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1. Introduction

As we know, affine hyperspheres are very special in the equiaffine differential
geometry of hypersurfaces. In particular, if an affine hypersurface is of parallel
Fubini–Pick form, then it must be an affine hypersphere [4]. If we only take
account of the definition, affine hyperspheres seem very simple but in fact they
do form a very large class of hypersurfaces. Consequently it is a great chal-
lenge to find explicitly all the affine hyperspheres and now it still remains a
very hard job. Although this, the study of affine hyperspheres has been made
a lot of great achievement by many authors. For example, the proof of the Cal-
abi’s conjecture (see for example, [17,18]), the classification of hyperspheres
of constant sectional affine curvatures [27,28] and [15], the generalizations of
Calabi’s composition of affine hyperbolic hyperspheres (with multiple factors,
[20]; for more general cases, [5]), the characterization of the Calabi’s composi-
tion of hyperbolic hyperspheres ([9]; also [22] and [23] in a different manner),
and the classification of locally strongly convex hypersurfaces with parallel
Fubini–Pick forms ([6] and [13] for some special cases; [14] for general case).
As for the general nondegenerate case, there also have been some interesting
partial classification results, see for example the series of published papers by
Z. J. Hu et al: [10,11] and [12]. In this direction, a very recent development is
the preprint article [8] in which the author aimed at a complete classification
of nondegenerate centroaffine hypersurfaces with parallel Fubini–Pick form.

In this paper, on the basis of a recent characterization of Calabi compo-
sition of hyperbolic hypersphere [22,23], we make use of the idea by H. Naitoh
in [24] for classification of totally real parallel submanifolds in the complex
projective space, to provide a direct proof of the complete classification of
symmetric affine hyperspheres. Then, via an earlier result of the author, we
easily give an alternative and simpler proof for the classification theorem (The-
orem 4.6) for the affine hypersurface with parallel Fubini–Pick forms, which
has already been established by Z. J. Hu et al. in a totally different way (see
[14] for the detail).

Our main theorem is stated as follows:

Theorem 1.1. (The main theorem) Let x : Mn → R
n+1 (n ≥ 2) be a locally

strongly convex affine hypersphere. If x is locally affine symmetric, then either
of the following two cases holds:

1. With the affine metric g, the Riemannian manifold (Mn, g) is irreducible
and x is locally affine equivalent to
(a) one of the three kinds of quadric affine hyperspheres: Ellipsoid, elliptic

paraboloid and hyperboloid; or
(b) the standard embedding of the Riemannian symmetric space SL(m,R)/

SO(m) into R
n+1 with n = 1

2m(m + 1) − 1, m ≥ 3; or
(c) the standard embedding of the Riemannian symmetric space SL(m,C)/

SU(m) into R
n+1 with n = m2 − 1, m ≥ 3; or
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(d) the standard embedding of the Riemannian symmetric space SU∗(2m)/
Sp(m) into R

n+1 with n = 2m2 − m − 1, m ≥ 3; or
(e) the standard embedding of the Riemannian symmetric space E6(−26)/F4

into R
27.

2. (Mn, g) is reducible and x is locally affine equivalent to the Calabi product
of r points and s of the above irreducible hyperbolic affine hyperspheres of
lower dimensions, where r, s are nonnegative integers and r + s ≥ 2.

Examples (b), (c), (d) and (e) are explicitly presented in Sect. 3, while
examples in (a) can be found in the most text books, see for example [19].

2. Preliminaries

2.1. The Equiaffine Geometry of Hypersurfaces

In this subsection, we brief some basic facts in the equiaffine geometry of
hypersurfaces. For details the readers are referred to some text books, say, [19]
and [25].

Let x : Mn → R
n+1 be a locally strongly convex hypersurface. Then

there are several basic equiaffine invariants of x among which are: the affine
metric (Berwald–Blaschke metric) g, the affine normal ξ := 1

nΔgx, the Fubini–
Pick 3-form (the so called cubic form) A ∈ ⊙3

T ∗Mn and the affine second
fundamental 2-form B ∈ ⊙2

T ∗Mn. By using the index lifting by the metric
g, we can identify A and B with the linear maps A : TMn → End(TMn) or
A : TMn

⊙
TMn → TMn and B : TMn → TMn, respectively, by

g(A(X)Y,Z) = A(X,Y,Z) or g(A(X,Y ), Z) = A(X,Y,Z),

g(B(X), Y ) = B(X,Y ),
(2.1)

for all X,Y,Z ∈ TMn. Sometimes we call the corresponding B ∈ End(TMn)
the affine shape operator of x. In this sense, the affine Gauss equation can be
written as follows:

R(X,Y )Z =
1
2
(g(Y,Z)B(X) + B(Y,Z)X − g(X,Z)B(Y )

−B(X,Z)Y ) − [A(X), A(Y )](Z), (2.2)

where, for any linear transformations T, S ∈ End(TMn),

[T, S] = T ◦ S − S ◦ T. (2.3)

Each of the eigenvalues B1, . . . , Bn of the affine shape operator B : TMn →
TMn is called the affine principal curvature of x. Define

L1 :=
1
n

tr B =
1
n

∑

i

Bi. (2.4)

Then L1 is referred to as the affine mean curvature of x. The hypersurface x
is called an (elliptic, parabolic, or hyperbolic) affine hypersphere, if all of its



120 X. Li and G. Zhao Results. Math.

affine principal curvatures are equal to one (positive, 0, or negative) constant.
In this case we have

B(X) = L1X, for all X ∈ TMn. (2.5)

It follows that the affine Gauss equation (2.2) of an affine hypersphere assumes
the following form:

R(X,Y )Z = L1(g(Y,Z)X − g(X,Z)Y ) − [A(X), A(Y )](Z), (2.6)

Furthermore, all the affine lines of an elliptic affine hypersphere or a
hyperbolic affine hypersphere x : Mn → R

n+1 pass through a fix point o which
is refer to as the affine center of x; Both the elliptic affine hyperspheres and
the hyperbolic affine hyperspheres are called proper affine hyperspheres, while
the parabolic affine hyperspheres are called improper affine hyperspheres.

For each vector field η transversal to the tangent space of x, we have the
following direct decomposition of vector spaces

x∗TR
n+1 = x∗(TM) + R · η.

This decomposition and the canonical differentiation D̄0 on R
n+1 define a

nondegenerate bilinear form h ∈ ⊙2
T ∗Mn and a connection Dη on TMn as

follows:

D̄0
XY = x∗(D

η
XY ) + h(X,Y )η, ∀X,Y ∈ TMn. (2.7)

(2.7) can be referred as to the affine Gauss formula of the hypersurface x.
In what follows we make the following convention for the range of indices:

1 ≤ i, j, k, l ≤ n.

Let {ei, en+1} be a local unimodular frame field along x, and {ωi, ωn+1}
its dual coframe. Then η := en+1 is transversal to the tangent space x∗(TM).
Write h =

∑
hijω

iωj with hij = h(ei, ej) and H = |det(hij)|. Then the locally
defined nondegenerate metric g := H− 1

n+2 h is independent of the choice of the
unimodular frame field {ei, en+1} and thus is in fact a globally well-defined
metric on Mn which is called the affine (or Berwald–Blaschke) metric. By
taking x as an R

n+1-valued smooth function on Mn, we call the vector function
ξ := 1

n tr g(x) the affine normal vector.
If, in particular, η is chosen to be parallel to the affine normal ξ, Then the

induced connection ∇ := Dη is independent of the choice of η and is referred
to as the affine connection of x. If ∇̂ is the Levi-Civita connection of the affine
metric g, then the Fubini–Pick form (as a symmetric (1, 2) tensor) is defined
by

A(X,Y ) = ∇XY − ∇̂XY, ∀X,Y ∈ TM, (2.8)

which is identified via the affine metric g with a symmetric cubic form
A(X,Y,Z) = g(A(X,Y ), Z). This cubic form A is also referred to as the
Fubini–Pick form.
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From now on we assume that the transversal vector en+1 above is par-
allel to the normal vector ξ. Then it holds that ξ = H

1
n+2 en+1 and we have

connection forms ωÃ
B̃

, 1 ≤ Ã, B̃ ≤ n + 1, defined by

dωÃ = ωB̃ ∧ ωÃ
B̃

, dωÃ
B̃

=
n+1∑

C̃=1

ωC̃
B̃

∧ ωÃ
C̃

, ωn+1 ≡ 0.

Furthermore, the local expressions of g,A and B:

A =
∑

Aijkωiωjωk, B =
∑

Bijω
iωj , (2.9)

is subject to the following basic formulas:
∑

i,j

gijAijk = 0 (the apolarity), (2.10)

Aijk,l − Aijl,k =
1
2
(gikBjl + gjlBik − gilBjk − gjkBil), (2.11)

∑

l

Al
ij,l =

n

2
(L1gij − Bij), (2.12)

where Aijk,l are the covariant derivatives of Aijk with respect to the Levi-
Civita connection of g.

Define
∑

k

hijkωk = dhij + hijω
n+1
n+1 −

∑
hkjω

k
i −

∑
hikωk

j . (2.13)

Then the Fubini–Pick form A can be determined by the following formula:

Aijk = −1
2
H− 1

n+2 hijk. (2.14)

Define the normalized scalar curvature χ and the Pick invariant J by

χ =
1

n(n − 1)

∑
gilgjkRijkl, J =

1
n(n − 1)

∑
AijkApqrg

ipgjqgkr.

Then the affine Gauss equation can be written in terms of the metric and the
Fubini–Pick form as follows

Rijkl = (Aijk,l − Aijl,k) + (χ − J)(gilgjk − gikgjl)

+
2
n

∑
(gikAjlm,m − gilAjkm,m) +

∑

m

(Am
ikAjlm − Am

il Ajkm). (2.15)

We shall use the following affine existence and uniqueness theorems later:

Theorem 2.1. [19] (The existence) Let (Mn, g) be a simply connected Rie-
mannian manifold of dimension n, and A be a symmetric 3-form on Mn sat-
isfying the affine Gauss equation (2.15) (or equivalently (2.2)) and the apo-
larity condition (2.10). Then there exists a locally strongly convex immersion
x : Mn → R

n+1 such that g and A are the affine metric and the Fubini–Pick
form for x, respectively.
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Theorem 2.2. [19] (The uniqueness) Let x : Mn → R
n+1, x̄ : M̄n → R

n+1 be
two locally strongly convex hypersurfaces of dimension n with respectively the
affine metrics g, ḡ and the Fubini–Pick forms A, Ā, and ϕ : (Mn, g) → (M̄n, ḡ)
be an isometry between Riemannian manifolds. Then ϕ∗Ā = A if and only if
there exists a unimodular affine transformation Φ : Rn+1 → R

n+1 such that
x̄ ◦ ϕ = Φ ◦ x, or equivalently, x̄ = Φ ◦ x ◦ ϕ−1.

Remark 2.1. For the sufficient part of Theorem 2.2, see also [23].

Given a constant L1 ∈ R and a Riemannian manifold (Mn, g), denote
by S(Mn,g)(c) the set of all TMn-valued symmetric bilinear forms A ∈ Γ(

⊙2

(T ∗Mn)
⊗

(TMn)), satisfying the following conditions:

1. Under the metric g, the corresponding 3-form A∈Γ(
⊙2(T ∗Mn)

⊗
(T ∗Mn))

is totally symmetric, that is, A∈Γ(
⊙3(T ∗Mn));

2. Affine Gauss equation, that is, for any X,Y,Z ∈ X(Mn)

R(X,Y )Z = L1(g(Y,Z)X − g(X,Z)Y ) − [A(X), A(Y )](Z). (2.16)

3. tr g(A) = 0,
From Theorem 2.1 and Theorem 2.2, we have

Corollary 2.3. For each A ∈ S(Mn,g)(L1), there uniquely exists one affine hy-
persphere x : Mn → R

d+1 with affine metric g, Fubini–Pick form A and affine
mean curvature L1.

Motivated by Theorem 2.2, we introduce the following concept of affine
equivalence relation between nondegenerate hypersurfaces:

Definition 2.1. Let x : Mn → R
n+1 be a nondegenerate hypersurface with the

affine metric g. A hypersurface x̄ : Mn → R
n+1 is called affine equivalent to x

if there exists a unimodular transformation Φ : Rn+1 → R
n+1 and an isometry

ϕ of (Mn, g) such that x̄ = Φ ◦ x ◦ ϕ−1.

To end this section, we would like to recall the following concept:

Definition 2.2. [22] A nondegenerate hypersurface x : Mn → R
n+1 is called

affine symmetric (resp. locally affine symmetric) if
1. the pseudo-Riemannian manifold (Mn, g) is symmetric (resp. locally sym-

metric) and therefore (Mn, g) can be written (resp. locally written) as G/K
for some connected Lie group G of isometries with K one of its closed sub-
groups;

2. the Fubini–Pick form A is invariant under the action of G.

2.2. The Multiple Calabi Product of Hyperbolic Affine Hyperspheres

For later use we make a brief review of the Calabi composition of multiple
factors of hyperbolic affine hypersurfaces. Detailed proofs of the facts listed in
this subsection has been given in the articles [21] and [23].
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Let r, s be two nonnegative integers with K := r+s ≥ 2 and xα : Mnα
α →

R
nα+1, 1 ≤ α ≤ s, be hyperbolic affine hyperspheres of dimension nα > 0 with

affine mean curvatures
(α)

L 1 and with the origin their common affine center.
For convenience we make the following convention:

1 ≤ a, b, c · · · ≤ K, 1 ≤ λ, μ, ν ≤ K − 1, 1 ≤ α, β, γ ≤ s,

α̃ = α + r, β̃ = β + r, γ̃ = γ + r.

Furthermore, for each α = 1, . . . , s, set ĩα = iα + K − 1 +
∑

β<α nβ with
1 ≤ iα ≤ nα.

Define

fa :=

{
a, 1 ≤ a ≤ r;
∑

β≤α nβ + α̃, r + 1 ≤ a = α̃ ≤ r + s,

and

ea := exp
(

− ta−1

na + 1
+

ta
fa

+
ta+1

fa+1
+ · · · +

tK−1

fK−1

)

, 1 ≤ a ≤ K = r + s

In particular,

e1 = exp
(

t1
f1

+
t2
f2

+ · · · +
tK−1

fK−1

)

, eK = exp
(

− tK−1

nK + 1

)

.

Put n =
∑

α nα + K − 1 and Mn = RK−1 × Mn1
1 × · · · × Mns

s . For any
K positive numbers c1, . . . , cK , define a smooth map x : Mn → R

n+1 by

x(t1, . . . , tK−1, p1, . . . , ps) := (c1e1, . . . , crer, cr+1er+1x1(p1), . . . , cKeKxs(ps)),

∀(t1, . . . , tK−1, p1, . . . , ps) ∈ Mn. (2.17)

Proposition 2.4. [21] The map x : Mn → R
n+1 defined above is a new hyper-

bolic affine hypersphere with the affine mean curvature

L1 = − 1
(n + 1)C

, C :=

⎛

⎝ 1
n + 1

r∏

a=1

c2a ·
s∏

α=1

c
2(nα+1)
r+α

(nα + 1)nα+1(−
(α)

L 1)nα+2

⎞

⎠

1
n+2

,

(2.18)

Moreover, for given positive numbers c1, . . . , cK , there exits some c > 0 and
c′ > 0 such that the following three hyperbolic affine hyperspheres

x := (c1e1, . . . , crer, cr+1er+1x1, . . . , cKesxs),
x̄ := c(e1, . . . , er, er+1x1, . . . , esxs),
x̃ := (e1, . . . , er, er+1x1, . . . , c

′esxs)

are equiaffine equivalent to each other.

Definition 2.3. [21] The hyperbolic affine hypersphere x is called the Calabi
composition of r points and s hyperbolic affine hyperspheres.
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Then we have

Corollary 2.5. [21] The Calabi composition x : Mn → R
n+1 of r points and

s hyperbolic affine hyperspheres xα : Mnα → R
nα+1, 1 ≤ α ≤ s, is affine

symmetric if and only if each positive dimensional factor xα is symmetric.

Note that for a given locally strongly convex hypersurface x : Mn → R
n+1

with the affine metric g, (Mn, g) is a Riemannian manifold. Then we have the
following characterization of Calabi composition of symmetric factors which is
important in the proof of Theorem 1.1:

Theorem 2.6. ([23]; cf. [22]) A locally strongly convex and affine symmetric
hypersphere x : Mn → R

n+1 is locally affine equivalent to the Calabi compo-
sition of some hyperbolic affine hyperspheres possibly including point factors
if and only if Mn is reducible as a Riemannian manifold with respect to the
affine metric.

3. Some Typical Examples

To make the main theorem more understandable, we provide in this section a
systematic and unified treatment of some typical examples of affine symmet-
ric hyperspheres in R

n+1 giving, for the first time, the necessary computation
details. These examples have partly appeared in [3,5,19,22,25,26] and par-
ticularly in the important classification theorem by Z.J. Hu, H.Z. Li and L.
Vrancken ([14], see also Theorem 4.6 in the next section).

Example 3.1. [19,25] Quadric Hypersurfaces
There are three kinds of quadric hypersurfaces in R

n+1 and they are given
by the following quadric equations

(1) Ellipsoid: (x1)2 + · · · + (xn)2 + (xn+1)2 = c2, c > 0; (3.1)
(2) Paraboloid: (x1)2 + · · · + (xn)2 = 2xn+1; (3.2)
(3) Hyperboloid: (x1)2 + · · · + (xn)2 − (xn+1)2 = −c2, xn+1 > 0, c > 0.

(3.3)

It is well known that the above three hypersurfaces are (resp. elliptic,
hyperbolic and parabolic) affine hyperspheres (with resp. positive, negative
and zero affine principal curvatures) and have vanishing Fubini–Pick forms. It
then follows that, with respect to the affine metrics, they have constant (resp.
positive, negative and zero) affine sectional curvatures. In particular, they are
affine symmetric hyperspheres. Also we have

Proposition 3.1. [19] A locally strongly convex hypersurface x : M → R
n+1

has vanishing Fubini–Pick form if and only if it is one of the above quadric
hypersurfaces.
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Example 3.2. [19] The standard flat hypersurfaces with nonzero Fubini–Pick
form

Given a positive number C, let x : Rn → R
n+1 be the well known flat

hyperbolic affine hypersphere of dimension n which is defined by

x1 · · · xnxn+1 = C, x1 > 0, . . . , xn+1 > 0.

Then it is not hard to see that x is the Calabi composition of n+1 points and
thus is affine flat. In fact, we can write for example

x = (e1, . . . , en, Cen+1).

It follows from Corollary 2.5 that x is affine symmetric. In particular, x has a
positive constant Pick invariant.

Note that by a theorem of L. Vrancken, A-M. Li and U. Simon in [27]
(also see [16]), Example 3.2 is, up to equiaffine equivalence, the only one with
flat affine metric and positive Pick invariant.

Example 3.3. [5,13,25] The standard embedding

x : M ≡ SL(m,R)/SO(m) → R
n+1, n =

1
2
m(m + 1) − 1, m ≥ 3.

Let sl(m,R), so(m) be the Lie algebras of SL(m,R), SO(m) respectively,
and R

n+1 ≡ s(m) the vector space of real symmetric matrices of order m. Then
the canonical decomposition of sl(m,R) with respective to so(m) is sl(m,R) =
so(m,R) + s0(m) where

s0(m) := {X ∈ s(m); tr X = 0}
and is naturally identified with the tangent space ToM at the origin o =
SO(m) ∈ M , the coset of the identity matrix.

There is a representation φ of SL(m,R) on R
n+1 defined by

φ(a)X := aXat, for a ∈ SL(m,R), X ∈ R
n+1.

Then we have

Lemma 3.2. [25] φ(SL(m,R)) ⊂ SL(n + 1,R). So φ(SL(m,R)) can be taken to
be a subgroup of the unimodular group UA(n + 1) on R

n+1.

For a given constant L1 < 0, put

C =
√

m

4

(
4

m(−L1)

)n+2
2

and define a map x : SL(m,R)/SO(m) → R
n+1 as follows:

x( aSO(m)) = Caat, for a ∈ SL(m,R).

Then it is clear that x is equivariant with respect to the representation φ :
SL(m,R) → UA(n + 1) (see Lemma 3.2) and x(M) coincides with the subset
of all positive-definite matrices in s(m) with constant determinant Cm, and
x(o) = CIm where Im is the identity matrix of order m.
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Furthermore, x is an equiaffine symmetric hypersphere of affine mean
curvature L1. In fact, this last conclusion follows by the following computation:

Now for each X ∈ s0(m) ≡ ToM , a(t) := exp tXSO(m) is a geodesic curve
on M . Then it holds that

x∗(X) =
d

dt

∣
∣
∣
∣
t=0

x(a(t)) = C
d

dt

∣
∣
∣
∣
t=0

((exp tX)(exp tX)t) = 2CX.

This shows that x is an immersion at o and thus is an immersion globally
since x is equivariant. Clearly, x is injective and is thus an imbedding of M
into R

n+1.
Moreover, the standard inner product (·, ·) on R

n+1 ≡ s(m) is defined by
(X,Y ) = tr (XY ), X,Y ∈ s(m). Since

(x∗(X), x(o)) = (2CX,CIm) = 2C2tr (XIm) = 2C2tr X = 0,

X ∈ ToM ≡ s0(m),

x(o) is a transversal vector of x at o and thus is transversal everywhere by the
equivariance.

On the other hand, if we denote by Y ∗ the Killing vector field on M
induced by Y ∈ s0(m), then the value of Y ∗ at a(t)

Y ∗|a(t) =
d

ds

∣
∣
∣
∣
s=0

( exp sY a(t)SO(m)) =
d

ds

∣
∣
∣
∣
s=0

( exp sY exp tXSO(m)).

Therefore

x∗(Y ∗|a(t)) = C
d

ds

∣
∣
∣
∣
s=0

((exp sY exp tX)(exp sY exp tX)t).

It follows that

X(x∗(Y ∗)) = C
∂2

∂t∂s

∣
∣
∣
∣
t=s=0

(exp sY exp tX exp sXt exp tY t)

= 2C(Y X + XY ) = 2C

(

Y X + XY − 2
m

tr (XY )Im

)

+
4
m

C(X,Y )Im (3.4)

implying that x is locally strongly convex since (X,Y ) is positive definite.
Moreover the affine metric (Blaschke metric) of x at the origin o is by definition

go(X,Y ) =
(

4C√
m

) 2
n+2

(X,Y ) = − 4
mL1

(X,Y ), X, Y ∈ s0(m).

Clearly go is positive definite and invariant by SO(m) and it induced a invariant
Riemannian metric g. On the other hand, the involution map σ : sl(m,R) →
sl(m,R) defined by σ(X) = −Xt is isometric with respect to go, thus the
invariant metric g is symmetric; Note that x is equivariant, thus g is nothing
but the affine metric of x.
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Let Ao be the (1, 2) tensor on s0(m) defined by

Ao(X,Y ) = XY + Y X − 2
m

tr (XY )Im, ∀X,Y ∈ s0(m),

which gives a linear map for any X ∈ s0(m): Ao(X) : s0(m) → s0(m) by
Ao(X)Y = Ao(X,Y ), Y ∈ s0(m).

To find the affine normal vector at o, we should first prove the following
lemma:

Lemma 3.3. Define Ao(X,Y,Z) = go(Ao(X,Y ), Z), for X,Y,Z ∈ s0(m). Then
1. the (0, 3)-tensor Ao(X,Y,Z) is totally symmetric;
2. for each X ∈ s0(m), the linear map Ao(X) is traceless.

Proof. Conclusion (1) is direct. To prove (2), we denote by ej
i the m × m

matrix with the (i, j)-th element being 1 and all other elements zero, that is,
its (k, l)-th element (ej

i )
k
l = δk

i δj
l , 1 ≤ k, l ≤ m. Then {ej

i , 1 ≤ i, j ≤ m} is
the standard basis for the real linear space M(m,R) of m × m real matrices.
Define

fα = eα
α − em

m for 1 ≤ α ≤ m − 1; f j
i =

1
2
(ej

i + ei
j) for 1 ≤ i < j ≤ m.

Then {fα, f j
i } is a basis for s0(m). For X = (Xi

j) ∈ s0(m), we find by direct
computation

Ao(X)fα = fαX + Xfα − 2
m

tr (fαX)Im =
2
m

((m − 1)Xα
α + Xm

m )fα + · · · ,

(3.5)

Ao(X)f j
i = f j

i X + Xf j
i − 2

m
tr (f j

i X)Im = (Xj
j + Xi

i )f
j
i + · · · (3.6)

where we have omitted those terms not containing fα in (3.5), and those not
containing f j

i in (3.6), respectively. It then follows that

tr Ao(X) =
2
m

∑

α

((m − 1)Xα
α + Xm

m ) +
∑

i<j

(Xj
j + Xi

i )

=
2(m − 1)

m

∑

i

Xi
i +

1
2

∑

i,j

(Xi
i + Xj

j ) −
∑

i

Xi
i = 0 (3.7)

since tr X =
∑

i Xi
i = 0. �

Since Y ∗ is chosen to be the Killing vector field on M corresponding to
Y , we have ∇̂XY ∗ = 0 where ∇̂ is the Levi-Civita connection of the affine
metric g. Therefore by taking the trace of (3.4) with respect to go and using
Lemma 3.3, we find that, at o, the affine normal vector

ξo =
1
n

Δgx =
(

4C√
m

)− 2
n+2 4

m
· x(o) = −L1x(o).
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ξo is clearly invariant by φ(SO(m)) and for any X ∈ sl(m,R), φ∗(X)ξo ∈
x∗(To(M)). Then the equivariant transversal vector field ξ induced by ξo co-
incides with the affine normal vector (see Lemma 4.4 in [25]). Since x is also
equivariant, ξ = −L1x holds identically. Therefore, x is a hyperbolic affine
sphere with affine mean curvature L1.

Now the equivariance of x implies that its Fubini–Pick form A is SL(m,R)-
invariant which indicates that x is affine symmetric, and the invariant Fubini–
Pick form A is uniquely determined by the cubic form Ao given in Lemma 3.3
(see also definition (2.8)):

Ao(X,Y,Z) = g0

((

XY + Y X − 2
m

tr (XY )Im

)

, Z

)

, X, Y, Z ∈ s0(m).

(3.8)

Example 3.4. ([14], cf. [3] for m = 3) The standard embedding

x : M ≡ SL(m,C)/SU(m) → R
n+1 n = m2 − 1, m ≥ 3.

Let sl(m,C), su(m) be the Lie algebras of SL(m,C), SU(m) respectively,
and R

n+1 ≡ h(m) the vector space of complex Hermitian matrices of order
m. Then the canonical decomposition of sl(m,C) with respective to su(m) is
sl(m,C) = su(m) + h0(m) where

h0(m) := {X ∈ h(m); tr X = 0},

which can be identified with the tangent space ToM at the origin o = SU(m) ∈
M .

There is a representation φ of SL(m,C) on R
n+1 by

φ(a)X := aXāt, for a ∈ SL(m,C), X ∈ R
n+1.

Lemma 3.4. φ(SL(m,C)) ⊂ SL(n + 1,R) and thus φ(SL(m,C)) can be viewed
as a subgroup of the unimodular group UA(n + 1) on R

n+1.

Proof. Let ej
i and f j

i be as in Example 3.3. Then {ej
i , 1 ≤ i, j ≤ m} can also

be taken as the standard basis for the complex linear space M(m,C) of m×m
complex matrices, with its complex dual basis denoted by {ωi

j , 1 ≤ i, j ≤ m}.
Define

f̃ j
i =

1
2
√−1(ej

i − ei
j) for 1 ≤ i < j ≤ m.

Then {ei
i, f

j
i , f̃ j

i } is a basis for the real linear space h(m) with the dual basis
{θi

i, θ
i
j , θ̃

i
j} where

θi
i = ωi

i for 1 ≤ i ≤ m;

θi
j = (ωi

j + ωj
i ), θ̃i

j =
√−1(ωj

i −ωi
j) for 1 ≤ i < j ≤ m.

It follows that for i < j,

θi
j(e

l
k) = ωi

j(e
l
k) + ωj

i (e
l
k) = δi

kδl
j + δj

kδl
i, (3.9)

θ̃i
j(e

l
k) =

√−1(ωj
i (e

l
k) − ωi

j(e
l
k)) =

√−1(δj
kδl

i − δi
kδl

j). (3.10)
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For each X ∈ sl(m,C), write X = (Xk
l )m×m =

∑
k,l Xk

l el
k. Then tr X =

∑
i Xi

i = 0 and, for each pair of i, j, we have

Xej
i =

∑

k,l,p

(Xk
p δp

i δj
l )e

l
k =

∑

k

Xk
i ej

k, ej
i X̄

t =
∑

k,l,p

(δk
i δj

pX̄
l
p)e

l
k =

∑

k

X̄k
j ek

i .

(3.11)

Since, by definition, φ∗(X)(A) = XA + AX̄t (X ∈ sl(m,C), A ∈ R
n+1), it

follows by (3.9)–(3.11) and trX = 0 that
∑

i

θi
i(φ∗(X)(f i

i )) =
∑

i

ωi
i(Xei

i + ei
iX̄

t) =
∑

i,k

(Xk
i ωi

i(e
i
k) + X̄k

i ωi
i(e

k
i ))

=
∑

i

(Xi
i + X̄i

i ) = 0, (3.12)

∑

i<j

θi
j(φ∗(X)(f j

i )) =
1
2

∑

i<j

θi
j(X(ej

i + ei
j) + (ej

i + ei
j)X̄

t)

=
1
2

∑

i<j,k

(Xk
i θi

j(e
j
k) + Xk

j θi
j(e

i
k) + X̄k

j θi
j(e

k
i ) + X̄k

i θi
j(e

k
j ))

=
1
2

∑

i<j

(Xi
i + Xj

j + X̄j
j + X̄i

i ) =
1
2

∑

i�=j

(Xi
i + X̄i

i )

=
m − 1

2

∑

i

(Xi
i + X̄i

i ) = 0, (3.13)

∑

i<j

θ̃i
j(φ∗(X)(f̃ j

i )) =
1
2
√−1

∑

i<j

θ̃i
j(X(ej

i − ei
j) + (ej

i − ei
j)X̄

t)

=
1
2
√−1

∑

i<j,k

(Xk
i θ̃i

j(e
j
k) − Xk

j θ̃i
j(e

i
k)+X̄k

j θ̃i
j(e

k
i )−X̄k

i θ̃i
j(e

k
j ))

=
1
2

∑

i<j

(Xi
i + Xj

j + X̄j
j + X̄i

i ) =
1
2

∑

i�=j

(Xi
i + X̄i

i )

=
m − 1

2

∑

i

(Xi
i + X̄i

i ) = 0. (3.14)

Taking the sum of (3.12)–(3.14), we find

tr (φ∗(X)) =
∑

i

θi
i(φ∗(X)(f i

i )) +
∑

i<j

θi
j(φ∗(X)(f j

i )) +
∑

i<j

θ̃i
j(φ∗(X)(f̃ j

i )) = 0,

completing the proof of Lemma 3.4. �

For a given constant L1 < 0, put

C =
√

m

4

(
4

m(−L1)

)n+2
2



130 X. Li and G. Zhao Results. Math.

and define a map x : SL(m,C)/SU(m) → R
n+1 as follows:

x( aSU(m)) = Caāt, for a ∈ SL(m,C).

Then, by Lemma 3.4, the x is equivariant with respect to the representation
φ : SL(m,C) → UA(n + 1).

Now for each X ∈ h0(m), define a(t) = exp tXSO(m). Then

x∗(X) =
d

dt

∣
∣
∣
∣
t=0

x(a(t)) = C
d

dt

∣
∣
∣
∣
t=0

((exp tX)(exp tX)t) = 2CX.

Thus x is an immersion at o and thus everywhere. Moreover, x is also an
imbedding of M into R

n+1.
For X,Y ∈ h(m), define (X,Y ) = tr (XY ). Then (·, ·) is the standard

inner product on R
n+1 ≡ h(m). In particular, it is positive definite. As in

Example 3.3, x is equivariant and transversal everywhere on M .
For any Y ∈ h0(m), the corresponding Killing vector field Y ∗ on M

satisfies

Y ∗|a(t) =
d

ds

∣
∣
∣
∣
s=0

( exp sY a(t)SU(m)) =
d

ds

∣
∣
∣
∣
s=0

( exp sY exp tXSU(m)).

It then follows that

x∗(Y ∗|a(t)) = C
d

ds

∣
∣
∣
∣
s=0

((exp sY exp tX)(exp sY exp tX)t).

Therefore

X(x∗(Y ∗)) = C
∂2

∂t∂s

∣
∣
∣
∣
t=s=0

(exp sY exp tX exp sX
t
exp tY

t
)

= 2C(XY + Y X) = 2C

(

Y X + XY − 2
m

tr (XY )Im

)

+
4
m

C(X,Y )Im (3.15)

implying that x is locally strongly convex as (X,Y ) is positive definite. Thus,
at the origin o, the invariant affine metric go is defined by:

go(X,Y ) =
(

4C√
m

) 2
n+2

(X,Y ) = − 4
mL1

(X,Y ), X, Y ∈ h0(m).

Since go is positive definite and invariant by SU(m), the invariant Riemann-
ian metric g determined by go is exactly the affine metric of x. Similar to
Example 3.3, we can prove that, for any X ∈ h0(m), the real linear map

Y ∈ h0(m) → XY + Y X − 2
m

tr (XY )Im

is also traceless. So, by making use of (3.15), we find that ξ = −L1x holds
identically, implying that x is a hyperbolic affine sphere with affine mean
curvature L1.
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Note that the involution map σ : sl(m,C) → sl(m,C) is given by σ(X) =
−X̄t and isometric with respect to go, thus the invariant affine metric g is
symmetric; Furthermore, the Killing vector field Y ∗ on M given by Y ∈ h0(m)
subject to ∇̂XY ∗ = 0 for all X ∈ h0(m) with ∇̂ the Levi-Civita connection.
It follows from (3.4) and definition (2.8) that the Fubini–Pick form A of x is
invariant and is determined by its value Ao at the origin o:

Ao(X,Y,Z) = g0

((

XY + Y X − 2
m

tr (XY )Im

)

, Z

)

, X, Y, Z ∈ h0(m).

(3.16)

This shows that x is an affine symmetric hypersphere.

Example 3.5. ([14], cf. [3] for m = 3) The standard embedding

x : M ≡ SU∗(2m)/Sp(m) → R
n+1 n = 2m2 − m − 1, m ≥ 3,

where SU∗(2m) = SL(2m,C) ∩ U∗(2m) with U∗(2m) the usual U-star group
of order 2m.

Define J =
(

0 −Im

Im 0

)

. Then the U -star group, or in other words, the

general quaternion linear group has an expression in terms of complex matrices
as

U∗(2m) = {T ∈ GL(2m,C); TJ = JT̄}
=

{

T =
(

A B
−B̄ Ā

)

∈ GL(2m,C); A,B ∈ M(m,C)
}

. (3.17)

Consequently, the Lie algebra of U∗(2m) is written as

u∗(2m) =
{
X ∈ M(2m,C); XJ = JX̄

}

=
{

X =
(

A B
−B̄ Ā

)

∈ M(2m,C); A,B ∈ M(m,C)
}

. (3.18)

It follows that the special U -star group or the special quaternion linear group
SU∗(2m) is given by

SU∗(2m) = SL(2m,C) ∩ U∗(2m) = {T ∈ U∗(2m); det T = 1}
of which the Lie algebra is

su∗(2m) = {X ∈ u∗(2m), tr X = 0.}
Moreover, the quaternion unitary group or the symplectic group is defined by

Sp(m) = U(2m) ∩ SU∗(2m) = {T ∈ SU∗(2m); T T̄ t = I2m}
with the Lie algebra

sp(m) =
{
X ∈ su∗(2m); X + X̄t = 0.

}
.
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Let R
n+1 ≡ qh(m) be the real vector space of quaternion Hermitian

matrices of order m. Then we have

qh(m)=h(m) ⊕ so(m,C)=
{(

A B
−B̄ Ā

)

∈ M(2m,C); A ∈ h(m), B∈so(m,C)
}

there is a representation φ of SU∗(2m) on R
n+1 by

φ(a)X := aXāt, for a ∈ SU∗(2m), X ∈ R
n+1.

Suitably choose a basis for the real vector space R
n+1 together with its dual

basis, and then by a similar computation as in Example 3.4 we are able to
obtain

Lemma 3.5. φ(SU∗(2m)) ⊂ SL(n + 1,R), that is, φ(SU∗(2m)) can be viewed
as a subgroup of the unimodular group UA(n + 1) on R

n+1.

Define qh0(m) = {X ∈ qh(m); trX = 0}. Then the canonical decompo-
sition of su∗(2m) with respect to sp(m) is as follows:

su∗(2m) = sp(m) + qh0(m)

where the subspace qh0(m) can be identified with the tangent space ToM at
the origin o = Sp(m) ∈ M .

For a given constant L1 < 0, put

C =
√

2m

4

(
2

m(−L1)

)n+2
2

and define a map x : SU∗(2m)/Sp(m) → R
n+1 as follows:

x( aSp(m)) = Caāt, for a ∈ SU∗(m).

Then, by Lemma 3.5, the x is equivariant with respect to the representation
φ : SU∗(2m) → UA(n + 1).

Now for each X ∈ qh0(m), define a(t) = exp tXSp(m). Then

x∗(X) =
d

dt

∣
∣
∣
∣
t=0

x(a(t)) = C
d

dt

∣
∣
∣
∣
t=0

((exp tX)(exp tX)t) = 2CX.

Thus x is an immersion at o and thus everywhere. Moreover, x is also an
imbedding of M into R

n+1.
For X,Y ∈ qh(m), define (X,Y ) = tr (XY ). Then (·, ·) is the standard

inner product on R
n+1 ≡ qh(m). In particular, it is positive definite. As in

Example 3.3, x is invariant and transversal everywhere on M .
For any Y ∈ qh0(m), the corresponding Killing vector field Y ∗ on M

satisfies

Y ∗|a(t) =
d

ds

∣
∣
∣
∣
s=0

( exp sY a(t)Sp(m)) =
d

ds

∣
∣
∣
∣
s=0

( exp sY exp tXSp(m)).

It then follows that

x∗(Y ∗|a(t)) = C
d

ds

∣
∣
∣
∣
s=0

((exp sY exp tX)(exp sY exp tX)t).
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Therefore

X(x∗(Y ∗)) = C
∂2

∂t∂s

∣
∣
∣
∣
t=s=0

(exp sY exp tX exp sX
t
exp tY

t
)

= 2C(XY + Y X) = 2C

(

Y X + XY − 1
m

tr (XY )I2m

)

+
2
m

C(X,Y )I2m (3.19)

implying that x is locally strongly convex since (X,Y ) is positive definite.
Thus, at the origin o, the invariant affine metric go is defined by:

go(X,Y ) =
(

4C√
2m

) 2
n+2

(X,Y ) = − 2
mL1

(X,Y ), X, Y ∈ qh0(m).

Since go is positive definite and invariant by Sp(m), the invariant Riemannian
metric g induced by go is exactly the affine metric of x. Once again we can
prove that the real linear map

Y ∈ h0(2m) → XY + Y X − 1
m

(XY )I2m

has a vanishing trace for each X ∈ h0(2m). With this fact we use (3.19) to find
that ξ = −L1x holds identically, implying that x is a hyperbolic affine sphere
with affine mean curvature L1.

Moreover, the involution map σ : su∗(2m,C) → su∗(2m,C) given by
σ(X) = −X̄t is isometric with respect to go, thus the invariant affine metric g
is symmetric, and the Fubini–Pick form Ao of x at the origin o is (definition
(2.8))

Ao(X,Y,Z) = g0

((

XY + Y X − 1
m

tr (XY )I2m

)

, Z

)

, X, Y, Z ∈ qh0(m)

(3.20)

which is invariant by the adjoint action Sp(m) and thus the SU∗(2m,C)-
invariant 3-form A induced by Ao is exactly the Fubini–Pick form of the
hypersurface x : M → R

n+1. This shows that x is an affine symmetric hy-
persphere.

Example 3.6. [3,22] The standard embedding

x : M ≡ E6(−26)/F4 → R
27,

where E6(−26) is the noncompact real group of type e6 with the compact real
form F4 of type f4 as its maximal compact subgroup.

Let O be the space of octonions and J be the set of 3 × 3 Hermitian
matrices with entries in O, that is

J =

⎧
⎨

⎩
X =

⎛

⎝
ξ1 x3 x̄2

x̄3 ξ2 x1

x2 x̄1 ξ3

⎞

⎠ ∈ M(3,O); X̄t = X

⎫
⎬

⎭
,
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where M(3,O) is the real vector space of all octonian square matrices of order
3. Clearly J is a 27-dimensional real vector space and thus can be identified
with R

27. On J, the symmetric Jordan multiplication ◦ and the standard inner
product (·, ·) on J are defined as follows:

X ◦ Y =
1
2
(XY + Y X), (X,Y ) = tr (X ◦ Y ).

Furthermore, the cross product × and the determinant function det are given
by

X × Y =
1
2
(2X ◦ Y − tr (X)Y − tr (Y )X + (tr (X)tr (Y ) − tr (X ◦ Y ))I3)

(3.21)

det(X) =
1
3
(X × X,X). (3.22)

The noncompact group E6(−26) is defined as the set of all determinant-
preserving real linear automorphism on J, that is

E6(−26) = {A ∈ GLR(J); det(AX) = det(X), ∀X ∈ J}. (3.23)

The maximal compact subgroup of E6(−26) is given by

F4 = {A ∈ E6(−26); A(X ◦ Y ) = (AX) ◦ (AY ), ∀X,Y ∈ J} (3.24)
≡ {A ∈ E6(−26); A(I3) = I3}. (3.25)

For each matrix T ∈ J, there associated an element T̃ ∈ E6(−26) defined
by

T̃ (X) := T ◦ X, ∀X ∈ J.

Define

m = {T̃ ; T ∈ J0}, where J0 = {T ∈ J; tr T = 0},

and denote by f4 the Lie algebra of F4. Then by [29], the Lie algebra e6(−26)

has a canonical direct decomposition as

e6(−26) = f4 + m (3.26)

satisfying [f4,m] ⊂ m, [m,m] ⊂ f4. Note that we have a natural identification
m ≡ ToM where o := I27F4 with I27 the identity element in E6(−26).

Similar to the above, one can perform a computation which shows that
the trace of an arbitrary element of e6(−26) must vanish (for the detail, see
[22]). Thus we have

Proposition 3.6. [22] E6(−26) is a subgroup of the special linear group SL(27,R).

For any given constant L1 < 0, set

C =
√

3(−3L1)−14 > 0

and then define a smooth map f : E6(−26) → J by f(L) = C · L(I3) for all
L ∈ E6(−26). Clearly, for any L1, L2 ∈ E6(−26), f(L1) = f(L2) if and only if
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(L−1
1 ◦L2)(I3) = I3. By the definition of F4, f naturally induces a smooth map

x : E6(−26)/F4 → R
27 ≡ J:

x(LF4) = C · L(I3), ∀L ∈ E6(−26). (3.27)

By Proposition 3.6, we can choose a volume element on R
27, say, the

canonical volume element with respect to the inner product (·, ·) on J, so that
E6(−26) can be identified with a subgroup of the group UA(27) of unimodular
affine transformation on R

27. Therefore, the induced map x is equivariant as
an affine hypersurface in R

27. Consequently all the equiaffine invariants of x
such as the affine metric, the Fubini–Pick form and the fundamental form are
E6(−26)-invariant.

Now for each X̃ ∈ m ≡ ToM , X ∈ J0, a(t) := exp tX̃F4 is a geodesic curve
on M . It holds clearly that

x∗(X̃)=
d

dt

∣
∣
∣
∣
t=0

x(a(t))=C
d

dt

∣
∣
∣
∣
t=0

(exp tX̃(I3))=CX̃(I3)=C(X ◦ I3)=C · X.

This shows that x is an immersion at o and thus is an immersion globally since
x is equivariant. Clearly, x is injective and is thus an imbedding of M into R

27.
Moreover, since for each X ∈ J0,

(X, I3) = tr (X ◦ I3) = trX = 0,

x(o) is a transversal vector of x at o and thus is transversal everywhere. Fur-
thermore, for an arbitrary Y ∈ J0, denote by Y ∗ the Killing vector field on M
induced by Ỹ , then the value of Y ∗ at a(t)

Y ∗|a(t) =
d

ds

∣
∣
∣
∣
s=0

( exp sỸ a(t)F4) =
d

ds

∣
∣
∣
∣
s=0

( exp sỸ exp tX̃F4).

Therefore

x∗(Y ∗|a(t)) = C
d

ds

∣
∣
∣
∣
s=0

(exp sỸ exp tX̃(I3)).

It follows that

X̃(x∗(Y ∗)) = C
∂2

∂t∂s

∣
∣
∣
∣
t=s=0

(exp s · Ỹ exp tX̃(I3))

= C(Y ◦ (X ◦ I3)) = C(Y ◦ X)

= C

(

X ◦ Y − 1
3
tr (X ◦ Y )I3

)

+
1
3
C(X,Y )I3 (3.28)

implying that x is locally strongly convex since (X,Y ) = tr (X ◦Y ) is positive
definite.

Note that the inner product (·, ·) on J0 is f4-invariant and that the cor-
respondence ˜ : J0 → m is f4-equivariant. It follows that the affine metric g of
x is the invariant metric on E6(−26)/F4 induced by



136 X. Li and G. Zhao Results. Math.

go(X̃, Ỹ ) :=
(

1√
3
C

) 1
14

(X,Y ) = − 1
3L1

(X,Y ), ∀X,Y ∈ J0.

Clearly, g is symmetric since go is invariant by the involution σ(X̃) = −˜
X

t
,

X ∈ J0.
A direct computation shows once more that for each X̃ with X ∈ J0, the

real linear map

Ỹ →
(

X ◦ Y − 1
3
tr (X ◦ Y )I3

)̃

, ∀ Y ∈ J0

is traceless. Taking the trace of (3.28) respect to the metric g and using
∇̂X̃ Ỹ ∗ = 0, X,Y ∈ J0, with ∇̂ the Levi-Civita connection of g and Ỹ ∗ the
Killing vector field induced by Ỹ , we find that the affine normal ξ = −L1 ·x at
o and thus at everywhere. It follows that x is a hyperbolic affine hypersphere
with the affine mean curvature being the given number L1.

On the other hand, the invariant Fubini–Pick form A of x is induced by
the following f4-invariant form Ao (see (2.8) and (3.28))

Ao(X̃, Ỹ , Z̃) = go

((

X ◦ Y − 1
3
tr (X ◦ Y )I3

)̃

, Z̃

)

, ∀X,Y,Z ∈ J0,

where once again we have used the fact that ∇̂X̃Y ∗ = 0. In particular, x is an
affine symmetric hypersphere in R

27.

4. Proof of the Main Theorem with an Application

In this section we are going to prove the main theorem of this paper. After
this we shall prove a proposition which makes it clear that our classification is
essentially equivalent to a previous important one given by Z.J. Hu, H.Z. Li
and L. Vrancken in [14]. Thus in a sense we in fact provide a direct way with
shorter argument of proving the complete classification of the locally strongly
convex hypersurfaces with parallel Fubini–Pick form. The main idea here has
been used by H. Naitoh in [24] to classify the irreducible totally real parallel
submanifolds in the projective space.

Let x : Mn → R
n+1 be a locally strongly convex hypersphere with affine

metric g and Fubini–Pick form A, and suppose that x is locally affine symmet-
ric. Then by Definition 2.2, (Mn, g) is locally isometric to a simply connected
symmetric space G/K which is necessarily complete. Without loss of general-
ity, we can put Mn = G/K. Furthermore, the Fubini–Pick form A of x must
be an element of the set S(Mn,g)(L1) defined in Sect. 2.

Denote by g, k, respectively, the Lie algebras of G and K, and g = k+m
the canonical decomposition of the symmetric Lie algebra pair (g, k). Denote



Vol. 68 (2015) On the Equiaffine Symmetric Hyperspheres 137

by Ao the value of an element A of S(Mn,g)(L1) at the origin point o = eK,
where e is the unit element of the Lie group G. Define

S0
(Mn,g)(L1) = {σ = Ao; A ∈ S(Mn,g)(L1), k · σ = 0}. (4.1)

Then the Fubini–Pick form Ao at the origin o of an affine symmetric hy-
persphere x : Mn → R

n+1 with affine mean curvature L1 is contained in
S0
(Mn,g)(L1).

Since locally strongly convex affine hypersurface with vanishing Fubini–
Pick form A must be equiaffine equivalent to one of the quadric hypersurfaces
given in Example 3.1 (see Proposition 3.1), we can assume that A �= 0 thus, by
the completeness and Theorems in [19], x is a hyperbolic affine hypersphere
where (Mn, g) is a symmetric space of noncompact type.

If (Mn, g) is reducible as a Riemannian manifold, then by Theorem 2.6
x is a Calabi composition of r points and s irreducible hyperbolic affine hy-
perspheres. In what follows we consider the case that (Mn, g) is irreducible.

The following Lemma is crucial in our proof of Theorem 1.1:

Lemma 4.1. Let Mn be a simply connected irreducible symmetric space of
noncompact type and set dM = dim{σ ∈ S3(m); k · σ = 0}. Then dM = 1 if
Mn is one of the following spaces and dM = 0 otherwise:

SL(m,R)/SO(m), m ≥ 3; SL(m,C)/SU(m), m ≥ 3;
SL(m,C)/SU(m), m ≥ 3; E6(−26)/F4.

Proof. The argument in proving Lemma 4.1 is the same as the one used by
H. Naitoh in [24] (cf. the proof of Lemma 4.2 in [24]). Let a be a maximal
abelian subspace in m and W the Weyl group of Mn relative to a. Denote by
S3(m) and S3(a) the vector space of all symmetric trilinear forms on m and a,
respectively. Then it is known that the vector subspace {σ ∈ S3(m); k ·σ = 0}
is isomorphic to the vector subspace {σ̃ ∈ S3(a); w · σ̃ = σ̃, ∀w ∈ W} by the
restriction to the subspace a. Since the Weyl group acts on a irreducibly, all
the W -invariant polynomials of degree 3 are irreducible. Hence a basis of this
vector subspace is given by all the fundamental W -invariant polynomials of
degree 3. The Weyl group W for Mn is of types Al, Bl, Cl, Dl, El, F4, G2 or
BlCl by the Araki’s table [1]. Then by N. Bourbaki [2], only the Weyl groups
of type Al (l ≥ 2) have one fundamental W -invariant polynomial of degree 3
and the other Weyl groups have nothing. Thus the lemma follows easily. �

By our previous assumption, the Fubini–Pick form A of x is non-vanishing,
we have

0 < dim S0
(Mn,g)(L1) ≤ dM .

It follows that in our case dM = 1. Thus by Lemma 4.1, (Mn, g) can not be
of constant sectional curvature.
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Proposition 4.2. Let Mn be one of the symmetric spaces listed in Lemma 4.1
with symmetric metric g. If S0

(Mn,g)(L1) �= ∅, then the symmetric Riemannian
metric g is uniquely determined by the constant L1 and S0

(Mn,g)(L1) contains
only two elements Ao, φ · Ao := (φ−1)∗Ao where φ is the symmetry of (Mn, g)
at the origin o.

Proof. Suppose g̃ is another symmetric Riemannian metric on Mn. Let A ∈
S0
(Mn,g)(L1) and Ã ∈ S0

(Mn,g̃)(L1). Then by (2.16) we have

R(X,Y )Z = L1(g(Y,Z)X − g(X,Z)Y ) − [A(X), A(Y )](Z) (4.2)

R̃(X,Y )Z = L1(g̃(Y,Z)X − g̃(X,Z)Y ) − [Ã(X), Ã(Y )](Z). (4.3)

Since Mn is irreducible, g̃ = λ2g for some positive constant λ implying that
R̃(X,Y )Z = R(X,Y )Z for all X,Y,Z ∈ TMn. Moreover, A �= 0 and Ã �= 0
because both g and g̃ are not of constant sectional curvatures. On the other
hand, since S0

(Mn,g)(L1), S0
(Mn,g̃)(L1) are both subsets of {σ ∈ S3(m); k·σ = 0}

and dM = 1, there is a nonzero number μ such that Ã = μ · A. Therefore (4.3)
can be written as

R(X,Y )Z = L1λ
2(g(Y,Z)X − g(X,Z)Y ) − μ2[A(X), A(Y )](Z). (4.4)

Comparing (4.2) and (4.4) we find

(μ2 − 1)R(X,Y )Z = L1(μ2 − λ2)(g(Y,Z)X − g(X,Z)Y ).

Note again that the metric g is not of constant sectional curvature, hence
μ2 = 1 and μ2 = λ2 since L1 �= 0. It follows that g̃ = g (implying S0

(Mn,g̃)(L1) =
S0
(Mn,g)(L1)) and Ã = ±A, it is easy to see that φ · A = −A. �

Corollary 4.3. Let Mn be one of the symmetric spaces listed in Lemma 4.1.
Then the symmetric affine hypersphere x : Mn → R

n+1 is unique up to affine
equivalences.

Proof. If x, x̃ : Mn → R
n+1 are two affine symmetric hyperspheres with a

same affine mean curvature L1 and with Fubini–Pick forms A, Ã, respectively.
Then by Proposition 4.2, the affine metrics of x, x̃ coincide and denoted as g.
Therefore both Ao, Ão, the values of A, Ã at o respectively, are elements of
S0
(Mn,g)(L1). So Ão = φ · Ao, or equivalently, Ão = (φ−1)∗Ao. Consider the

composition x̄ := x ◦ φ−1. Then the sufficient part of Theorem 2.2 tells that
the Fubini–Pick form Ā of x̄ is subject to Ā = (φ−1)∗A. In particular, at o, we
have Āo = (φ−1)∗Ao = Ão. Since Ā, Ã are invariant, Ā = Ã globally on Mn.
Thus an application of the necessary part of Theorem 2.2 shows that x̄ and x̃
are equiaffine equivalent, implying that x̃ and x are affine equivalent. �

By summing up the foregoing discussions, we arrive at the completion of
proving the main theorem (Theorem 1.1):

Let x : Mn → R
n+1 be a locally strongly convex and affine symmetric

hypersphere with affine metric g and affine mean curvature L1.
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1. If the Fubini–Pick form A of x vanishes identically, then by Proposi-
tion 3.1, x must be one of the quadric hypersurfaces in Example 3.1;

2. If the Riemannian manifold (Mn, g) is irreducible and A �= 0, then by
Lemma 4.1 and Corollary 4.3, x is affine equivalent to one of Exam-
ples 3.3–3.6 in Sect. 3;

3. If (Mn, g) is reducible, then by Theorem 2.6, x is affine equivalent to the
Calabi composition of some r points and s hyperbolic affine hyperspheres
listed in Examples 3.1 and 3.3–3.6, where r + s ≥ 2.
Thus Theorem 1.1 is proved.
Finally, to make an end of this article, we remark an alternate and simpler

proof of a classification theorem originally proved by Hu et al. in [14]. For doing
this, we need the following results:

Proposition 4.4. [22] A nondegenerate hypersurface x : Mn → R
n+1 is of

parallel Fubini–Pick form A if and only if x is locally affine symmetric.

Proof. First we suppose that the Fubini–Pick form A of x is parallel. Then by
[4], x must be an affine hypersphere. It then follows from (2.6) that the affine
metric g must be locally symmetric. Thus locally we can write Mn = G/K and
the canonical decomposition of the corresponding orthogonal symmetric pair
(g, k) is written as g = k+m where the vector space m is identified with ToM .
Here o ∈ Mn is the base point given by o = eK with e the identity of G. Note
that, for all X,Yi ∈ m = ToM , i = 1, 2, 3, the vector field Yi(t) := Lexp(tX)∗(Yi)
is the parallel translation of Yi along the geodesic γ(t) :=exp(tX)K (see, for
example, [7]). Consequently we have

d

dt
((L∗

exp(tX)A)(Y1, Y2, Y3))

=
d

dt
(Aexp(tX)K(Lexp(tX)∗(Y1), Lexp(tX)∗(Y2), Lexp(tX)∗(Y3)))

= (∇̂γ′(t)A)(Y1(t), Y2(t), Y3(t)) = 0, (4.5)

where ∇̂ is the Levi-Civita connection of the metric g. It follows that

Aexp(tX)K(Lexp(tX)∗(Y1), Lexp(tX)∗(Y2), Lexp(tX)∗(Y3)) (4.6)

is constant with respect to the parameter t and thus A is G-invariant.
Conversely, we suppose that Mn = G/K locally for some symmetric pair

(G,K) and that A is G-invariant. Then for any X,Yi ∈ m = ToM , i = 1, 2, 3,
the function (4.6) is again a constant along the geodesic γ(t). Therefore,

(∇̂XA)(Y1, Y2, Y3) =
d

dt

∣
∣
∣
∣
t=0

Aγ(t)(Y1(t), Y2(t), Y3(t)) = 0,

where we have once again used the fact that each Yi(t) is parallel along the
geodesic γ(t). �
Proposition 4.5. [4] A nondegenerate affine hypersurface with parallel Fubini–
Pick form is necessarily an affine hypersphere.
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Now the following classification theorem comes readily from Theorem 1.1,
Propositions 4.4 and 4.5:

Theorem 4.6. (cf. [14]) Let x : Mn → R
n+1 (n ≥ 2) be a locally strongly

convex affine hypersurface with parallel Fubini–Pick form A. Then either of
the following two cases holds:
1. With the affine metric g, the Riemannian manifold (Mn, g) is irreducible

and x is locally equiaffine equivalent to
(a) one of the three kinds of quadric affine hyperspheres: Ellipsoid, elliptic

paraboloid and hyperboloid; or
(b) the standard embedding of the Riemannian symmetric space SL(m,R)/

SO(m) into R
n+1 with n = 1

2m(m + 1) − 1, m ≥ 3; or
(c) the standard embedding of the Riemannian symmetric space SL(m,C)/

SU(m) into R
n+1 with n = m2 − 1, m ≥ 3; or

(d) the standard embedding of the Riemannian symmetric space SU∗(2m)/
Sp(m) into R

n+1 with n = 2m2 − m − 1, m ≥ 3; or
(e) the standard embedding of the Riemannian symmetric space E6(−26)/F4

into R
27.

2. (Mn, g) is reducible and x is locally affine equivalent to the Calabi product
of r points and s of the above irreducible hyperbolic affine spheres of lower
dimensions, where r, s are nonnegative integers and r + s ≥ 2.
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