈ N.

For every ε ∈
(
0,

1
6

]
, we have

1

i
|{j ∈ N : j ≤ i, |xi,j | ≥ ε}| =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, i = 1
2

(2k+1)2
, i = (2k + 1)2

1
(2k)2

, i = (2k)2

1
2k+1

, i = 2k + 1 and i is not a square,

0, otherwise,

k ∈ N.

Clearly, we get

lim
i

1
i
|{j ∈ N : j ≤ i, |xi,j | ≥ ε}| = 0.

So, we obtain stTC1
-lim

i
xi,j = 0. Nevertheless, x = (xi,j) is not Pringsheim and

C(1, 1)-statistically convergent.

Example 1 does not make possible to characterize the concept of trian-
gular A-statistical convergence as given below:
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A double sequence x = (xi,j) is triangular A-statistically convergent to
L if and only if there exists a set K ⊂ N

2 such that the triangular A-density
of K is 1 and

P - lim
i,j→∞ and (i,j)∈K

xi,j = L (1)

(see [36]). By (1) we mean that for every ε > 0 there exists an integer N such
that

|xi,j − L| ≤ ε if i, j ≥ N and (i, j) ∈ K.

Example 2. Take A = C(1, 1) and the double sequence x = (xi,j) given by

xi,j =
{√

ij, if i and j are squares
1
ij , otherwise.

It is easy to see that st2C(1,1)-limi,j
xi,j = 0. Nevertheless, x is not Pringsheim

and triangular statistically convergent.

Example 3. Take A = C1 and the double sequence x = (xi,j) given by

xi,j =
{

1, i = j = k2

0, otherwise, k ∈ N.

Similarly, stTC1
-lim

i
xi,j = 0 and st2C(1,1)-limi,j

xi,j = 0.

Example 4. Take A = C1 and the double sequence x = (xi,j) given by

xi,j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, i = j = k2

k
2k+1 , i = 2k + 1, j = 2k − 1

k
4k+2 , i = 2k, j = 2 (k + 1)
k, i = k2, j = k2 + 1
0, otherwise,

k ∈ N.

For every ε ∈
(
0,

1
3

]
, we get

1
i
|{j ∈ N : j ≤ i, |xi,j | ≥ ε}| =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, i = 1
2

(2k+1)2 , i = (2k + 1)2
1

(2k)2 , i = (2k)2
1

2k+1 , i = 2k + 1 and i is not a square
0, otherwise,

k ∈ N. Then we have

lim
i

1
i
|{j ∈ N : j ≤ i, |xi,j | ≥ ε}| = 0.

Thus we get stTC1
-lim

i
xi,j = 0. So, neither x = (xi,j) is Pringsheim and C(1, 1)-

statistically convergent nor bounded.

Remark 1. (i) Triangular statistical convergence and statistical convergence
are not comparable; i.e., stTA � st2A and st2A � stTA.
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(ii) A P -convergent double sequence is A-statistically convergent and trian-
gular A-statistically convergent to the same value, but the inverse impli-
cations are not true, i.e., st2A � c2 and stTA � c2.

4. A Korovkin-Type Approximation Theorem

By C(D) we denote the space of all continuous real valued functions on a fixed
compact subset D of R

2. This space is equipped with the supremum norm

‖f‖C(D) = max
(x,y)∈D

|f(x, y)| (f ∈ C(D)).

For a function f ∈ C(D) and δ > 0, let us define the usual modulus of
continuity ω by

ω(f, δ) := max
(x,y),(u,v)∈D,|(x,y)−(u,v)|≤δ

|f(x, y) − f(u, v)|,

where |(x, y) − (u, v)| =
√

(x − u)2 + (y − v)2. For the basic properties of the
modulus of continuity see e.g. [19].

Let L be a linear operator from C(D) into C(D). Then, as usual, we say
that L is a positive linear operator provided that f ≥ 0 implies Lf ≥ 0. Also,
we denote the value of Lf a point (x, y) ∈ D by L(f ;x, y).

We now recall the following

Theorem 1. (see [46]) Let (Li,j) be a sequence of positive linear operators acting
from C(D) into itself. Then, for all f ∈ C(D),

P - lim
i,j

‖Li,jf − f‖C(D) = 0

if and only if

P - lim
i,j

‖Li,jfr − fr‖C(D) = 0 (r = 0, 1, 2, 3),

where f0(x, y) = 1, f1(x, y) = x, f2(x, y) = y and f3(x, y) = x2 + y2.

Theorem 2. (see [20]) Let A = (an,m,i,j) be a nonnegative RH-regular summa-
bility matrix method. Let (Li,j) be a double sequence of positive linear operators
acting from C(D) into itself. Then, for all f ∈ C(D),

st2A- lim
i,j

‖Li,jf − f‖C(D) = 0 (2)

if and only if

st2A-lim
i,j

‖Li,jfr − fr‖C(D) = 0 (r = 0, 1, 2, 3). (3)

We now turn to our main theorem.
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Theorem 3. Let A = (ai,j) be a nonnegative regular summability matrix and
(Li,j) be a double sequence of positive linear operators from C(D) into C(D).
Then for every f ∈ C(D) we have

stTA- lim
i

‖Li,j(f) − f‖C(D) = 0 (4)

if and only if

stTA- lim
i

‖Li,j(fr) − fr‖C(D) = 0 for every r = 0, 1, 2, 3. (5)

Proof. Since each fr ∈ C(D) (r = 0, 1, 2, 3), the implication (4)⇒(5) is obvious.
Suppose now that (5) holds. By continuity of f on the compact set D, we can
write

|f(x, y)| ≤ M

where M := ‖f‖C(D). Also, since f is continuous on D, for every ε > 0 there
exists δ > 0 such that |f(u, v) − f(x, y)| < ε for all (u, v) ∈ D satisfying
|u − x| < δ and |v − y| < δ. Hence, we get

|f(u, v) − f(x, y)| < ε +
2M

δ2
{(u − x)2 + (v − y)2}. (6)

Since Li,j is linear and positive, we obtain

|Li,j(f ;x, y) − f(x, y)| = |Li,j(f(u, v) − f(x, y);x, y)
−f(x, y)(Li,j(f0;x, y) − f0(x, y))|

≤
∣∣∣∣Li,j

(
ε +

2M

δ2
{(u − x)2 + (v − y)2};x, y

)∣∣∣∣
+M |Li,j(f0;x, y) − f0(x, y)|

≤
(

ε + M +
2M

δ2
(A2 + B2)

)
|Li,j(f0;x, y) − f0(x, y)|

+
4M

δ2
A|Li,j(f1;x, y) − f1(x, y)|

+
4M

δ2
B|Li,j(f2;x, y) − f2(x, y)|

+
2M

δ2
|Li,j(f3;x, y) − f3(x, y)| + ε

where A := max |x|, B := max |y|. Taking the supremum over (x, y) ∈ D we
get

‖Li,jf − f‖C(D) ≤ S{‖Li,j (f0) − f0‖C(D) + ‖Li,j (f1) − f1‖C(D)

+ ‖Li,j (f2) − f2‖C(D) + ‖Li,j (f3) − f3‖C(D)} + ε, (7)
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where S = max
{
ε + M + 2M

δ2

(
A2 + B2

)
, 4M

δ2 A, 4M
δ2 B, 2M

δ2

}
. Now, for a given

ε
′
> 0, choose ε > 0 such that ε < ε

′
. Then, setting

Di : = { j ∈ N : j ≤ i, ‖Li,j (f) − f‖C(D) ≥ ε
′},

Dr
i : =

{
j ∈ N : j ≤ i, ‖Li,j (fr) − fr‖C(D) ≥ ε

′ − ε

4S

}
, r = 0, 1, 2, 3.

Then it is easy to see that

Di ⊆
3⋃

r=0

Dr
i

which gives, for all i ∈ N,

∑

j∈Di

ai,j ≤
3∑

r=0

∑

j∈Dr
i

ai,j .

Letting i → ∞ and using (5), we obtain (4). The proof is complete. �

We now present two examples of sequence of positive linear operators.
The first one shows that Theorems 2 and 1 do not work, but our approximation
Theorem 3 works. The second one gives that Theorem 3 does not work but
Theorem 2 works.

Example 5. Let us consider the following Bernstein operators (see also [43])
given by

Bi,j(f ;x, y) =
i∑

k=0

j∑

t=0

f

(
k

i
,
t

j

)(
i
k

)(
j
t

)
xk (1 − x)i−k

yt (1 − y)j−t (8)

where (x, y) ∈ D = [0, 1] × [0, 1]; f ∈ C (D). Also, observe that

Bi,j (f0;x, y) = f0 (x, y) ,

Bi,j (f1;x, y) = f1 (x, y) ,

Bi,j (f2;x, y) = f2 (x, y) ,

Bi,j (f3;x, y) = f3 (x, y) +
x − x2

i
+

y − y2

j
,

where f0 (x, y) = 1, f1 (x, y) = x, f2 (x, y) = y and f3 (x, y) = x2 + y2. Now
we take A = C1 and define a double sequence (γi,j) by

γi,j =

⎧
⎪⎪⎨

⎪⎪⎩

1, i = j = k2

k
3(k+1) , i = 2k + 1, j = 2k − 1

k
2(k+1) , i = 2k, j = 2 (k + 1)
0, otherwise,

k ∈ N. (9)

It is clear that
stTC1

- lim
i

γi,j = 0. (10)
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Now, using (8) and (9), let us define the following positive linear operators on
C(D) as follows:

Li,j(f ;x, y) = (1 + γi,j) Bi,j (f ;x, y) . (11)

So, by Theorem 3 and (10), we see that

stTC1
- lim

i
‖Li,j (f) − f‖C(D) = 0.

Also, since (γi,j) is not P -convergent and statistical convergent, we can say
that the Korovkin theorem in the Pringsheim and statistical sense does not
work for our operators defined by (11).

Example 6. Let us consider the Bernstein operators as in Example 5, and
define a double sequence (βi,j) by

βi,j =
{√

ij, if i and j are squares,
1
ij otherwise. (12)

It is clear that
st2C(1,1)- lim

i,j
βi,j = 0. (13)

Now, by using (8) and (12), we define the following positive linear operators
on C(D) as follows:

Li,j(f ;x, y) = (1 + βi,j) Bi,j (f ;x, y) , i, j ∈ N. (14)

So, by Theorem 2 and (13), we see that

st2C(1,1)- lim
i,j

‖Li,j (f) − f‖C(D) = 0.

Also, since (βi,j) is not P -convergent and triangular statistical convergent, we
can say that the Korovkin theorem in the Pringsheim and triangular statistical
sense does not work for operators defined by (14).

Example 7. The next example deals with bivariate moment-type operators
(see also [9,11]).

For each i, j ∈ N, set Ai,j =
[
1
i
, 1
]

×
[
1
j
, 1
]
,

ci,j =
∫ 1

0

∫ 1

0

t1 t2(t21 + t22)
i+jχAi,j

(t1, t2) dt1 dt2, di,j =
1

ci,j
. (15)

For every i, j ∈ N, t1, t2 ∈ [0, 1], define Ki,j(t1, t2) = di,jt1 t2(t21 + t22)
i+j

χAi,j
(t1, t2). Moreover, let Γ = {(i, j) ∈ N

2: γi,j = 0} and C1 be the Cesàro
matrix. Finally, let us consider the double sequences of operators defined by

Mi,j(f ;x1, x2) =
∫ 1

0

∫ 1

0

Ki,j(t1, t2)f(t1x1, t2x2) dt1 dt2, f ∈ C([0, 1]2),

Li,j(f ;x1, x2) = (1 + γi,j) Mi,j (f ;x1, x2) ,
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where (γi,j) is as in (9), i, j ∈ N. We will prove that the Li,j ’s satisfy our ap-
proximation Theorem 3, though, by construction, they do not fulfil Theorems 1
and 2. We begin with the following

Lemma 1. For every i, j ≥ 2 we get

di,j ≤ (i + j + 1)2

2i+j−3
, (16)

where di,j is as in (15).

Proof. For every i, j ≥ 2 we get

ci,j =
∫ 1

1/i

t1 dt1

∫ 1

1/j

t2(t21 + t22)
i+j dt2

=
∫ 1

1/i

t1 dt1

∫ 1

1/j

t2

i+j∑

k=0

(
i + j

k

)
t
2(i+j−k)
1 t2k

2 dt2

=
i+j∑

k=0

(
i + j

k

)∫ 1

1/i

t
2(i+j−k)+1
1 dt1

∫ 1

1/j

t2k+1
2 dt2

=
i+j∑

k=0

(
i + j

k

)
1

(2k + 2)(2(i + j − k) + 2)

(
1 − 1

i2(i+j−k)+2

)(
1 − 1

j2k+2

)

≥ 9
16

2i+j

4 (i + j + 1)2
≥ 1

8
2i+j

(i + j + 1)2
=

2i+j−3

(i + j + 1)2
.

Therefore we get

di,j ≤ (i + j + 1)2

2i+j−3
for each i, j ≥ 2,

that is the assertion. �

Lemma 2. Under the same hypotheses and notations above, we get

stTC1
- lim

i

∫ ∫

Ai,j\Uδ

Ki,j(t1, t2) dt1 dt2 = 0 (17)

for every δ ∈ (0, 1), where Uδ is the ball centered in (1, 1) with radius δ.

Proof. Fix arbitrarily δ ∈ (0, 1). First of all we observe that, if (t1, t2) ∈ Uδ,
then

√
t21 + t22 ≤ aδ, where aδ =

√
1 + (1 − δ)2. Note that 0 < aδ <

√
2.

Taking into account (16), for every (i, j) ∈ Γ with i, j ≥ 2 we get:
∫ ∫

Ai,j\Uδ

Ki,j(t1, t2) dt1 dt2 ≤ di,j

∫ ∫

Ai,j\Uδ

(t21 + t22)
i+j dt1 dt2

≤ di,j

∫ π/2

0

dθ

∫ aδ

0

ρ2(i+j)+1 dρ ≤ 8π(i + j + 1)
((aδ)2)i+j+1

2i+j+1
.

From this the assertion follows, since 0 < aδ <
√

2. �
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We now show that the hypotheses of Theorem 3 are satisfied. First of all
note that, by construction, we get Li,j(f0;x1, x2) = f0(x1, x2) = 1 for each
(i, j) ∈ Γ and x1, x2 ∈ [0, 1].

Fix now ε ∈
(

0,
1
4

)
and let Uε ⊂ R

2 be the ball of center (1, 1) and

radius ε. For (i, j) ∈ Γ , x1, x2 ∈ [0, 1] and r = 1, 2 we get:

|Li,j(fr;x1, x2) − fr(x1, x2)| ≤ xr

∫ 1

0

∫ 1

0

Ki,j(t1, t2)(1 − tr) dt1 dt2

≤
∫ 1

0

∫ 1

0

Ki,j(t1, t2)(1 − tr) dt1 dt2 =
∫ ∫

Ai,j∩Uε

Ki,j(t1, t2)(1 − tr) dt1 dt2

+
∫ ∫

Ai,j\Uε

Ki,j(t1, t2)(1−tr) dt1 dt2

≤ 2
∫

Ai,j\Uε

Ki,j(t1, t2) dt1 dt2 +
π

2
ε2 ≤ 2

∫

Ai,j\Uε

Ki,j(t1, t2) dt1 dt2 +
ε

2
.

By (17) and arbitrariness of ε, it follows that stTC1
-lim

i
‖Li,j(fr) − fr‖C([0,1]2)

= 0, r = 1, 2.
Arguing analogously as above, considering for r = 1, 2 the estimate

|Li,j(f2
r ;x1, x2) − f2

r (x1, x2)| ≤ x2
r

∫ 1

0

∫ 1

0

Ki,j(t1, t2)(1 − t2r) dt1 dt2,

it is possible to check that stTC1
-lim

i
‖Li,j(f2

r ) − f2
r ‖C([0,1]2) = 0, r = 1, 2, and

so, by linearity, we get stTC1
-lim

i
‖Li,j(f3) − f3‖C([0,1]2) = 0. So, it is possi-

ble to apply our Korovkin Theorem 3 and to deduce that stTC1
-lim

i
‖Li,j(f)

− f‖C([0,1]2) = 0 for every f ∈ C([0, 1]2).

Example 8. We now consider a direct extension to the bivariate case of the
classical one-dimensional moment kernel (see also [9,11]).

For every i, j ∈ N and t1, t2 ∈ [0, 1], let Ki,j(t1, t2) = (i + 1)(j + 1)ti1t
j
2,

and for f ∈ C([0, 1]2) and x1, x2 ∈ [0, 1] set

M∗
i,j(f ;x1, x2) =

∫ 1

0

∫ 1

0

Ki,j(t1, t2)f(t1x1, t2x2) dt1 dt2,

and Li,j(f ;x1, x2) = (1 + γi,j)M∗
i,j(f ;x1, x2), where (γi,j) is as in (9). First of

all, observe that
∫ 1

0

∫ 1

0

Ki,j(t1, t2)dt1 dt2 = (i + 1)
(∫ 1

0

ti1 dt1

)
(j + 1)

(∫ 1

0

tj2 dt2

)
= 1,
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and thus Li,j(f0;x1, x2) = f0(x1, x2) = 1 for each (i, j) ∈ Γ and x1, x2 ∈ [0, 1].
Moreover we have

|Li,j(f1;x1, x2) − f1(x1, x2)| ≤
∫ 1

0

∫ 1

0

Ki,j(t1, t2)(1 − t1) dt1 dt2

= (i + 1)(j + 1)
∫ 1

0

ti1(1 − t1) dt1

∫ 1

0

tj2 dt2

= (i + 1)
∫ 1

0

ti1 dt1 − (i + 1)
∫ 1

0

ti+1
1 dt1 = 1 − i + 1

i + 2
=

1
i + 2

for (i, j) ∈ Γ and x1, x2 ∈ [0, 1]. Thus, stTC1
-lim

i
‖Li,j(f1) − f1‖C([0,1]2) = 0.

Analogously it is possible to check that

|Li,j(f2;x1, x2) − f2(x1, x2)| ≤ 1
j + 2

,

|Li,j(f2
1 ;x1, x2) − f2

1 (x1, x2)| ≤ 2
i + 3

,

|Li,j(f2
2 ;x1, x2) − f2

2 (x1, x2)| ≤ 2
j + 3

whenever (i, j) ∈ Γ and x1, x2 ∈ [0, 1]. Arguing analogously as in Example 7,
we obtain stTC1

-lim
i

‖Li,j(fr) − fr‖C([0,1]2) = 0, r = 2, 3. Thus all the hypothe-

ses of Theorem 3 are fulfilled, and hence stTC1
-lim

i
‖Li,j(f) − f‖C([0,1]2) = 0 for

every f ∈ C([0, 1]2). However, by construction, it is readily seen that Theo-
rems 1 and 2 are not satisfied.

5. Rates of Triangular A-Statistical Convergence

In this section, using the same techniques as in [18], we study the rates of
convergence of a sequence of positive linear operators and for summability
matrices, we present four different ways to compute the corresponding rates
of triangular A-statistical convergence in Theorem 3.

Definition 2. Let A = (ai,j) be a non-negative regular summability matrix
and (αi) be a positive non-increasing sequence. A double sequence x = (xi,j)
is triangular A-statistically convergent to a number L with the rate of o(αi)
if, for every ε > 0,

lim
i

1
αi

∑

j∈Ki(ε)

ai,j = 0,

where

Ki(ε) := {j ∈ N : j ≤ i, |xi,j − L| ≥ ε}.

In this case, we write

xi,j − L = stTA-o(αi) as i → ∞.
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Definition 3. Let A = (ai,j) and (αi) be as in Definition 2. Then, a double
sequence x = (xi,j) is triangular A-statistically bounded with the rate of O(αi)
if there is M > 0 with

lim
i

1
αi

∑

j∈Li(M)

ai,j = 0,

where

Li(M) := {j ∈ N : j ≤ i, |xi,j | ≥ M } .

In this case, we write

xi,j = stTA-O(αi) as i → ∞.

We see from the above definitions that the rate directly effects the entries
of the summability method rather than the terms of the double sequence x =
(xi,j). For example, when one takes the identity matrix I, if ai,i = o(αi) then
xi,j − L = stTA-o(αi) for any convergent sequence (xi,j − L) regardless of how
slowly it goes to zero. To avoid such an unfortunate situation one may borrow
the concept of convergence in measure from measure theory to define the rate
of convergence as follows.

Definition 4. Let A = (ai,j) and (αi) be as in Definition 2. Then, a double
sequence x = (xi,j) is triangular A-statistically convergent to a number L with
the rate of ok(αi) if, there is M > 0 with

lim
i

∑

j∈Mi(ε)

ai,j = 0,

where

Mi(ε) := {j ∈ N : j ≤ i, |xi,j − L| ≥ ε αj}.

In this case, we write

xi,j − L = stTA-ok(αi) as i → ∞.

Definition 5. Let A = (ai,j) and (αi) be as in Definition 2. Then, a double se-
quence x = (xi,j) is triangular A-statistically bounded with the rate of Ok(αi)
if there is M > 0 with

lim
i

∑

j∈Ni(M)

ai,j = 0,

where

Ni(M) := {j ∈ N : j ≤ i, |xi,j | ≥ M αj} .

In this case, we write

xi,j = stTA-Ok(αi) as i → ∞.

Using these definitions we obtain the following auxiliary results.
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Lemma 3. Let (xi,j) and (yi,j) be double sequences. Assume that A = (ai,j)
is a non-negative regular summability matrix, and let (αi) and (βi) be positive
non-increasing sequences. If xi,j − L1 = stTA-o(αi) and yi,j − L2 = stTA-o(βi),
then we have
(i) (xi,j −L1)∓(yi,j −L2) = stTA-o(γi) as i → ∞ , where γi := max{αi, βi}

for each i ∈ N,
(ii) λ(xi,j − L1) = stTA-o(αi) as i → ∞ for any real number λ.
Furthermore, similar results hold with the symbol o replaced by O.

Proof. (i) Assume that xi,j − L1 = stTA-o(αi) and yi,j − L2 = stTA-o(βi). Also,
for ε > 0, define

Ki : = { j ∈ N : j ≤ i, |(xi,j − L1) ∓ (yi,j − L2)| ≥ ε},

K1
i : =

{
j ∈ N : j ≤ i, |xi,j − L1| ≥ ε

2

}
,

K2
i : =

{
j ∈ N : j ≤ i, |yi,j − L2| ≥ ε

2

}
.

Then observe that

Ki ⊂ K1
i ∪ K2

i ,

which gives, for all i ∈ N,
∑

j∈Ki

ai,j ≤
∑

j∈K1
i

ai,j +
∑

j∈K2
i

ai,j . (18)

Since γi = max {αi, βi}, by (18), we get
1
γi

∑

j∈Ki

ai,j ≤ 1
αi

∑

j∈K1
i

ai,j +
1
βi

∑

j∈K2
i

ai,j . (19)

Taking in (19) the limit as i → ∞, we deduce

lim
i

1
γi

∑

j∈Ki

ai,j = 0,

which completes the proof of (i). The proof of (ii) is similar. �

With an analogous technique, it is possible to prove the following

Lemma 4. Let (xi,j) and (yi,j) be double sequences, A=(ai,j) be a non-negative
regular summability matrix and (αi) and (βi) be positive non-increasing se-
quences. If xi,j − L1 = stTA-ok(αi) and yi,j − L2 = stTA-ok(βi), then we have
(i) (xi,j −L1)∓(yi,j −L2) = stTA-ok(γi) as i → ∞, where γi := max {αi, βi}

for each i ∈ N,
(ii) λ(xi,j − L1) = stTA-ok(αi) as i → ∞ for any real number λ.
Furthermore, similar conclusions hold with the symbol ok replaced by Ok.

Now we have the following result.
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Theorem 4. Let (Li,j) be a sequence of positive linear operators from C(D)
into itself, and A=(ai,j) be a nonnegative regular summability matrix method.
Assume that the following conditions hold:

(i) ‖Li,j (f0) − f0‖ = stTA-o(αi) as i → ∞,

(ii) ω (f ; δi,j) = stTA-o(βi) as i → ∞, where δi,j :=
√‖Li,j(ϕ)‖, with

ϕ(u, v) = (u − x)2 + (v − y)2. Then for any f ∈ C (D) we get

‖Li,j (f) − f ‖ = stTA-o(γi) as i → ∞,

where γi := max {αi, βi} for each i ∈ N. Furthermore, similar results
holds when the symbol o is replaced by O.

Proof. Let f ∈ C (D) and (x, y) ∈ D be fixed. Using linearity and positivity
of Li,j we have, for any (i, j) ∈ N

2 and δ > 0,

|Li,j (f ;x, y) − f (x, y)|
= |Li,j (f (u, v) − f (x, y) ;x, y) − f (x, y) (Li,j (f0;x, y) − f0 (x, y))|
≤ Li,j (|f (u, v) − f (x, y)| ;x, y) + N |Li,j (f0;x, y) − f0 (x, y)|

≤ Li,j

⎛

⎝

⎡

⎣1 +

√
(u − x)2 + (v − y)2

δ

⎤

⎦ω (f ; δ) ;x, y

⎞

⎠

+N |Li,j (f0;x, y) − f0 (x, y)|

≤ ω (f ; δ) Li,j

((
1 +

(u − x)2 + (v − y)2

δ2

)
;x, y

)

+N |Li,j (f0;x, y) − f0 (x, y)|
≤ ω (f ; δ) |Li,j (f0;x, y) − f0 (x, y)| +

ω (f ; δ)
δ2

Li,j(ϕ;x, y) + ω (f ; δ)

+N |Li,j (f0;x, y) − f0 (x, y)| ,
where N := ‖f‖C(D). Taking the supremum over (x, y) ∈ D in both sides of
the above inequality, we obtain, for any δ > 0,

‖Li,jf − f‖C(D) ≤ ω (f ; δ) ‖Li,jf0 − f0‖C(D) +
ω (f ; δ)

δ2
‖Li,jϕ‖C(D)

+ω (f ; δ) + N ‖Li,jf0 − f0‖C(D) .

Now, if we take δ := δi,j :=
√‖Li,j(ϕ)‖, then we may write

‖Li,jf − f‖C(D) ≤ ω (f ; δ) ‖Li,jf0 − f0‖C(D) + 2ω (f ; δ) + N ‖Li,jf0 − f0‖C(D)

and hence

‖Li,jf − f‖C(D) ≤ S{ω (f ; δ) ‖Li,jf0 − f0‖C(D)+ω (f ; δ)+‖Li,jf0 − f0‖C(D)},

(20)
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where S = max{2, N}. For a given r > 0, define the following sets:

Ui : = {j ∈ N : j ≤ i, ‖Li,j (f) − f ‖C(D) ≥ r},

U1
i : =

{
j ∈ N : j ≤ i, ω (f ; δ) ‖Li,jf0 − f0‖C(D) ≥ r

3S

}
,

U2
i : =

{
j ∈ N : j ≤ i, ω (f ; δ) ≥ r

3S

}
,

U3
i : =

{
j ∈ N : j ≤ i, ‖Li,jf0 − f0‖C(D) ≥ r

3S

}
.

It follows from (20) that

Ui ⊂ U1
i ∪ U2

i ∪ U3
i .

Also define the sets:

U4
i : =

{
j ∈ N : j ≤ i, ω (f ; δ) ≥

√
r

3S

}
,

U5
i : =

{
j ∈ N : j ≤ i, ‖Li,jf0 − f0‖C(D) ≥

√
r

3S

}
.

Then, observe that U1
i ⊂ U4

i ∪ U5
i . So, we have Ui ⊂ U2

i ∪ U3
i ∪ U4

i ∪ U5
i . Now,

since γi := max{αi, βi} for each i ∈ N, we get

1
γi

∑

j∈Ui

ai,j ≤ 1
βi

∑

j∈U2
i

ai,j +
1
αi

∑

j∈U3
i

ai,j

+
1
βi

∑

j∈U4
i

ai,j +
1
αi

∑

j∈U5
i

ai,j .

Letting i → ∞ and using (i) and (ii), we obtain

lim
i

1
γi

∑

j∈Ui

ai,j = 0.

This completes the proof. �

The following analogue also holds.

Theorem 5. Let (Li,j) be a sequence of positive linear operators from C(D)
into itself, and A = (ai,j) be a nonnegative regular summability matrix method.
Assume that the following conditions hold:
(i) ‖Li,j (f0) − f0‖ = stTA-ok(αi) as i → ∞,
(ii) ω (f ; δi,j) = stTA-ok(βi) as i → ∞, where δi,j :=

√‖Li,j(ϕ)‖ with
ϕ(u, v) = (u − x)2 + (v − y)2. Then, for any f ∈ C (D),

‖Li,j (f) − f ‖ = stTA − ok( γi) as i → ∞,

where γi := max {αi, βi} for each i ∈ N. Similar results hold when ok is
replaced by Ok.
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6. Possible Further Developments

Here we introduce a further extension of the notion of A-statistical conver-
gence, which includes the triangular A-statistical convergence as a particular
case. The idea is to consider a general infinite subset H ⊂ N

2, defined by
means a relation which links the indexes i and j. Put

H := {(i, j) ∈ N
2 : Φ(i, j) ≤ 0},

where Φ : N × N → Z is a function satisfying suitable assumptions. We then
define the Φ-A-density of H as

δΦ
A(H) := lim

i

∑

j∈Hi

ai,j ,

and the corresponding notion of Φ-A-statistical convergence as follows. Let
A = (ai,j) be a non negative regular summability matrix. A sequence x = (xi,j)
is said to be Φ-A-statistical convergent to a real number L provided that for
every ε > 0

lim
i

∑

j∈Ki(ε)

ai,j = 0,

where Ki(ε) = {j ∈ N : Φ(i, j) ≤ 0, |xi,j − L| ≥ ε}.
Note that, when we choose Φ(i, j) = j − i, we reduce to the case of

triangular A-statistical convergence. Other interesting choices may be given
by Φ(i, j) = j − α(i), where α : N → N is a suitable increasing function. All
the theory developed in the previous sections can be carried on also in the
setting of Φ − A-statistical convergence.
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[35] Móricz, F.: Statistical convergence of multiple sequences. Arch. Math. 81(1), 82–
89 (2003)

[36] Mursaleen, M., Edely, O.H.H.: Statistical convergence of double sequences. J.
Math. Anal. Appl. 288, 223–231 (2003)

[37] Pringsheim, A.: Zur Theorie der zweifach unendlichen Zahlenfolgen. Math.
Ann. 53, 289–321 (1900)

[38] Renaud, P.F.: A Korovkin theorem for abstract Lebesgue spaces. J. Approx.
Theory 102(1), 13–20 (2000)

[39] Robinson, G.M.: Divergent double sequences and series. Am. Math. Soc.
Transl. 28, 50–73 (1926)
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