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Abstract. Under a slight modification on the parameters associated to
the generalized Apostol-type polynomials and the use of the generating
method, we obtain some new results concerning extensions of general-
ized Apostol-type polynomials. We state some algebraic and differential
properties for a new class of extensions of generalized Apostol-type poly-
nomials, as well as, some others identities which connect this polynomial
class with the Stirling numbers of second kind, the Jacobi polynomials,
the generalized Bernoulli polynomials, the Genocchi polynomials and the
Apostol–Euler polynomials, respectively.
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1. Introduction

The generalized Apostol-type polynomials F (α)
n (x;λ;μ; ν) in the variable x,

parameters λ, μ, ν ∈ C and order α ∈ C [21,27] are defined by means of the
generating function(

2μzν

λez + 1

)α

exz =
∞∑

n=0

F (α)
n (x;λ;μ; ν)

zn

n!
, (1)
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where |z| < 2π when λ = 1, |z| < π when λ = −1, |z| < |log(−λ)| when
λ ∈ C\{−1, 1} and 1α := 1.

This class of polynomials has been introduced recently in [27] and it pro-
vides a unification of another three families of polynomials, namely, Apostol–
Bernoulli, Apostol–Euler and Apostol–Genocchi polynomials of order α, and
hence, it also generalizes to the classical classes of Apostol, Bernoulli, Euler
and Genocchi polynomials (cf. [1,2,4–6,9,14–28,34–36,39–44] and the refer-
ences therein).

The seminal idea underlaying both earlier as recent studies about the
generalized Apostol-type polynomials has been to make appropriate modifica-
tions to the generating functions associated to the classical classes of Apostol,
Bernoulli, Euler and Genocchi polynomials, respectively, and get similar al-
gebraic and/or differential properties as these polynomials (see, for instance
[5,6,9,15–19,22–28,31,35–37,39–44]).

The interested reader may find recent literature which contains a large
number of new and interesting properties involving these polynomials, for in-
stance, four Special Issues entitled ‘Proceedings of the International Congress’
in Honour of Professor Hari M. Srivastava and published by the following
SpringerOpen journals: Boundary Value Problems, Fixed Point Theory and
Applications and Journal of Inequalities and Applications contain a broad in-
formation about new properties, applications in combinatorics, number theory,
numerical analysis and new research trends about this class of polynomials and
several of its subclasses (cf. [9,13–15,19,21,22,32]).

An apart mention deserves the remarkable work [18] since it states a
unification for generalized Apostol-type polynomials based on the definition of
the Apostol–Bernoulli and Apostol–Euler polynomials of order α [34,35] and
the use of a generating function linked to the Mittag–Leffler function [7–9,28]

E1,m+1(z) :=
zm

ez − ∑m−1
l=0

zl

l!

, m ∈ N. (2)

More precisely, the author in [18] introduces three new classes of general-
ized Apostol–Bernoulli polynomials, Apostol–Euler polynomials and Apostol–
Genocchi polynomials with parameters a, c ∈ R

+ by means of the following
generating functions, defined in a suitable neighborhood of z = 0.

(
zm

λcz − ∑m−1
l=0

(z ln a)l

l!

)α

cxz =
∞∑

n=0

B[m−1,α]
n (x; c, a;λ)

zn

n!
, (3)

(
2m

λcz +
∑m−1

l=0
(z ln a)l

l!

)α

cxz =
∞∑

n=0

E[m−1,α]
n (x; c, a;λ)

zn

n!
, (4)

(
(2z)m

λcz +
∑m−1

l=0
(z ln a)l

l!

)α

cxz =
∞∑

n=0

G[m−1,α]
n (x; c, a;λ)

zn

n!
. (5)
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In the sequel, we call the above polynomials generalized Apostol–Bernoulli
polynomials, Apostol–Euler polynomials and Apostol–Genocchi polynomials
in the variable x, parameters λ ∈ C, a, c ∈ R

+, order α ∈ C and level m ∈ N,
respectively. Furthermore, it is clear that the polynomials defined by (3)–(5)
belong to some subclass of Apostol-type polynomials (1) when m = 1 and
c = exp(1) [27], and, they belong to the class of Appell polynomials, for ex-
ample, when α = 1 and c = exp(1) [28].

In this paper we focus our attention on a light perturbation of the Mittag-
Leffler function (2) by adding of five new parameters in order to define a new
unification (which is different from aforementioned ones) of the generalized
Apostol-type polynomials. So, we can prove that such new polynomial class
preserves some similar algebraic and differential properties as the generalized
Apostol-type polynomials and as an immediate consequence we recover many
known algebraic and differential properties of such polynomials.

Our methods are analytic and based mainly on the recent developments
done in [9,18,21,27,30]. However, the same scheme have been previously ex-
ploited by Srivastava, Todorov, Natalini, Bernardini, Bretti, Luo, Tremblay,
Gaboury, Fugère, Pintér, Boyadzhiev, He, Wang, Kurt, Simsek, Liu, Ozden,
Özarslan, Garg, Choudhary, Choi and their collaborators (see for instance,
[8,9,13,15–17,20,22–26,28]).

The paper is organized as follows. Section 2 contains the basic background
about Apostol–Bernoulli, Apostol–Euler and Apostol–Genocchi polynomials in
the variable x, parameters λ ∈ C, a, c ∈ R

+, order α ∈ C and level m ∈ N,
and some other auxiliary results which will be used throughout the paper.
In Sect. 3, we define our unified presentation of the generalized Apostol-type
polynomials and prove some relevant algebraic and differential properties of
them, as well as, their relation with the Stirling numbers of second kind. Fi-
nally, the main results of Sect. 4, gathered in Theorems 2, 3, 4, and 5, show
the corresponding relations between our unified presentation of the generalized
Apostol-type polynomials and Jacobi polynomials, generalized Bernoulli poly-
nomials, Genocchi polynomials and Apostol–Euler polynomials, respectively.

2. Background and Previous Results

Throughout this paper, we denote by N, N0, R, R+, and C the sets of natural,
nonnegative integer, real, positive real and complex numbers, respectively. For
λ ∈ C and k ∈ N0, (λ)k denotes the rising factorial, i.e.,

(λ)0 = 1 and (λ)k = λ(λ + 1) · · · (λ + k − 1).

Also, as usual, the numbers given by

B[m−1,α]
n (c, a;λ) := B[m−1,α]

n (0; c, a;λ),

E[m−1,α]
n (c, a;λ) := E[m−1,α]

n (0; c, a;λ),

G[m−1,α]
n (c, a;λ) := G[m−1,α]

n (0; c, a;λ),
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denote the corresponding Apostol–Bernoulli numbers, Apostol–Euler numbers
and Apostol–Genocchi numbers with parameters λ ∈ C, a, c ∈ R

+, order α ∈ C

and level m ∈ N.
The following proposition summarizes some elementary properties of the

generalized Apostol–Bernoulli polynomials, generalized Apostol–Euler polyno-
mials and generalized Apostol–Genocchi polynomials with parameters λ, a, c,
order α and level m, (cf. [18]).

Proposition 1. For a fixed m ∈ N, let {B[m−1,α]
n (x; c, a;λ)}n≥0, {E[m−1,α]

n

(x; c, a;λ)}n≥0 and {G[m−1,α]
n (x; c, a;λ)}n≥0 be the sequences of generalized

Apostol–Bernoulli polynomials, generalized Apostol–Euler polynomials and gen-
eralized Apostol–Genocchi polynomials in the variable x, parameters λ ∈ C,
a, c ∈ R

+, order α ∈ C and level m, respectively. Then the following state-
ments hold.
1. Special values. For every n ∈ N0,

B[m−1,0]
n (x; c, a;λ) = E[m−1,0]

n (x; c, a;λ) = G[m−1,0]
n (x; c, a;λ) = (x ln c)n.

2. Summation formulas.

B[m−1,α]
n (x; c, a;λ) =

n∑
k=0

(
n

k

)
B

[m−1,α]
n−k (c, a;λ)(x ln c)k,

=
n∑

k=0

(
n

k

)
B

[m−1,α−1]
n−k (c, a;λ)B[m−1,1]

k (x; c, a;λ),

E[m−1,α]
n (x; c, a;λ) =

n∑
k=0

(
n

k

)
E
[m−1,α]
n−k (c, a;λ)(x ln c)k,

=
n∑

k=0

(
n

k

)
E
[m−1,α−1]
n−k (c, a;λ)E[m−1,1]

k (x; c, a;λ),

G[m−1,α]
n (x; c, a;λ) =

n∑
k=0

(
n

k

)
G

[m−1,α]
n−k (c, a;λ)(x ln c)k,

=
n∑

k=0

(
n

k

)
G

[m−1,α−1]
n−k (c, a;λ)G[m−1,1]

k (x; c, a;λ)

3. [18, Theorem 2, Corollary 1] Difference equations.

λB[m−1,α]
n (x + 1; c, a;λ) − B[m−1,α]

n (x; c, a;λ)

= n

n−1∑
k=0

(
n − 1

k

)
B

[m−1,α]
n−k (x; c, a;λ)B[m−1,−1]

n−k−1 (x; c, a;λ),

λE[m−1,α]
n (x + 1; c, a;λ) + E[m−1,α]

n (x; c, a;λ)

=
n∑

k=0

(
n

k

)
E
[m−1,α]
n−k (x; c, a;λ)E[m−1,−1]

n−k (x; c, a;λ).
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4. Differential relations (Appell polynomial sequences). For fixed α, λ, a, c,
m ∈ N and n, j ∈ N0 with 0 ≤ j ≤ n, we have

[B[m−1,α]
n (x; c, a;λ)](j) =

n!
(n − j)!

(ln c)j B
[m−1,α]
n−j (x; c, a;λ),

[E[m−1,α]
n (x; c, a;λ)](j) =

n!
(n − j)!

(ln c)j E
[m−1,α]
n−j (x; c, a;λ),

[G[m−1,α]
n (x; c, a;λ)](j) =

n!
(n − j)!

(ln c)j G
[m−1,α]
n−j (x; c, a;λ).

5. Integral formulas. For m ∈ N and fixed α, λ, a, c, we have
∫ x1

x0

B[m−1,α]
n (x; c, a;λ)dx =

ln c

n + 1
[B[m−1,α]

n+1 (x1; c, a;λ)

−B
[m−1,α]
n+1 (x0; c, a;λ)]

= ln c

n∑
k=0

1
n − k + 1

(
n

k

)
B

[m−1,α]
k (c, a;λ)((x1 ln c)n−k+1 − (x0 ln c)n−k+1),

×
∫ x1

x0

E[m−1,α]
n (x; c, a;λ)dx =

ln c

n + 1
[E[m−1,α]

n+1 (x1; c, a;λ)

−E
[m−1,α]
n+1 (x0; c, a;λ)]

= ln c

n∑
k=0

1
n − k + 1

(
n

k

)
E
[m−1,α]
k (c, a;λ)((x1 ln c)n−k+1 − (x0 ln c)n−k+1),

×
∫ x1

x0

G[m−1,α]
n (x; c, a;λ)dx =

ln c

n + 1
[G[m−1,α]

n+1 (x1; c, a;λ)

−G
[m−1,α]
n+1 (x0; c, a;λ)]

= ln c

n∑
k=0

1
n − k + 1

(
n

k

)
G

[m−1,α]
k (c, a;λ)((x1 ln c)n−k+1 − (x0 ln c)n−k+1),

6. [18, Theorem 1] Addition theorem of the argument. For α, β ∈ C, c ∈ R
+

and m ∈ N, we have

B[m−1,α+β]
n (x + y; c, a;λ) =

n∑
k=0

(
n

k

)
B

[m−1,α]
n−k (x; c, a;λ)B[m−1,β]

n−k (y; c, a;λ),

E[m−1,α+β]
n (x + y; c, a;λ) =

n∑
k=0

(
n

k

)
E
[m−1,α]
n−k (x; c, a;λ)E[m−1,β]

n−k (y; c, a;λ),

G[m−1,α+β]
n (x + y; c, a;λ) =

n∑
k=0

(
n

k

)
G

[m−1,α]
n−k (x; c, a;λ)G[m−1,β]

n−k (y; c, a;λ).
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In the table below, we introduce the standard notation for several sub-
classes of generalized Apostol–Bernoulli polynomials, Apostol–Euler polyno-
mials and Apostol–Genocchi polynomials with parameters λ ∈ C, a, c ∈ R

+,
order α ∈ C and level m ∈ N, (cf. [1,2,5,8,9,13–31,34–37,39,41–44]).

n-th generalized Bernoulli polynomial of level m B
[m−1]
n (x) := B

[m−1,1]
n (x; e, e; 1)

n-th generalized Apostol–Bernoulli polynomial B
(α)
n (x; λ) := B

[0,α]
n (x; e, a; λ)

n-th generalized Apostol–Euler polynomial E(α)
n (x; λ) := E

[0,α]
n (x; e, a; λ)

n-th generalized Apostol–Genocchi polynomial G(α)
n (x; λ) := G

[0,α]
n (x; e, a; λ)

n-th Apostol–Bernoulli polynomial Bn(x; λ) := B
(1)
n (x; λ)

n-th Apostol–Euler polynomial En(x; λ) := E(1)
n (x; λ)

n-th Apostol–Genocchi polynomial Gn(x; λ) := G(1)
n (x; λ)

n-th generalized Bernoulli polynomial B
(α)
n (x) := B

(α)
n (x; 1)

n-th generalized Euler polynomial E
(α)
n (x) := E(α)

n (x; 1)

n-th generalized Genocchi polynomial G
(α)
n (x) := G(α)

n (x; 1)

n-th Bernoulli polynomial Bn(x) := B
(1)
n (x)

n-th Euler polynomial En(x) := E
(1)
n (x)

n-th Genocchi polynomial Gn(x) := G
(1)
n (x)

Finally, we recall the definitions of the Stirling numbers of second kind
and the Jacobi polynomials of parameters α, β > −1. Also, we present some
well-known identities satisfied by these polynomials and certain families of
polynomials mentioned above, which we need in the next sections.

Definition 1 ([10, p. 207, Theorem B]). For n ∈ N0 and x ∈ C, the Stirling
numbers of second kind S(n, k) are defined by means of the following expansion

xn =
n∑

k=0

(
x

k

)
k!S(n, k), (6)

so that S(n, 0) = δn,0, S(n, 1) = S(n, n) = 1 and S(n, n − 1) =
(
n
2

)
.

For n ∈ N0 and κ, β > −1, the n-th Jacobi polynomial P
(κ,β)
n (x) may be

defined by means of Rodrigues’ formula

P (κ,β)
n (x) = (1 − x)−κ(1 + x)−β (−1)n

2nn!
dn

dxn
{(1 − x)n+κ(1 + x)n+κ},

x ∈ C\{−1, 1}, (7)

and the value at x = ±1 is given by

P (κ,β)
n (1) =

(
n + κ

n

)
, P (κ,β)

n (−1) = (−1)n

(
n + β

n

)
.
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There are many equivalent definitions of P
(κ,β)
n (x), for instance, its ex-

pression as a 2F1 hypergeometric function is very well-known in the literature
(see [3,33,38]). The connection between the n-th monomial xn and the n-th
Jacobi polynomial P

(κ,β)
n (x) may be written as follows (see [33, Equation (2),

p. 262]).

xn = n!
n∑

k=0

(
n + κ

n − k

)
(−1)k (1 + κ + β + 2k)

(1 + κ + β + k)n+1
P

(κ,β)
k (1 − 2x). (8)

Proposition 2. For λ ∈ C and a fixed m ∈ N. Let {B
[m−1]
n (x)}n≥0, {Gn(x)}n≥0

and {En(x;λ)}n≥0 be the sequences of generalized Bernoulli polynomials of level
m, Genocchi polynomials and Apostol–Euler polynomials, respectively. Then,
the following identities are satisfied.
1. [28, Equation (2.6)].

xn =
n∑

k=0

(
n

k

)
k!

(k + m)!
B

[m−1]
n−k (x), (9)

2. [24, Remark 7].

xn =
1

2(n + 1)

[
n+1∑
k=0

(
n + 1

k

)
Gk(x) + Gn+1(x)

]
, (10)

3. [26, Equation (31)].

xn =
1
2

[
λ

n∑
k=0

(
n

k

)
Ek(x;λ) + En(x;λ)

]
. (11)

3. The Polynomials Q[m−1,α]
n (x; c, a;λ;μ; ν)

and Their Properties

In view of the results in Sect. 2 and following the same methodology given in
[27,30] we focus our attention on new unified presentations of the generalized
Apostol-type polynomials. More precisely, based on (1), (2) and (3)–(5) we
consider the following Mittag–Leffler type function

E
(c,a;λ;μ;ν)
1,m+1 (z) :=

(2μzν)m

λcz +
∑m−1

l=0
(z ln a)l

l!

, m ∈ N, a, c ∈ R
+, λ, μ, ν ∈ C. (12)

The reason for perturbing the genuine Mittag–Leffler function (2) with
the parameters a, cλ, μ and ν is purely technical and allows us to introduce a
unified presentation of the generalized Apostol-type polynomials (1) and the
generalized Apostol–Bernoulli polynomials, Apostol–Euler polynomials and
Apostol–Genocchi polynomials in the variable x, parameters λ ∈ C, a, c ∈ R

+,
order α ∈ C and level m ∈ N, (3)–(5) (cf. [18,21,27]).
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Definition 2. For m ∈ N, α, λ, μ, ν ∈ C and a, c ∈ R
+, the generalized Apostol-

type polynomials in the variable x, parameters c, a, λ, μ, ν, order α and level
m, are defined by means of the following generating function.

(E(c,a;λ;μ;ν)
1,m+1 (z))αcxz =

∞∑
n=0

Q[m−1,α]
n (x; c, a;λ;μ; ν)

zn

n!
, (13)

where |z| < 2π when λ = 1, |z| < π when λ = −1, (|z ln( c
a )| < | log(−λ)|)

when λ ∈ C\{−1, 1}, and 1α := 1.

Remark 1 . It is worthwhile to recall that in order to ensure that the generating
function in (13) is analytic throughout the prescribed open disks in the complex
z-plane (centered at the origin z = 0), and consequently, to get the convergence
of the corresponding Taylor–Maclaurin series expansions we need to impose
the above constraint on |z|. In a similar way as [27, Remark 1], is tacitly
assumed that the exceptional cases λ = ±1 are to be treated separately and
the corresponding constraints on |z| should be modified accordingly (see [27]
and the references therein).

The numbers given by

Q[m−1,α]
n (c, a;λ;μ; ν) := Q[m−1,α]

n (0; c, a;λ;μ; ν), (14)

denote the corresponding unified presentation of the generalized Apostol-type
numbers of parameters λ ∈ C, a, c ∈ R

+, order α ∈ C and level m ∈ N.
By comparing Definition 2 with (1) and (3)–(5) with e = exp(1), we have

(−1)αQ[m−1,α]
n (x; c, a;−λ; 0; 1) = B[m−1,α]

n (x; c, a;λ), (15)

Q[m−1,α]
n (x; c, a;λ; 1; 0) = E[m−1,α]

n (x; c, a;λ), (16)

Q[m−1,α]
n (x; c, a;λ; 1; 1) = G[m−1,α]

n (x; c, a;λ), (17)

Q[0,α]
n (x; e, 1;λ;μ; ν) = F (α)

n (x;λ;μ; ν). (18)

Consequently, from the relations (15)–(16) we have that the generat-
ing function of Q[m−1,α]

n (x; c, a;λ;μ; ν) in (13) includes, as its special cases,
not only the generating function of the generalized Apostol-type polynomials
F (α)

n (x;λ;μ; ν) in (1) and the generating functions investigated by Ozden et
al. (cf. [30, p. 2779, Equation (1.1)] and [27, p. 5726, Equation (175)]), and
indeed also the generating functions of B[m−1,α]

n (x; c, a;λ), E[m−1,α]
n (x; c, a;λ),

G
[m−1,α]
n (x; c, a;λ) and their corresponding special cases (cf. [1,2,5,8,9,13–

24,28,31,34–36,39–44]).
Under the appropriate choice on the parameters, level and order, it is pos-

sible to provide some illustrative examples (with the help of MAPLE) which
show that exist polynomials Q[m−1,α]

n (x; c, a;λ;μ; ν) different from the poly-
nomials given by (1) and (3)–(5).
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Example 1 . For any λ ∈ C\{−1, 1}, m = 4, c = 2, a = 3, α = 1, μ = 2 and
ν = 5, the first generalized Apostol–Bernoulli polynomials and generalized
Apostol-type polynomials of level m are:

B
[3,1]
j (x; 2, 3;λ) = 0, j = 0, 1, 2, 3,

B
[3,1]
4 (x; 2, 3;λ) =

24
λ − 1

,

B
[3,1]
5 (x; 2, 3;λ) =

120[ln(2)xλ − ln(2)x − λ ln(2) + ln(3)]
(λ − 1)2

.

Q[3,1]
j (x; 2, 3;λ; 2; 5) = 0, j = 0, 1, 2, 3, 4,

Q[3,1]
5 (x; 2, 3;λ; 2; 5) = 640B[3,1]

4 (x; 2, 3;λ),

Q[3,1]
6 (x; 2, 3;λ; 2; 5) = 3(28)B[3,1]

5 (x; 2, 3;λ).

Example 2 . For any λ ∈ C\{−1, 1}, m = 3, c = e, a = 3, α =
√

2, μ = ν = 4,
the first generalized Apostol–Euler polynomials and generalized Apostol-type
polynomials of level m are:

E
[2,

√
2]

0 (x; e, 3;λ) =
(

8
λ + 1

)√
2

,

E
[2,

√
2]

1 (x; e, 3;λ) =
8

√
2

(λ + 1)1+
√
2
[xλ + x −

√
2λ −

√
2 ln(3)],

E
[2,

√
2]

2 (x; e, 3;λ) =
8

√
2

(λ + 1)2+
√
2
[(λ + 1)2x2 − 2

√
2(λ + 1)(λ + ln(3))x

−2
√

2λ(1 − ln(3))2 + 2(λ + ln(3))2],

E
[2,

√
2]

3 (x; e, 3;λ) =
8

√
2

(λ + 1)3+
√
2
[(λ + 1)3x3 − 3

√
2(λ + 1)2(ln(3) + λ)x2

−3(λ + 1)(−2λ2 − 2λ ln(3)
√

2 +
√

2λ

+
√

2(ln(3))2λ − 4 ln(3)λ − 2(ln(3))2)x + 6λ2

+3(ln(3)3λ
√

2 + 6(ln(3))3λ + λ2
√

2

−9
√

2(ln(3))2λ + 3λ ln(3)
√

2 − 2λ3
√

2

+6 ln(3)λ − 12(ln(3))2λ − 12λ2 ln(3) − 9λ2 ln(3)
√

2

+3(ln(3))2λ2
√

2 − (ln(3))3
√

2 + 6(ln(3))2λ2 −
√

2λ].

Q[2,
√
2]

j (x; e, 3;λ; 4; 4) = 2
5
2 E

[2,
√
2]

j (x; e, 3;λ), j = 0, 1, 2, 3.

Example 3 . For any λ ∈ C\{−1, 1}, m = 2, c = 3, a = e, α = 1
3 , μ = 5 and

ν = 4, the first generalized Apostol–Genocchi polynomials and generalized



212 P. Hernández-Llanos et al. Results. Math.

Apostol-type polynomials of level m are:

G
[1, 13 ]
0 (x; 3, e;λ) =

(
4

λ + 1

) 1
3

,

G
[1, 13 ]
1 (x; 3, e;λ) =

2
2
3

3(λ + 1)1+
1
3
[3 ln(3)(λ + 1)x − ln(3)λ − 1],

G
[1, 13 ]
2 (x; 3, e;λ) =

2
2
3

9(λ + 1)2+
1
3
[9(ln(3))2(λ + 1)2x2 − 6 ln(3)

×(λ + 1)(ln(3)λ + 1)x − 3(ln(3))2λ
+8 ln(3)λ + 4 + (ln(3))2λ2],

G
[1, 13 ]
3 (x; 3, e;λ) =

2
2
3

27(λ + 1)3+
1
3
[27(ln(3))3(λ + 1)3x3 − 27(ln(3))2

×(λ + 1)2(ln(3)λ + 1)x2

+9 ln(3)(λ + 1)(−3(ln(3))2λ + 8 ln(3)λ + 4
+(ln(3))2λ2)x − (ln(3))3λ3

+18(ln(3))3λ2 − 9(ln(3))3λ − 48(ln(3))2λ2

+36(ln(3))2λ − 84 ln(3)λ − 28],

G
[1, 13 ]
4 (x; 3, e;λ) =

2
2
3

81(λ + 1)4+
1
3
{81(ln(3))4(λ + 1)4x4 − 108(ln(3))3

×(λ + 1)3(ln(3)λ + 1)x3

+54(ln(3))2(λ + 1)2(−3(ln(3))2λ + 8 ln(3)λ
+4 + (ln(3))2λ2)x2

−12 ln(3)(λ + 1)[(ln(3))3λ3 − 18(ln(3))3λ2

+48(ln(3))2λ2 + 9(ln(3))3λ
+84 ln(3)λ − 36(ln(3))2λ + 28]x + 280
−81(ln(3))4λ3 + 1176(ln(3))2λ2

+1120 ln(3)λ − 504(ln(3))2λ + 144(ln(3))3λ
−27(ln(3))4λ + (ln(3))4λ4

−720(ln(3))3λ2 + 171(ln(3))4λ2 + 256(ln(3))3λ3}.

Q[1, 13 ]
0 (x; 3, e;λ; 5; 4) = 0,

Q[1, 13 ]
1 (x; 3, e;λ; 5; 4) = 2

5
3 G

[1, 13 ]
0 (x; 3, e;λ),

Q[1, 13 ]
2 (x; 3, e;λ; 5; 4) = 2

8
3 G

[1, 13 ]
1 (x; 3, e;λ),

Q[1, 13 ]
3 (x; 3, e;λ; 5; 4) = 12 3

√
4G[1, 13 ]

2 (x; 3, e;λ),

Q[1, 13 ]
4 (x; 3, e;λ; 5; 4) =

2
17
3

27
G

[1, 13 ]
3 (x; 3, e;λ).
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Example 4 . For any λ ∈ C\{−1, 1}, m = 2, c = 2, a = 3, α = 1
2 , μ = 2

and ν = 5, the first Apostol-type polynomials and generalized Apostol-type
polynomials of level m are:

F ( 1
2 )

j (x;λ; 2; 5) = 0, j = 0, 1,

F ( 1
2 )

2 (x;λ; 2; 5) =
32√
1 + λ

,

F ( 1
2 )

3 (x;λ; 2; 5) =
48

(1 + λ)1+
1
2
(2(λ + 1)x − λ),

F ( 1
2 )

4 (x;λ; 2; 5) =
48

(1 + λ)2+
1
2
[4(λ + 1)2x2 − 4λ(λ + 1)x − λ(2 − λ)].

Q[1,( 1
2 )]

j (x; 2, 3;λ; 2; 5) = 0, j = 0, 1,

Q[1,( 1
2 )]

2 (x; 2, 3;λ; 2; 5) = F ( 1
2 )

2 (x;λ; 2; 5),

Q[1,( 1
2 )]

3 (x; 2, 3;λ; 2; 5) =
48

(1 + λ)1+
1
2
[2 ln(2)(λ + 1)x − ln(2)λ − ln(3)],

Q[1,( 1
2 )]

4 (x; 2, 3;λ; 2; 5) =
2

(1 + λ)2+
1
2
[4(ln(2))2(λ + 1)2x2

−4 ln(2)(λ + 1)(ln(2)λ + ln(3))x
−2(ln(2))2λ + 6 ln(2)λ ln(3) + 3(ln(3))2

+(ln(2))2λ2].

The following theorem summarizes some elementary properties of the
polynomials Q[m−1,α]

n (x; c, a;λ;μ; ν), which are a straightforward consequence
of (13). Therefore, we will omit the details of its proof.

Theorem 1. For a fixed m ∈ N, let {Q[m−1,α]
n (x; c, a;λ;μ; ν)}n≥0 be the se-

quence of generalized Apostol-type polynomials in the variable x, parameters
λ, μ, ν ∈ C, a, c ∈ R

+, order α ∈ C and level m. Then the following statements
hold.
1. Special values. For every n ∈ N0,

Q[m−1,0]
n (x; c, a;λ;μ; ν) = (x ln c)n. (19)

2. Summation formulas.

Q[m−1,α]
n (x; c, a;λ;μ; ν) =

n∑
k=0

(
n

k

)
Q[m−1,α]

n−k (c, a;λ;μ; ν)(x ln c)k, (20)

Q[m−1,α]
n (x; c, a;λ;μ; ν) =

n∑
k=0

(
n

k

)
Q[m−1,α−1]

n−k (c, a;λ;μ; ν)

×Q[m−1,1]
k (x; c, a;λ;μ; ν). (21)
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3. Differential relations (Appell polynomial sequences). For m ∈ N, fixed
α, λ, a, c, and n, j ∈ N0 with 0 ≤ j ≤ n, we have

[Q[m−1,α]
n (x; c, a;λ;μ; ν)](j) =

n!
(n − j)!

(ln c)j Q[m−1,α]
n−j (x; c, a;λ;μ; ν).

(22)

4. Difference equations. For m ∈ N, fixed α, λ, a, c, μ, ν. If a = c and ν ∈ N0,
we have

λQ[m−1,α]
n (x + 1; c, c;λ;μ; ν) +

m−1∑
l=0

1
l!

[Q[m−1,α]
n (x; c, c;λ;μ; ν)](l)

=
2μm

(ln c)νm
[Q[m−1,α−1]

n (x; c, c;λ;μ; ν)](νm).

5. Integral formulas. For fixed α, λ, a, c and m ∈ N, we have∫ x1

x0

Q[m−1,α]
n (x; c, a;λ;μ; ν) dx =

ln c

n + 1
[Q[m−1,α]

n+1 (x1; c, a;λ;μ; ν)

−Q[m−1,α]
n+1 (x0; c, a;λ;μ; ν)]

= ln c

n∑
k=0

1
n − k + 1

(
n

k

)
Q[m−1,α]

k

×(c, a;λ;μ; ν)((x1 ln c)n−k+1

−(x0 ln c)n−k+1).

6. Addition theorem of the argument.

Q[m−1,α+β]
n (x + y; c, a;λ;μ; ν) =

n∑
k=0

(
n

k

)
Q[m−1,α]

k

×(x; c, a;λ;μ; ν)Q[m−1,β]
n−k (y; c, a;λ;μ; ν),

(23)

Q[m−1,α]
n (x + y; c, a;λ;μ; ν) =

n∑
k=0

(
n

k

)
Q[m−1,α]

n−k (y; c, a;λ;μ; ν)(x ln c)k.

(24)

The use of the Stirling numbers of second kind (6) and a straightforward
calculation involving binomial coefficient identities [2,3,10–12,33,45], allows
us to get an alternative representation for a particular case of (23) as follows.

Proposition 3. For m ∈ N, α, λ, μ, ν ∈ C, a, c ∈ R
+ and n ∈ N0, we have

Q[m−1,α]
n (x + y; c, a;λ;μ; ν) =

n∑
k=0

k!
(

x

k

) n−k∑
j=0

(
n

j

)
Q[m−1,α]

j (y; c, a;λ;μ; ν)

×(ln c)n−jS(n − j, k)
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=
n∑

k=0

k!
(

x

k

) n∑
j=k

(
n

n − j

)
Q[m−1,α]

n−j

×(y; c, a;λ;μ; ν)(ln c)jS(j, k). (25)

Consequently, taking into account the relations (15)–(16) and making the
corresponding modifications in (25), we get

Corollary 1. For m ∈ N, the generalized Apostol–Bernoulli polynomials, gen-
eralized Apostol–Euler polynomials and generalized Apostol–Genocchi polyno-
mials with parameters λ, a, c, order α and level m are related with the Stirling
numbers of second kind by means of the following identities.

B[m−1,α]
n (x + y; c, a;λ) =

n∑
k=0

k!
(

x

k

) n∑
j=k

(
n

j

)
B

[m−1,α]
n−j (y; c, a;λ)(ln c)jS(j, k).

(26)

E[m−1,α]
n (x + y; c, a;λ) =

n∑
k=0

k!
(

x

k

) n∑
j=k

(
n

j

)
E
[m−1,α]
n−j (y; c, a;λ)(ln c)jS(j, k).

(27)

G[m−1,α]
n (x + y; c, a;λ) =

n∑
k=0

k!
(

x

k

) n∑
j=k

(
n

j

)
G

[m−1,α]
n−j (y; c, a;λ)(ln c)jS(j, k).

(28)

Remark 2 . The substitution a = 1, c = e into (26)–(28) yields the identities

B[m−1,α]
n (x + y;λ) =

n∑
k=0

k!
(

x

k

) n∑
j=k

(
n

j

)
B

[m−1,α]
n−j (y;λ)S(j, k), (29)

E[m−1,α]
n (x + y;λ) =

n∑
k=0

k!
(

x

k

) n∑
j=k

(
n

j

)
E
[m−1,α]
n−j (y;λ)S(j, k), (30)

G[m−1,α]
n (x + y;λ) =

n∑
k=0

k!
(

x

k

) n∑
j=k

(
n

j

)
G

[m−1,μ]
n−j (y;λ)S(j, k). (31)

Remark 3 . Notice that (30) is just [9, Equation (4.3)]. If m = 1 in (29) and
(30) then we recover [26, Equations (75), (76)], respectively.

4. Some Connection Formulas for the Polynomials
Q[m−1,α]

n (x; c, a;λ;μ; ν)

From the identity (8) and Proposition 2 it is possible to deduce some interest-
ing algebraic relations connecting the polynomials Q[m−1,α]

n (x; c, a;λ;μ; ν) and
other families of polynomials such as Jacobi polynomials, generalized Bernoulli
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polynomials of level m, Genocchi polynomials and Apostol–Euler polynomials.
In this section, we will prove these relations following the ideas of [9].

Theorem 2. For m ∈ N, the generalized Apostol-type polynomials of level m

Q[m−1,α]
n (x; c, a;λ;μ; ν), are related with the Jacobi polynomials P

(κ,β)
n (x), by

means of the following identity.

Q[m−1,α]
n (x + y; c, a;λ;μ; ν) =

n∑
k=0

(−1)k
n∑

j=k

j!(ln c)j

(
j + κ

j − k

)(
n

j

)

× (1 + κ + β + 2k)
(1 + κ + β + k)j+1

Q[m−1,α]
n−j (y; c, a;λ;μ; ν))P (κ,β)

k (1 − 2x). (32)

Proof. We can proceed as the proof of [9, Theorem 4.4]. By substituting (8)
into the right-hand side of (24) and using appropriate binomial coefficient
identities (see, for instance [3,10,12]), we see that

Q[m−1,α]
n (x + y; c, a;λ;μ; ν)

=
n∑

j=0

(
n

j

)
Q[m−1,α]

j (y; c, a;λ;μ; ν)(n − j)!(ln c)n−j

n−j∑
k=0

(−1)k

(
n − j + κ

n − j − k

)

× (1 + κ + β + 2k)
(1 + κ + β + k)n−j+1

P
(κ,β)
k (1 − 2x)

=
n∑

j=0

n−j∑
k=0

(
n

j

)
Q[m−1,α]

j (y; c, a;λ;μ; ν)(n − j)!(ln c)n−j(−1)k

(
n − j + κ

n − j − k

)

× (1 + κ + β + 2k)
(1 + κ + β + k)n−j+1

P
(κ,β)
k (1 − 2x)

=
n∑

k=0

(−1)k
n−k∑
j=0

(
n

j

)(
n − j + κ

n − j − k

)
Q[m−1,μ]

j (y; c, a;λ;μ; ν)(n − j)!(ln c)n−j

× (1 + κ + β + 2k)
(1 + κ + β + k)n−j+1

P
(κ,β)
k (1 − 2x)

=
n∑

k=0

(−1)k
n∑

j=k

j!(ln c)j

(
j + κ

j − k

)(
n

j

)
(1 + κ + β + 2k)

(1 + κ + β + k)j+1

×Q[m−1,α]
n−j (y; c, a;λ;μ; ν)P (κ,β)

k (1 − 2x).

Therefore, (32) holds. �

Consequently, taking into account the relations (15)–(16) and making the
corresponding modifications in (32), we get

Corollary 2. For m ∈ N, the generalized Apostol–Bernoulli polynomials, gen-
eralized Apostol–Euler polynomials and generalized Apostol–Genocchi polyno-
mials with parameters λ, a, c, order α and level m are related with the Jacobi
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polynomials by means of the following identities.

B[m−1,α]
n (x + y; c, a;λ)

=
n∑

k=0

(−1)k
n∑

j=k

j!(ln c)j

(
j + κ

j − k

)(
n

j

)
(1 + κ + β + 2k)

(1 + κ + β + k)j+1
B

[m−1,α]
n−j (y; c, a;λ)

×P
(κ,β)
k (1 − 2x). (33)

E[m−1,α]
n (x + y; c, a;λ)

=
n∑

k=0

(−1)k
n∑

j=k

j!(ln c)j

(
j + κ

j − k

)(
n

j

)
(1 + κ + β + 2k)

(1 + κ + β + k)j+1
E
[m−1,α]
n−j (y; c, a;λ)

×P
(κ,β)
k (1 − 2x). (34)

G[m−1,α]
n (x + y; c, a;λ)

=
n∑

k=0

(−1)k
n∑

j=k

j!(ln c)j

(
j + κ

j − k

)(
n

j

)
(1 + κ + β + 2k)

(1 + κ + β + k)j+1
G

[m−1,α]
n−j (y; c, a;λ)

×P
(κ,β)
k (1 − 2x). (35)

Remark 4 . The substitution a = 1, c = e into (33)–(35) yields the identities

B[m−1,α]
n (x + y;λ) =

n∑
k=0

(−1)k
n∑

j=k

j!
(

j + κ

j − k

)(
n

j

)
(1 + κ + β + 2k)

(1 + κ + β + k)j+1

×B
[m−1,α]
n−j (y;λ)P (κ,β)

k (1 − 2x), (36)

E[m−1,α]
n (x + y;λ) =

n∑
k=0

(−1)k
n∑

j=k

j!
(

j + κ

j − k

)(
n

j

)
(1 + κ + β + 2k)

(1 + κ + β + k)j+1

×E
[m−1,α]
n−j (y;λ)P (κ,β)

k (1 − 2x), (37)

G[m−1,α]
n (x + y;λ) =

n∑
k=0

(−1)k
n∑

j=k

j!
(

j + κ

j − k

)(
n

j

)
(1 + κ + β + 2k)

(1 + κ + β + k)j+1

×G
[m−1,α]
n−j (y;λ)P (κ,β)

k (1 − 2x). (38)

Notice that (37) corresponds to [9, Equation (4.7)]. If α = 1 in (36), then
we have

B[m−1]
n (x + y;λ) =

n∑
k=0

(−1)k
n∑

j=k

j!
(

j + κ

j − k

)(
n

j

)
(1 + κ + β + 2k)

(1 + κ + β + k)j+1

B
[m−1]
n−j (y;λ)P (κ,β)

k (1 − 2x).

Theorem 3. For m ∈ N, the generalized Apostol-type polynomials of level m

Q[m−1,α]
n (x; c, a;λ;μ; ν), are related with the generalized Bernoulli polynomials
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of level m B
[m−1]
n (x), by means of the following identity.

Q[m−1,α]
n (x + y; c, a;λ;μ; ν) =

n∑
k=0

n∑
j=k

k!(ln c)j

(k + m)!

(
n

j

)(
j

k

)

×Q[m−1,α]
n−j (y; c, a;λ;μ; ν)B[m−1]

j−k (x). (39)

Proof. By substituting (9) into the right-hand side of (24), it suffices to follow
the proof given in Theorem 2, making the corresponding modifications (see
also, [9, Theorem 4.6]). �

Consequently, taking into account the relations (15)–(16) and making the
corresponding modifications in (39), we get

Corollary 3. For m ∈ N, the generalized Apostol–Bernoulli polynomials,
Apostol–Euler polynomials and Apostol–Genocchi polynomials of level m are
related with the generalized Bernoulli polynomials of level m polynomials by
means of the following identities.

B[m−1,α]
n (x + y; c, a;λ) =

n∑
k=0

n∑
j=k

k!(ln c)j

(k + m)!

(
n

j

)(
j

k

)

B
[m−1,μ]
n−j (y; c, a;λ)B[m−1]

j−k (x). (40)

E[m−1,α]
n (x + y; c, a;λ) =

n∑
k=0

n∑
j=k

k!(ln c)j

(k + m)!

(
n

j

)(
j

k

)

E
[m−1,α]
n−j (y; c, a;λ)B[m−1]

j−k (x). (41)

G[m−1,α]
n (x + y; c, a;λ) =

n∑
k=0

n∑
j=k

k!(ln c)j

(k + m)!

(
n

j

)(
j

k

)

G
[m−1,α]
n−j (y; c, a;λ)B[m−1]

j−k (x). (42)

Remark 5 . The substitution a = 1, c = e into (40)–(42) yields the identities

B[m−1,α]
n (x + y;λ) =

n∑
k=0

n∑
j=k

k!
(k + m)!

(
n

j

)(
j

k

)
B

[m−1,μ]
n−j (y;λ)B[m−1]

j−k (x),

B[m−1,α]
n (x + y;λ) =

n∑
k=0

n∑
j=k

k!
(k + m)!

(
n

j

)(
j

k

)
B

[m−1,α]
n−j (y;λ)B[m−1]

j−k (x),

G[m−1,α]
n (x + y;λ) =

n∑
k=0

n∑
j=k

k!
(k + m)!

(
n

j

)(
j

k

)
G

[m−1,α]
n−j (y;λ)B[m−1]

j−k (x).

(43)

Notice that (43) is just [9, Equation (4.11)].
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Theorem 4. For m ∈ N, the generalized Apostol-type polynomials of level m

Q[m−1,α]
n (x; c, a;λ;μ; ν), are related with the Genocchi polynomials Gn(x), by

means of the following identity.

Q[m−1,α]
n (x; c, a;λ;μ; ν)

=
1
2

n∑
k=0

(ln c)k

k + 1

[(
n

k

)
Q[m−1,α]

n−k (y; c, a;λ;μ; ν)

+
n∑

j=k

(
n

j

)(
j

k

)
Q[m−1,α]

n−j (y; c, a;λ;μ; ν)(ln c)j−k

]
Gk+1(x). (44)

Proof. We can proceed as the proof of [9, Theorem 4.1]. By substituting (10)
into the right-hand side of (24), we see that

Q[m−1,α]
n (x; c, a;λ;μ; ν)

=
n∑

j=0

(
n

j

)
Q[m−1,α]

j (y; c, a;λ;μ; ν)
(ln c)n−j

2(n − j + 1)

×
[

n−j∑
k=0

(
n − j + 1

k + 1

)(
n − j + 1

k + 1

)
Gk+1(x) + Gn−j+1(x)

]

=
n∑

j=0

(
n

j

)
Q[m−1,α]

j (y; c, a;λ;μ; ν)
(ln c)n−j

2(n − j + 1)

n−j∑
k=0

(
n − j + 1

k + 1

)
Gk+1(x)

+
n∑

j=0

(
n

j

)
Q[m−1,α]

j (y; c, a;λ;μ; ν)
(ln c)n−j

2(n − j + 1)
Gn−j+1(x).

Then, using appropriate combinational identities and summations (see,
for instance [3,10,12]), we obtain

Q[m−1,α]
n (x + y; c, a;λ;μ; ν)

=
1
2

n∑
k=0

(ln c)k

k + 1

[
n∑

j=k

(
n

j

)(
j

k

)
Q[m−1,α]

n−j (y; c, a;λ;μ; ν)(ln c)j−k

+
(

n

k

)
Q[m−1,α]

n−k (y; c, a;λ;μ; ν)

]
Gk+1(x).

Therefore, (44) holds. �

Again, taking into account the relations (15)–(16) and making the corre-
sponding modifications in (44), we get

Corollary 4. For m ∈ N, the generalized Apostol–Bernoulli polynomials of level
m and generalized Apostol–Genocchi polynomials of level m, are related with
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the Genocchi polynomials, by means of the following identities.

B[m−1,α]
n (x + y; c, a;λ;μ; ν) =

1
2

n∑
k=0

(ln c)k

k + 1

[(
n

k

)
B

[m−1,α]
n−k (y; c, a;λ;μ; ν)

+
n∑

j=k

(
n

j

)(
j

k

)
B

[m−1,α]
n−j (y; c, a;λ;μ; ν)(ln c)j−k

]
Gk+1(x). (45)

E[m−1,α]
n (x + y; c, a;λ;μ; ν) =

1
2

n∑
k=0

(ln c)k

k + 1

[(
n

k

)
E
[m−1,α]
n−k (y; c, a;λ;μ; ν)

+
n∑

j=k

(
n

j

)(
j

k

)
E
[m−1,α]
n−j (y; c, a;λ;μ; ν)(ln c)j−k

]
Gk+1(x), (46)

G[m−1,α]
n (x + y; c, a;λ;μ; ν) =

1
2

n∑
k=0

(ln c)k

k + 1

[(
n

k

)
G

[m−1,α]
n−k (y; c, a;λ;μ; ν)

+
n∑

j=k

(
n

j

)(
j

k

)
G

[m−1,α]
n−j (y; c, a;λ;μ; ν)(ln c)j−k

]
Gk+1(x). (47)

Remark 6 . The substitution a = 1, c = e into (45)–(47) yields the identities

B[m−1,α]
n (x + y;λ;μ; ν) =

1
2

n∑
k=0

1
k + 1

×
[(

n

k

)
B

[m−1,α]
n−k (y;λ;μ; ν) +

n∑
j=k

(
n

j

)(
j

k

)
B

[m−1,α]
n−j (y;λ;μ; ν)

]
Gk+1(x),

E[m−1,α]
n (x + y;λ;μ; ν) =

1
2

n∑
k=0

1
k + 1

×
[(

n

k

)
E
[m−1,α]
n−k (y;λ;μ; ν) +

n∑
j=k

(
n

j

)(
j

k

)
E
[m−1,α]
n−j (y;λ;μ; ν)

]
Gk+1(x),

G[m−1,α]
n (x + y;λ;μ; ν) =

1
2

n∑
k=0

1
k + 1

×
[(

n

k

)
G

[m−1,α]
n−k (y;λ;μ; ν) +

n∑
j=k

(
n

j

)(
j

k

)
G

[m−1,α]
n−j (y;λ;μ; ν)

]
Gk+1(x).

(48)

Notice that (48) is just [9, Equation (4.1)].

For the case of connection formulas involving the Apostol–Euler polyno-
mials, we have the following result.
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Theorem 5. For m ∈ N, the generalized Apostol-type polynomials of level m

Q[m−1,α]
n (x; c, a;λ;μ; ν), are related with the Apostol–Euler polynomials

En(x;λ), by means of the following identity.

Q[m−1,α]
n (x + y; c, a;λ;μ; ν)

=
1
2

n∑
j=0

(
n

j

)
[λQ[m−1,α]

n (y + 1; c, a;λ;μ; ν) + (ln c)jQ[m−1,α]
n

×(y; c, a;λ;μ; ν)]En−j(x;λ). (49)

Proof. By substituting (11) into the right-hand side of (24), we can see that

Q[m−1,α]
n (x + y; c, a;λ;μ; ν)

=
n∑

k=0

(
n

k

)
Q[m−1,α]

k (y; c, a;λ;μ; ν)(ln c)n−k

(
1
2

)

×
⎡
⎣λ

n−k∑
j=0

(
n − k

j

)
Ej(x;λ) + En−k(x;λ)

⎤
⎦

=
n∑

k=0

(
n

k

)
Q[m−1,α]

k (y; c, a;λ;μ; ν)(ln c)n−k

(
λ

2

) n−k∑
j=0

(
n − k

j

)
Ej(x;λ)

+
n∑

k=0

(
n

k

)
Q[m−1,α]

k (y; c, a;λ;μ; ν)(ln c)n−k

(
1
2

)
En−k(x;λ). (50)

Upon inverting the order of summation and using the following elementary
binomial coefficient identities (see [12, Equations (5.4) and (5.21)]):

(
n

k

)
=

(
n

n − k

)
, k, n ∈ N0,

(
r

m

)(
m

k

)
=

(
r

k

)(
r − k

m − k

)
, k,m, r ∈ N0,

the first sum in (50) becomes

n∑
k=0

(
n

k

)
Q[m−1,α]

k (y; c, a;λ;μ; ν)(ln c)n−k

(
λ

2

) n−k∑
j=0

(
n − k

j

)
Ej(x;λ)

=
n∑

k=0

n−k∑
j=0

(
n

k

)
(ln c)n−k

(
λ

2

) (
n − k

j

)
Q[m−1,α]

k (y; c, a;λ;μ; ν)Ej(x;λ)
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=
n∑

j=0

(
λ

2

) (
n

j

)
Ej(x;λ)

n−j∑
k=0

(
n − j

k

)
Q[m−1,α]

k (y; c, a;λ;μ; ν)(ln c)n−k

=
n∑

j=0

(
λ

2

) (
n

j

)
Ej(x;λ)Q[m−1,α]

n−j (y + 1; c, a;λ;μ; ν). (51)

For the second sum in (50), we obtain

n∑
k=0

(
n

k

)
Q[m−1,α]

k (y; c, a;λ;μ; ν)(ln c)n−k

(
1
2

)
En−k(x;λ)

=
1
2

n∑
k=0

(
n

k

)
Q[m−1,α]

n−k (y; c, a;λ;μ; ν)(ln c)kEk(x;λ). (52)

Combining (51) and (52) we get

Q[m−1,α]
n (x + y; c, a;λ;μ; ν)

=
(

λ

2

) n∑
j=0

(
n

j

)
Ej(x;λ)Q[m−1,α]

n−j (y + 1; c, a;λ;μ; ν)

+
1
2

n∑
j=0

(
n

j

)
Q[m−1,α]

n−j (y; c, a;λ;μ; ν)(ln c)jEj(x;λ)

=
1
2

n∑
j=0

(
n

j

)
[λQ[m−1,α]

n (y + 1; c, a;λ;μ; ν) + (ln c)j

×Q[m−1,α]
n (y; c, a;λ;μ, ν)]En−j(x;λ).

Therefore, (49) holds. �

Finally, as a consequence of Theorem 5 we get

Corollary 5. For m ∈ N, the generalized Apostol–Bernoulli polynomials of level
m and generalized Apostol–Genocchi polynomials of level m, are related with
the Apostol–Euler polynomials, by means of the following identities.

B[m−1,α]
n (x + y; c, a;λ;μ; ν) =

1
2

n∑
j=0

(
n

j

)
[λB[m−1,α]

n (y + 1; c, a;λ;μ; ν)

+(ln c)jB[m−1,α]
n (y; c, a;λ;μ; ν)]En−j(x;λ),

G[m−1,α]
n (x + y; c, a;λ;μ; ν) =

1
2

n∑
j=0

(
n

j

)
[λG[m−1,α]

n (y + 1; c, a;λ;μ; ν)

+(ln c)jG[m−1,α]
n (y; c, a;λ;μ; ν)]En−j(x;λ).
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[31] Özarslan, M.A.: Hermite-based unified Apostol–Bernoulli Euler and Genocchi
polynomials. Adv. Differ. Equ. 2013, 116 (2013)
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