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Abstract. In this paper, we show that if an integrable contact pseudo-
metric manifold of dimension 2n+ 1, n > 2, has constant sectional curva-
ture k, then the structure is Sasakian and k = ¢ = g(&, £), where ¢ is the
Reeb vector field. We note that the notion of contact pseudo-metric struc-
ture is equivalent to the notion of non-degenerate almost CR manifold,
then an equivalent statement of this result holds in terms of CR geometry.
Moreover, we study the pseudohermitian torsion 7 of a non-degenerate
almost CR manifold.
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1. Introduction

In [5] was introduced a systematic study of contact pseudo-metric manifolds
(Mp,&,n,g), that is, contact manifolds equipped with an associated pseudo-
Riemannian metric. In such study the tensor h = (1/2)L¢¢ plays a funda-
mental role. In particular, while K-contact Riemannian manifolds of dimen-
sion 2n + 1 are characterized by the Ricci curvature condition Ric(€,&) = 2n
[1], we showed that a corresponding characterization fails for general contact
pseudo-metric structures because in the pseudo-Riemannian case the condi-
tion trace h? = 0 does not imply h = 0 ([6], Example 1.1). In Section 4 of [5]
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we dealt with contact pseudo-metric manifolds of constant sectional curvature
in dimension > 5, proving that the value of the constant sectional curvature
is determined by the casual character of the Reeb vector field £. In particu-
lar, there are not flat contact pseudo-metric manifolds of dimension > 5. In
[12] we showed that any conformally flat K-contact pseudo-metric manifold
is Sasakian and of constant sectional curvature k = ¢ = £1. The main result
of Section 4 in [5] was the following generalization in pseudo-Riemannian set-
tings of the classification obtained by Olszak [11] in the Riemannian case: if
(M,n,g,& ¢) is a contact pseudo-metric manifold, dim M = 2n + 1, n > 2, of
constant sectional curvature k, then Kk = ¢ = g(£,€) and the structure (7, g)
is Sasakian. The proof of this result we gave in [5] is not correct in order to
conclude that (M, n,g) is Sasakian. As a consequence, the above result must
be replaced by the following weaker version.

Theorem 1.1 [6]. Let (M,n,g,&,¢) be a contact pseudo-metric manifold,
dimM =2n+1, n > 2. If (M, g) is of constant sectional curvature k, then
k=c¢c=g(&€) and h2 = 0.

In the present paper we show the following

Theorem 1.2. Let (M,n,g,£, ) be an integrable contact pseudo-metric man-
ifold, dim M = 2n+1, n > 2. If (M, g) is of constant sectional curvature k,
then k =& = g(§,§) and the structure (1, g) is Sasakian.

We note that the notion of contact pseudo-metric structure is equivalent
to the notion of non-degenerate almost CR manifold (see Proposition 2.1).
Then, an equivalent statement of Theorem 1.2 in terms of CR geometry is the
following :

Theorem 1.3. Let (M, H(M), J,0) be a non-degenerate CR manifold, dim M =
2n+ 1, n > 2. If the Webster metric gg is of constant sectional curvature k,
then k =& = go(§,€) and the pseudohermitian torsion T =0, i.e. (M, 6, gg) is
Sasakian.

In the above Theorem 1.1 we can not conclude that M is Sasakian,
because in the pseudo-Riemannian case the condition 22 = 0 does not imply
h = 0. In the Riemannian case, due to the fact that h is diagonalizable, these
two conditions are equivalent. On the other hand, the papers [5] and [6] do not
contain an example of contact pseudo-metric manifold satisfying the conditions
h? = 0 and h # 0. In Sect. 4 of this paper we give examples (in dimension
five) of such contact pseudo-metric manifolds.

In Sect. 5 we study the pseudohermitian torsion 7 of a non-degenerate
almost CR manifold, because it is related to some interesting geometric prop-
erties (see Theorem 5.1).
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2. Contact Pseudo-Metric Manifolds and Non-Degenerate CR
Manifolds

2.1. Contact Pseudo-Metric Manifolds

In this Section we collect some basic facts about contact pseudo-metric man-
ifolds. All manifolds are assumed to be connected and smooth. A (2n + 1)-
dimensional manifold M is said to be a contact manifold if it admits a global
1-form 7, such that n A (dn)™ # 0. Given such a form 7, there exists a unique
vector field £, called the characteristic vector field or the Reeb vector field, such
that n(¢§) = 1 and dn(&,-) = 0. A pseudo-Riemannian metric g is said to be an
associated metric if there exists a tensor ¢ of type (1, 1), such that

n=ceg(&"), dn(,-)=g(,p), @ =-T+nRE,

where ¢ = ¢(£,€) = £1. Then, (n,9,&,¢) (more briefly, (n,g)) is called a
contact pseudo-metric (or pseudo-Riemannian) structure, and (M, n,¢g,&,¢) a
contact pseudo-metric (or pseudo-Riemannian) manifold [5]. The associated
pseudo-Riemannian metric g satisfies

(X, 0Y) = —(dn)(Y,pX) = g(X,Y) —en(X)n(Y).

We denote by V the Levi-Civita connection and by R the corresponding Rie-
mann curvature tensor, given by

Rxy = —[Vx,Vy] + Vix v
The tensor h = %ﬁg(p, where £ denotes the Lie derivative, is self-adjoint
and satisfies
Vé=—ep—ph, hp=—ph, hi{=0, (2.1)
Since h is self-adjoint and hy = —ph, then we get trace,h = traceshe = 0.
A contact pseudo-metric manifold (M, 7, g) is said to be K-contact if &
is a Killing vector field, or equivalently, h = 0. It is said to be Sasakian if the

contact pseudo-Riemannian structure (n,g,&,¢) is normal, that is, satisfies
[©, ©] + 2dn ® £ = 0. This condition is equivalent to

(Vx@)Y = g(X,Y)E —en(Y)X.

Any Sasakian manifold is K-contact, and the converse also holds when n = 1,
that is, for three-dimensional spaces. Moreover by a result of [12], a K-contact
pseudo-Riemannian manifold of dimension 2n + 1, is Sasakian if and only if

R(X,Y)E =n(X)Y —n(Y)X. (2.2)

We may refer to [5-7,12], for more information about contact pseudo-
Riemannian geometry.
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2.2. Almost CR Structures

We proceed by recalling a few notions of CR and pseudohermitian geometry
(ct., for example, [9]). Let M be areal (2n+1)-dimensional (connected) smooth
manifold and let (H (M), J) be an almost CR structure on M. An almost CR
structure is called CR structure if it is integrable, that is the following two
conditions are satisfied

[JX,Y]+[X,JY] € H(M) and J([JX,Y]+[X,JY]) = [JX,JY]-[X,Y],
(2.3)

for any XY € H(M). A pseudohermitian structure on M is a differen-
tiable 1-form 6 on M such that kerf = H(M). A pseudohermitian almost
CR structure (H(M),J,0) is called to be nondegenerate if the Levi form
Lo(X,Y) = (d)(X,JY), X,Y € H(M) is a nondegenerate Hermitian form.
In such case the pseudohermitian structure @ is a contact form, and the inte-
grability condition (2.3) is equivalent to

J([JX, Y]+ [X,JY]) = [JX,JY] - [X,Y], X,Y eH(M). (24)

Let (M, H(M), J,0) be a non-degenerate almost CR manifold. It is cus-
tomary to extend J (the complex structure along H(M)) to an endomorphism
¢ of the tangent bundle by requesting that ¢ (ar) = J and ¢(T') = 0, where
T is the Reeb vector field of §. Then ¢? = —I +60 ® T. The Webster metric gg
is given by

gH(X’Y) = (da)(Xv JY)v 90(X7T) = Oa gH(TaT) = 5(: :l:l),

for any X,Y € H(M). gp is a pseudo-Riemannian metric on M. In this case the
synthetic object (¢, & = —=T,n = —0,9 = gp) is a contact pseudo-metric struc-
ture on M. Vice versa, a contact pseudo-metric structure (¢, &,n,¢g) defines
a non-degenerate almost CR structure on M given by (H(M),J,0), where
H(M) = kern, 0 = —n and J = @3 (ar)- So, we have the following

Proposition 2.1. The notion of non-degenerate almost CR structure (H(M), J,
0) is equivalent to the notion of contact pseudo-metric structure (¢,&,m,g).

If the Levi-form Ly is positive definite, the Webster metric gp (with e = 1)
is a Riemannian metric and “non-degenerate” is replaced by “strictly pseudo-
covexity”, and then in such case (¢,& = T,n = 6,9 = gp) is a contact met-
ric structure. However, the nondegeneracy is more natural in CR geometry
because it is a CR invariant property, i.e. it is invariant under a transformation
6 = f60, where f : M — R — {0} is a smooth function. In fact, a simple calcu-
lation gives L; = fLy. Clearly, strictly pseudocovexity is not a CR invariant
property (if Ly is positive definite and 6 = —0, then Lj is negative definite).
Moreover, we note that the contact pseudo-metric structure (¢,&,n,g) and
the reversed contact pseudo-metric structure (¢ = ¢, é =-&n=-1n0=-9)
induce the same almost CR structure (H(M), J).
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Tanaka [13] defined the canonical linear connection, called the Tanaka-
Webster connection, on a non-degenerate CR manifold, that is, on an inte-
grable non-degenerate almost CR manifold. For a contact pseudo-metric man-
ifold (M, ¢, &, 1, g), equivalently for a non-degenerate almost CR structure, the
generalized Tanaka- Webster connection V is given by

VxY = VxY +en(X) oY) —n(Y) Vx&+ {(Vxn)Y} & (2.5)

for any X,Y € X(M), where V is the Levi-Civita connection of (M, g). The
definition of V by (2.5) is due to S. Tanno [14] (though confined to the positive
definite case). In particular, from (2.5), one gets

(Vx)Y = (Vx@)V + {(Vxn)pY} € +n(Y) o(VxE). (2.6)

3. Proof of Theorem 1.2

Let (M,n,9,&,¢) be an integrable contact pseudo-metric manifold, dim M =
2n+1, n > 2, of constant sectional curvature k. Let (H(M),J,0) be the
associated non-degenerate CR structure. By Theorem 1.1, M has constant
sectional curvature k = €. By a result in [14], the integrability condition (2.4)
of the underlying almost CR structure (H (M), J) is equivalent to the vanishing
of V. Then by (2.6), we have

(Vxe)Y = —{(Vxn)eY} £ —n(Y) p(VxE), (3.7)
where
{(Vxn)eY} = —g(X,Y) +en(X)n(Y) — eg(hX,Y)
and
o(Vx€) =eX —en(X)E+ hX.
Thus, (3.7) becomes
(Vx@)Y = g(X +ehX,Y)E —en(Y)(X +ehX).
Consequently, for any X,Y, Z € X(M), we have
(Viy®)Z = (VxVo)(Y,Z)
=Vx (Vy9)Z) = (Vvyve) (2) = (Vyp)VxZ

=Vx (g(Y +ehY, Z)¢) — g (VxY +ehVxY,Z) ¢
—(g(Y +ehY,Vx2)6 —en(Vx Z)(Y +chY)).

For Z € H(M), the above formula gives

(Viy®)Z = g(e(Vxh)Y,Z) & — g(Y +chY, Z)(epX + phX)
+9(epX + phX, Z)(Y +chY).
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Then, we have

~(Viy@)Z + (Vi x9)Z =g (Vyh)X — (Vxh)Y,Z)¢
+9(Y +ehY, Z)(epX + phX) — g(epX + 0hX, Z)(Y +hY)
—9(X +ehX, Z)(epY + ohY ) + g(epY + phY, Z)(X +chX). (3.8)

On the other hand, the curvature tensor satisfies the identity

R(X,Y)p = ~(Viye) + (Vi x¢) (3.9)
where
(R(X,Y)p)Z := R(X,Y)pZ — pR(X,Y)Z.

Consequently, for X,Y,Z € H(M), since the curvature tensor is given by
R(X,)Y)Z =¢(9(X,2)Y —g(Y,Z2)X), (3.8) and (3.9) imply

g(Vyh)X = (Vxh)Y,Z) = g(R(X,Y)pZ,§) =0
and thus

g(Y +ehY, Z)(epX + phX) — glepX + ohX, Z)(Y 4+ ehY)
—9(X +ehX,Z)(epY + phY) + g(epY + @hY, Z)(X + chX)
= R(X,Y)pZ — pR(X,Y)Z
=eg(X,02)Y —eg(Y,0Z)X —eg(X, Z)pY +eg(Y, Z)pX.

This last equation is equivalent to

9(Y, Z)phX + g(hY, Z)pX +eg(hY, Z)phX
—g9(pX, 2)hY — g(phX,Z)Y —eg(phX, Z)LY
=+9(X, Z)phY + g(hX,Z)pY +eg(hX, Z)phY
—g9(¢Y, Z)hX — g(phY, Z)X — eg(phY, Z)h X (3.10)
for any X,Y,Z € H(M). Now, we consider the tensor S of type (1,3) on M
defined, for any XY, Z € X(M), by
S(X,Y,Z):=g(Y,Z)phX + g(hY, Z)pX + eg(hY, Z)phX
—9(pX, 2)hY — g(phX, Z)Y —eg(phX, Z)LY
—g9(X, Z)phY — g(hX, Z)pY —eg(hX, Z)phY
+9(pY, Z)hX + g(phY, Z)X + eg(phY, Z)hX. (3.11)

From (3.10), we get S(X,Y,Z) = 0 for any X,Y,Z € H(M). In particular,
fixed X € H(M), the tensor Sx (Y, Z) := S(X,Y, Z) satisfies

trace,mxSx = 0,
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where 7y Sx is the restriction of Sx to H x H. On the other hand, from (3.11)
we obtain

trace,mrSx = 2nphX + (tracegh)pX + e(tracegh)phX
—heX — hX — chphX — phX — phX — cph®’X
+(tracegp)hX + (tracey(ph)) X + e(tracey(¢h))hX.
Since he = —ph, we have trace,h = tracey(¢h) = tracegp = 0. Moreover, by
Theorem 1.1, h? = 0. Then
trace,mSx = 2(n — 1)phX.

Therefore, we get hX = 0 for any X € H(M), that is, the contact pseudo-
metric manifold is K-contact. Moreover, because (M, g) has constant sectional
curvature ¢, R(X,Y){ = eg(X, €)Y — eg(Y,£)X, that is, (2.2) is satisfied.
On the other hand, in [12] was proved that a K-contact pseudo-Riemannian
manifold is Sasakian if and only if (2.2) is satisfied. This concludes the proof
of Theorem 1.2.

4. Examples of Contact Pseudo-Metric Manifolds with h% = 0
and h # 0

The papers [5] and [6] do not contain an example of contact pseudo-metric
manifold satisfying the conditions h? = 0 and h # 0. Now, we give examples
(in dimension five) of such contact pseudo-metric manifolds.

Consider the space M = R®(zy, 2, 23,24, 2) and two smooth functions
a,3 € C®(R%). Weput 9; = 52, i =1,2,3,4, and 9, = Z. Define the vector

x;

fields V;,=1,...,4,V5 =&, by
V2Vi = ady + 0y + 03 — 2210, V2Va = 01 — (02 — Oy + 2290,
V2V = —ad) + 0y — O3 + 2210., V2Vy = 01 4 8Os + 04 — 2200., £ =0,.

Such vector fields define a frame of vector fields on R®. We define a pseudo-
Riemannian metric ¢ of signature (— — 4+ + £) by

g(Vthl) = g(‘/27V2) = _]-7 g(Viv‘/S) = g(w,‘/;l) = ]-7
g(Vi, V5) = 0,0 # 4, g(§,§) = e = £1.
The 1-form defined by
n= 59(57 ')a

satisfies 1(01) = n(02) = 0, n(03) = 221, n(0s) = 222, n(§) = 1. Thus 1 can be
expressed in the form

n = 2x1dxs + 2zodxy + dz.
Now, define the tensor ¢ of type (1,1) by
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equivalently,

o(EB1) = Ey, @(Ea) =—E1, @(E3)=Es, @) =-E3 ©§) =0,
where

E1:<V2+V4), EQZ(V1+V3) E3:(V1*V3) E4:(V4*V2)

are null vector fields. We note that {E1, Es, E3, E4, &} defines a frame of vector
fields on R® with

nE)=0,i=1,...,4.

With respect to the frame of vector fields {E1,..., Ey, E5 = &}, the 2-form
dn = 2dz; A dxs + 2dzs A dzy can be expressed in the form

0 0 1 00
0 0 01 0
dp=]-1 0 0 0 0],
0 -1 0 0 0
0 0 00 0

and the pseudo-Riemannian metric g by the matrix.

00 0 10
0 0 -1 00
G=(9(E,E;}))=[0 -1 0 0 0
1 0 0 00
0 0 0 0 ¢
Since
00 0 10\ /0 10 0 0
0 0 -1 00|]1 0 0 0 0
Ge=|0 -1 0 0 0[]0 0 0 -1 0
1 0 0 0oO0flo o 1 0 o
00 0 0¢e/\o 0 0 0 0
0 0 100
0 0 010
= -1 0 0 0 0]=dp,
0 -1 0 00
0 0 000



Vol. 66 (2014) Contact Pseudo-Metric Manifolds 221

we get that n is a contact form and (§,¢,n,9) is a contact pseudo-metric
structure. Moreover, the tensor h = %Eggo satisfies

2hEy = [§ o] — ¢ [€, Br] = (02, 02] — ¢[02,01] = 0,

2hEr = [€, pEo] — @[, E2] = 05, —01] — ¢ [0:,02] =0,

2hEs = [, B3] —p[€, B3] = [0., 02 + 04—2220;] — ¢ [0, a0 + 05 — 2210;]
= (8- a), Ea,

2hEy = [, B4 —p [, Es]=1[0.,—01 — 03 + 2210.] — ¢ [0, 302 + 04 + 2220.]

=(8—a), by
Therefore, h? = 0. Moreover, h = 0, that is the structure is K-contact, if and

only if (8 —«), = 0. So, taking the functions «, # such that o, # ., we
obtain a contact pseudo-metric structure with A2 = 0 and ¢ not Killing.

5. Remarks on the Pseudohermitian Torsion

Let (M,H(M),J,0) be a non-degenerate almost CR manifold. Denote by
(M,n,9,&, ) the associated contact pseudo-metric structure. The pseudoher-
mitian torsion of V is the vector valued 1-form 7 defined by

(X)) =T(¢,X) forany X € X(M), (5.1)

where T' is the torsion of V (cf., for example, [13], and [9] p. 36). If the inte-
grability condition (2.3) of the underlying almost CR structure (H, J) is sat-
isfied, the linear connection V is the ordinary Tanaka-Webster connection of
(M, H(M), J,0,gp) with e = +1.

Let (M, g) be a pseudo-Riemannian manifold, p € M and X a lightlike
vector of T,M. A plane P of T,M is called lightlike plane (or, null plane)
directed by X if X € P, g(X,Y) =0 for any Y € P, and there exists Yy € P
such that g(Yp, Yp) # 0. In such case, following [10] p. 95, define the lightlike
sectional curvature (or, the null sectional curvature) of P with respect to X
by Kx(P) = g(Y,Y)R(X,Y,X,Y), where Y is an arbitrary non-null vector
of P. Now, given a contact pseudo-metric structure (n,g,&,¢) on M, in the
sequel, for X € kern, by K(£, X) we denote the usual sectional curvature if
P = span(§, X) is a non-degenerate plane, and the lightlike sectional curvature
Kx (&) =eR(&, X,&, X) if X is lightlike.

The following Theorem extends Corollary 1 of [8] (see p. 174) and The-
orem 1.4 of [9] (see p. 37).

Theorem 5.1. Let (M, H(M),J,0) be a non-degenerate almost CR manifold.
Then,

1) the Levi distribution H(M) is minimal in (M, gg); moreover H(M) is

totally geodesic in (M, gg) if and only if the pseudohermitian torsion T
vanishes, that is, the Reeb vector field £ is Killing;
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2) the following properties are equivalent:

a) Ver =0;
b) Veh =0;
C) VfT = O,’
a) (VeP)(E,) = 0;

e) K(§,X)=K( ¢X) for any X € H(M).

Proof. We recall that given a pseudo-Riemannian manifold (M,g) and a
smooth distribution D : p — D, C TPM on M, then D is called minimal
if trace;(B) = 0, where B(X,Y) = (VxY)* for any X,Y € D, V denotes
the Levi-Civita connection of M and (VxY)t is the natural projection on
D-. Moreover, the distribution D is totally geodesic if the symmetrized sec-
ond fundamental form B, (X,Y) := (1/2)(B(X,Y) + B(Y, X)) vanishes. Now,
consider the non-degenerate almost CR manifold (M, H(M), J,0) and the asso-
ciated contact pseudo-metric structure (6,9 = gg,£ = T, ¢). Since we have the
orthogonal decomposition X(M) = H(M) & span(§), B(X,Y) is the compo-
nent of VxY on span(§) for any X,Y € H(M). Then

B(X,Y) = eg(VxY,§)E,

and by using (2.1) and a local orthonormal basis {E;}, we get

2n 2n
tracey(B) = e Y & g(Vi, Ei, )¢ = =2 Y eig(Vi&, Ei)

i=1 i=1
2n
i=1

= e(traceyph)é.

Since tracey(ph) = 0, we get tracey(B) = 0.
Next, we compute the torsion tensor T. By using (2.5), we get

T=ph®@n+n®hp+2(dn) E. (5.2)

Then (5.2) implies 7(X) = T(¢,X) = hpX, and consequently trace, () =
eg(tracey(B),&) = 0. Moreover, by using (2.1), the symmetrized second fun-
damental form is given by

By(X,Y) = 2 {g(VxY€) + g(Vy X )} ¢

— {9(VxEY) +g(Vyé, X)) €
eg(phX,Y)E
—eg(TX,Y)E.



Vol. 66 (2014) Contact Pseudo-Metric Manifolds 223

So, B vanishes if and only if the pseudohermitian torsion 7 vanishes. To prove
the second part in Theorem, since Vep = 0, Ven = 0 and Ve(dn) = 0, from
(5.2) we obtain
Vel = oVeh @n+n® (Veh)e.
Then, (VeT)(€,€) =0, (VeT)(X,Y) =0 for any X,Y € H(M), and
(VeT)(&, ) = (Veh)p = Ver.
So,
Vel =0 <= (VeT)(€,) =0 <= Veh =0 <= Ve = 0.
Next, consider the Jacobi operator
UX) = R(X,§)¢§ = —Vx Vel + VeV &+ Vix gl
Using (2.1), we get the following
0= —@Veh+@* +h? = Ve + ? + 12
Then, for any X € H(M):
(X = (Ver)(X) = X + 72X and LpX = (VeT)(pX) — X + 720X, (5.3)
Thus, Ve = 0 implies g(4X, X) = g(¢pX, ¢X) and so the sectional curvature
K, X) = K(& ¢X) for any X € H(M), where if X, is null, K(&,, X,) is
a lightlike sectional curvature. Conversely, suppose K (£, X) = K(§, ¢X) for
any X € H(M). Then g(¢X,X) = g(leX,pX) and hence, by using (5.3),
g((Ver)X, X) =0 for any X € H(M). This gives Ve = 0. O

The above Theorem 5.1 and Theorem 4.1 of [12] give the following

Theorem 5.2. Let (M, H(M), J,0) be a non-degenerate almost CR manifold.
Then, the Webster metric gg is conformally flat and the Levi distribution H(M)
s totally geodesic if and only if go is of constant sectional curvature ¢ =
90(&,€) = € and the structure (0, gp) is Sasakian.

Now, we recall that there is a canonical way to associate a contact
Lorentzian structure to a contact metric structure (and conversely). Let
(n,9,&,¢) a contact metric structure on a smooth manifold M. Then,

gL =9 —2n®n
is a Lorentzian metric, and is still compatible with the same contact struc-
ture (n,§, ), where the Reeb vector field § is time-like: gr,(£,§,) = —1. The

Levi-Civita connection V of g can be easily deduced from the Levi-Civita
connection V of g. More precisely, we have the following:

VxY = VxY 4 29(hX, oY )E + 2 {n(X)pY +n(Y)pX}
=VxY +29(7X, V) +2{n(X)eY + n(Y)pX}. (5.4)

Since 7 = £(Lep)p is the pseudohermitian torsion for both the structures,
from (5.4) we get

Ver = Vet — 4. (5.5)
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Ezample 5.3. Let (N,G) be a Riemannian manifold of dimension n > 2.
Denote by (1, g, &, ¢) the standard contact metric structure on the unit tangent
sphere bundles 71 N, and by (n,gr,&, ¢) the corresponding Lorentzian struc-
ture on Ty N. Suppose that (N(—2),G) is a Riemannian manifold of constant
sectional curvature ¢ = —2, then by using the proof of Theorem 1 of [4] we
easily deduce that

Ver =410,
Therefore, by using (5.5), we get that (T1N(—2),7,9r,§,¢) is an example of

contact pseudo-metric manifold satisfying the condition V¢7 =0

Ezample 5.4. Let (M, n,9,§, ) be a contact metric manifold which is a (k, u)-
space, that is, its curvature tensor satisfies (cf. [2])
R(X,Y)§ = k(n(X)Y = n(Y)X) + p(n(X)hY —n(Y)hX),
for all tangent vector fields X, Y, where x, 4 € R, kK < 1, and x = 1 if and only
if the space is Sasakian. For a (k, 1)-space, we have ([2], Lemma 3.8)
(Vxh)Y = {(1 = r)g(X,Y) + (X, hpY)} £ + n(Y) (X + phX)
—pn(X)phY.

Thus, the pseudohermitian torsion 7 = hy satisfies
Ve = pre.

Then, by using (5.5), for = 4, (M,n, g1, &, ) is an example of contact pseudo-
metric manifold satisfying the condition V7 = 0. Boeckx [3] gave explicit
examples of (k, p)-spaces on Lie groups of dimension > 5, with the contact
metric structure left invariant, where
(ﬁQ _ a2)2 (ﬁQ + a2)

16 ’ 2 ’
and «, 3 are real numbers satisfying 3% > o2. So, for an appropriate choice of
a and 0 we get pu = 4.

k=1-— w=2+
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