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Abstract. In this paper, by using variational methods and critical point
theory, we shall mainly be concerned with the study of the existence of
infinitely many solutions for the following nonlinear Schrödinger–Maxwell
equations { −�u + V (x)u + φu = f(x, u), in R

3,

−�φ = u2, in R
3,

where the potential V is allowed to be sign-changing, under some more
assumptions on f , we get infinitely many solutions for the system.
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1. Introduction and Statement of the Main Result

In this paper, we study the Schrödinger–Maxwell equations

{
−�u + V (x)u + φu = f(x, u), in R

3,

−�φ = u2, in R
3.

(1.1)

Such a system is also called Schrödinger–Poisson equations, which arise in an
interesting physical context. For a more physical background of system (1.1),
we refer the readers to [11,15] and the references therein.

Since it was first introduced by Benci and Fortunato in [11], system (1.1)
has been widely studied by many authors. The case V ≡ 1 or being radially
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symmetric, has been studied under various conditions on f in [2,13,15,25].
When V (x) is not a constant, the existence of infinitely many large solutions for
(1.1) has been considered in [4,12,22,28] via the fountain theorem (cf.[31,33].
For more results of system (1.1), we refer the reader to [17,20,21,23,26,34] and
the references therein, for more results about applying critical point theory to
second-order elliptic equations, we refer the reader to [3,6,7,9,10,14,18,19,24,
27,30] and the references therein.

In recent paper [22], the authors studied the existence of infinitely many
nontrivial solutions of (1.1) under the following assumptions on V and f :

(V1) V ∈ C(R3, R), infx∈R3 V (x) ≥ a1 > 0, where a1 is positive constant.
Moreover, for any M > 0, meas{x ∈ R

3 | V (x) ≤ M} < ∞.
(f1) f ∈ C(R3 × R.R), and there exist a2 > 0, p ∈ (4, 2∗) such that

| f(x, u) |≤ a2(1+ | u |p−1) for all x ∈ R
3, u ∈ R,

where 2∗ = 6 is the critical exponent for the Sobolev embedding (see in
[1]) in dimension 3. f(x, u)u ≥ 0, for u ≥ 0.

(f2) lim|u|→0
f(x,u)

u = 0 uniformly for x ∈ R
3.

(f3) lim|u|→∞
f(x,u)u

u4 = ∞ uniformly for x ∈ R
3.

(f4) For a.e. x ∈ R
3, we have

G(x, s) ≤ G(x, t), ∀(s, t) ∈ R
+ × R

+, s ≤ t,

where G : R
3 × R

+ → R is defined by G(x, s) = 1
4f(x, s)s − F (x, s), with

F (x, s) =
∫ s

0
f(x, t)dt.

(f5) f(x,−u) = −f(x, u) for any x ∈ R
3, u ∈ R.

Then the authors established the following theorem:

Theorem 1.1 [22]. Under the assumptions (V1),(f1)–(f5),system (1.1) has
infinitely many solutions {(uk, φk)} such that when k → ∞, we have

1
2

∫
R3

(| ∇uk |2 +V (x)u2
k)dx − 1

4

∫
R3

(| ∇φk |2 dx

+
1
2

∫
R3

φku2
kdx −

∫
R3

F (x, u)dx → ∞.

In the present paper, motivated by [29], we shall further study the exis-
tence of infinitely many nontrivial solutions of (1.1) under the following
assumptions.

(V) V ∈ C(R3, R), infx∈R3 V (x) > −∞. Moreover, for any M > 0,
meas{x ∈ R

3 | V (x) ≤ M} < ∞.
(f1′) f ∈ C(R3 × R.R), and there exist c1, c2 > 0, p ∈ (4, 2∗) such that

| f(x, u) |≤ c1 | u | +c2 | u |p−1 for all x ∈ R
3, u ∈ R,
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where 2∗ = 6 is the critical exponent for the Sobolev embedding in dimen-
sion 3. f(x, u)u ≥ 0, for u ≥ 0.

(f2′) lim|u|→∞
F (x,u)

u4 = ∞ uniformly for x ∈ R
3, here and subsequently

F (x, u) =
∫ u

0
f(x, t)dt.

(f3′) Let F(x, u) = 1
4f(x, u)u−F (x, u), there exist r0 > 0 such that if | u | ≥ r0,

then F(x, u) ≥ 0 uniformly for x ∈ R
3.

(f5) f(x,−u) = −f(x, u) for any x ∈ R
3, u ∈ R.

Now, we are ready to state the main result of this paper.

Theorem 1.2. Assume that (V) and (f1′)–(f3 ′),(f5) satisfy. Then system (1.1)
possesses infinitely many nontrivial solutions.

Remark 1.3. (i) It is obvious that condition (V) is weaker than (V1); (ii) There
are functions f satisfying the conditions in Theorem 1.2 but not satisfying
the assumptions(f2) and (f4), for example f(x, u) = f(u) = u + |u|p−2u where
p ∈ (4, 6). Then one can easily check that f satisfies assumptions (f1′)–(f3′),(f5)
but not satisfy (f2) and (f4). Meanwhile, we should point out that assumption
(f2) is indispensable in many existing results, (see for instant in [12,22,21]).

2. Variational Setting and Proof of Theorem 1.2

Under the assumptions in Theorem 1.2, it is obvious that F (x, u) ≥ 0 for all
x ∈ R

3 and u ∈ R. By (f1′) one can easily obtain that for all x ∈ R
3 and

u ∈ R:

F (x, u) ≤ c1

2
u2 +

c2

p
| u |p . (2.1)

This implies that: there exist some a0 = a(r0) > 0 such that

| F(x, u) | ≤ a0 | u |2 (2.2)

for all x ∈ R
3 and u ∈ R with | u |≤ r0. Actually, for all x ∈ R

3 and u ∈ R

with | u |≤ r0, by (2.1), (f2′) and (f3′)

|F(x, u)| ≤ 1
4
|f(x, u)u| + |F (x, u)|

≤ 1
4
(u2 + |u|p) +

c1

2
u2 +

c2

p
|u|p

≤ 1 + 2c1

4
u2 +

p + 4c2

4p
|u|p

≤
(

1 + 2c1

4
+

p + 4c2

4p
rp−2
0

)
u2. (2.3)

Let a0 = 1+2c1
4 + p+4c2

4p rp−2
0 , then (2.2) holds.

Throughout this section, we make the following assumption instead of
(V):
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(V′) V ∈ C(R3, R), infx∈R3 V (x) ≥ a0 + 1, where a0 is the same as in
(2.2). Moreover, for any M > 0, meas{x ∈ R

3 | V (x) ≤ M} < ∞.
Now, let’s introduce some notations. For any 1 ≤ r < ∞, Lr(R3) is the

usual Lebesgue space with the norm

‖u‖r =

⎛
⎝ ∫

R3

|u|rdx

⎞
⎠

1
r

.

H1(R3) is the usual Sobolev space with the norm

‖u‖H1 =

⎛
⎝ ∫

R3

(|∇u|2 + u2)dx

⎞
⎠

1
2

.

Define the space (see for instance in [31])

D1,2 = {u ∈ L2∗
(R3) | ∇u ∈ L2(R3)}

with the norm

‖u‖D1,2 =

⎛
⎝ ∫

R3

|∇u|2
⎞
⎠

1
2

.

Then D1,2 ↪→ L2∗
, i.e. there exists some C0 > 0 such that

‖u‖6 ≤ C0‖u‖D1,2 . (2.4)

In the present paper, we work in the Hilbert space

E =

⎧⎨
⎩u ∈ H1(R3) :

∫
R3

(|∇u|2 + V (x)u2
)
dx < +∞

⎫⎬
⎭

equipped with the inner product

(u, v) =
∫
R3

(∇u · ∇v + V (x)uv) dx, u, v ∈ E,

the associated norm

‖u‖ =

⎧⎨
⎩

∫
R3

(|∇u|2 + V (x)u2
)
dx

⎫⎬
⎭

1/2

, u ∈ E.

Evidently, E is continuously embedded into H1(R3) and hence continuously
embedded into Lr(R3) for 2 ≤ r ≤ 2∗, i.e., there exists Sr > 0 such that

‖u‖r ≤ Sr‖u‖, ∀ u ∈ E. (2.5)

In fact we further have the following lemma due to [8].
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Lemma 2.1 [8]. Under assumptions (V′) the embedding from E into Lr(R3) is
compact for 2 ≤ r < 2∗.

Especially, by (V′), we obtain

‖u‖2
2 ≤ 1

a0 + 1
‖u‖2, ∀ u ∈ E. (2.6)

For every u ∈ H1(R3), there exists a unique φu ∈ D1,2(R3) (see [16])
such that

− �φu = u2. (2.7)

Moreover, φu has the following integral expression

φu =
1
4π

∫
R3

u2(y)
|x − y|dy.

Thus φu ≥ 0, from (2.4) and (2.7), for any u ∈ E using Hölder inequality we
have

‖φu‖2
D1,2 =

∫
R3

φuu2dx ≤ ‖φu‖6‖u‖2
12
5

≤ C‖φu‖D1,2‖u‖2
12
5

.

Here and subsequently, C denotes an universal positive constant. This implies
that

‖φu‖D1,2 ≤ C‖u‖2
12
5

. (2.8)

By (2.5) and discussion above, we have∫
R3

φuu2dx ≤ C‖u‖4
12
5

≤ C‖u‖4. (2.9)

Now we define a functional I on E × D1,2 by

I(u, φ) =
1
2
‖u‖2 − 1

4

∫
R3

|∇φ|2dx +
1
2

∫
R3

φu2dx −
∫
R3

F (x, u)dx. (2.10)

From the discussion above we know that I is well defined and I ∈ C1(E ×
D1,2), it is well known that I’s critical points are the solutions of system (1.1).
Moreover, by discussion above, for every u ∈ E we obtain∫

R3

|∇φu|2dx =
∫
R3

φuu2dx.

So, (2.9) can be reduced as the following form Φ : E → R

Φ(u) =
1
2
‖u‖2 +

1
4

∫
R3

φuu2dx −
∫
R3

F (x, u)dx. (2.11)
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Then Φ ∈ C1(E, R) and

〈Φ′(u), v〉 =
∫
R3

(∇u · ∇v + V (x)uv + φuuv − f(x, u)v)dx, ∀v ∈ E. (2.12)

Moreover if u ∈ E is a critical point of Φ, then (u, φu) is a solution of system
(1.1). To complete our proof, we have to cite a result in [29].

Lemma 2.2 [29]. Assume that p1, p2 > 1, r, q ≥ 1 and Ω ⊆ R
N . Let g(x, t) be a

Carathéodory function on Ω × R and satisfy

|g(x, t)| ≤ a1|t|(p1−1)/r + a2|t|(p2−1)/r, ∀ (x, t) ∈ Ω × R, (2.13)
where a1, a2 ≥ 0. If un → u in Lp1(Ω) ∩ Lp2(Ω), and un → u a.e. x ∈ Ω, then
for any v ∈ Lp1q(Ω) ∩ Lp2q(Ω),

lim
n→∞

∫
Ω

|g(x, un) − g(x, u)|r|v|qdx = 0. (2.14)

We remark that in the proof of Lemma 2.2, the following inequality (see
for instance in [1]) plays an important role: If 1 ≤ p < ∞ and a, b ≥ 0, then

(a + b)p ≤ 2p−1(ap + bp). (2.15)
We say that I ∈ C1(X, R) satisfies the (C)c-condition if any sequence {un}
such that

I(un) → c, ‖I ′(un)‖(1 + ‖un‖) → 0
has a convergent subsequence, where X is a Banach space.

Lemma 2.3. Assume that a sequence {un} ⊂ E, un ⇀ u in E as n → ∞ and
{‖un‖} be a bounded sequence. Then∣∣∣∣

∫
R3

(φun
un − φuu)(un − u)dx

∣∣∣∣ → 0, as n → ∞.

Proof. Let {un} be a sequence satisfying the assumptions un ⇀ u in E as
n → ∞ and {‖un‖} is bounded. Lemma 2.1 implies that un → u in Lr(R3),
where 2 ≤ r < 6, and un → u for a.e. x ∈ R

3. Hence supn∈N
‖un‖r < ∞ and

‖u‖r is finite. By Hölder inequality, (2.15), (2.4) and (2.8)

∣∣∣∣
∫
R3

(φun
un − φuu)(un − u)dx

∣∣∣∣ ≤
⎛
⎝ ∫

R3

(φun
un − φuu)2

⎞
⎠

1
2

⎛
⎝ ∫

R3

(un − u)2

⎞
⎠

1
2

≤
⎡
⎣2

∫
R3

(|φun
un|2 + |φuu|2)

⎤
⎦

1
2

‖un − u‖2

≤ C(‖φun
‖2
6‖un‖2

3 + ‖φu‖2
6‖u‖2

3)
1
2 ‖un − u‖2

≤ C(‖un‖4 + ‖u‖4)
1
2 ‖un − u‖2 → 0, (2.16)

as n → ∞. �
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Lemma 2.4. Under assumptions (V′), (f5) and (f1′)–(f3 ′), any sequence
{un} ⊂ E satisfying

Φ(un) → c > 0, 〈Φ′(un), un〉 → 0,

is bounded in E. Moreover, {un} contains a converge subsequence.

Proof. To prove the boundedness of {un}, arguing by contradiction, suppose
that ‖un‖ → ∞ as n → ∞. Let Ωn(0, r0) = {x ∈ R

3 : |un(x)| ≤ r0}, by (2.2)
and (2.6) for sufficiently large n ∈ N

c + 1 ≥ Φ(un) − 1
4
〈Φ′(un), un〉

=
1
4
‖un‖2 +

∫
R3

F(x, un)dx

=
1
4
‖un‖2 +

∫
Ωn(0,r0)

F(x, un)dx +
∫

R3\Ωn(0,r0)

F(x, un)dx

≥ 1
4
‖un‖2 −

∫
Ωn(0,r0)

|F(x, un)|dx

≥ 1
4
‖un‖2 − a0‖un‖2

2

≥ 1
4
‖un‖2 − a0

4(a0 + 1)
‖un‖2

=
1

4(a0 + 1)
‖un‖2 → +∞.

Thus supn∈N
‖un‖ < ∞. i.e. {un} is a bounded sequence.

Now we shall prove {un} contains a subsequence, without loss of gener-
ality, by Eberlein–Shmulyan theorem (see for instance in [32]), passing to a
subsequence if necessary, there exists a u ∈ E such that un ⇀ u in E, again
by Lemma 2.1 , un → u in Lr(R3) for 2 ≤ r < 6 and un → u a.e. x ∈ R

3. By
Lemma 2.2

∫
R3

|f(x, un) − f(x, u)||un − u|dx → 0, as n → ∞.

And it is obvious that

〈Φ′(un) − Φ′(u), un − u〉 → 0 as n → ∞.
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This together with Lemma 2.3 implies

‖un − u‖2 = 〈Φ′(un) − Φ′(u), un − u〉 −
∫
R3

(φun
un − φuu)(un − u)dx

+
∫
R3

(f(x, un) − f(x, u))(un − u)dx → 0,

as n → ∞. That is un → u. �

Lemma 2.5. Under assumptions (V′), (f1′) and (f2′), for any finite dimensional
subspace Ẽ ⊂ E, there holds

Φ(u) → −∞, ‖u‖ → ∞, u ∈ Ẽ. (2.17)

Proof. Arguing indirectly, assume that for some sequence {un} ⊂ Ẽ with
‖un‖ → ∞, there is M > 0 such that Φ(un) ≥ −M for all n ∈ N. Set
vn = un/‖un‖, then ‖vn‖ = 1. Passing to a subsequence, we may assume that
vn ⇀ v in E. Since Ẽ is finite dimensional, then vn → v ∈ Ẽ in E, vn → v
a.e. on R

N , and so ‖v‖ = 1. Let Ω = {x ∈ R
3 : v(x) �= 0}, then meas(Ω) > 0

and for a.e. x ∈ Ω, we have limn→∞ |un(x)| → ∞. Hence Ω ⊂ R
3\Ωn(0, r0)

for sufficiently large n ∈ R, where Ωn(0, r0) is the same as in Lemma 2.4. It
follows from (2.9), (2.11), that

lim
n→∞

4
∫

R3 F (x, un)dx

‖un‖4
= lim

n→∞
2‖un‖2 +

∫
R3 φnu2

n − 4Φ(un)
‖un‖4

≤ C. (2.18)

But by the non-negative of F , (f2′) and Fadou’s Lemma, for large n we have

lim
n→∞

4
∫

R3 F (x, un)dx

‖un‖4
≥ lim

n→∞

∫
Ω

4F (x, un)v4
n

u4
n

dx

≥ lim infn→∞
∫
Ω

4F (x, un)v4
n

u4
n

dx

≥
∫
Ω

lim infn→∞
4F (x, un)v4

n

u4
n

dx

=
∫
Ω

lim infn→∞
4F (x, un)

u4
n

[χΩ(x)]v4
ndx → ∞

as n → ∞. This contradicts to (2.18). �

Corollary 2.6. Under assumptions (V′), (f1′) and (f2 ′), for any finite dimen-
sional subspace Ẽ ⊂ E, there is R = R(Ẽ) > 0 such that

Φ(u) ≤ 0, ∀ u ∈ Ẽ, ‖u‖ ≥ R. (2.19)
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Let {ej} is an orthonomormal basis of E and define Xj = Rej,

Yk = ⊕k
j=1Xj , Zk = ⊕∞

j=k+1Xj , k ∈ N. (2.20)

Lemma 2.7. Under assumptions (V′), for 2 ≤ r < 2∗,

βk(r) := sup
u∈Zk,‖u‖=1

‖u‖r → 0, k → ∞. (2.21)

Proof. Since the embedding from E into Lr(R3) is compact, then Lemma 2.10
can be proved by a similar way as [31, Lemma 3.8].

By Lemma 2.7, we can choose an integer m ≥ 1 such that

‖u‖2
2 ≤ 1

2c1
‖u‖2, ‖u‖p

p ≤ p

4c2
‖u‖p, ∀ u ∈ Zm. (2.22)

�

Lemma 2.8. Under assumptions (V′) and (f1′), there exist constants ρ, α > 0
such that Φ|∂Bρ∩Zm

≥ α.

Proof. By (2.1), (2.11) and (2.22), we have

Φ(u) =
1
2
‖u‖2 +

1
4

∫
R3

φuu2 −
∫
R3

F (x, u)dx

≥ 1
2
‖u‖2 −

∫
R3

F (x, u)dx

≥ 1
2
‖u‖2 − c1

2
‖u‖2

2 − c2

p
‖u‖p

p

≥ 1
4
(‖u‖2 − ‖u‖p).

Hence for any given 0 < ρ < 1 , let α := 1
4 (ρ2 − ρp), then Φ|∂Bρ∩Zm

≥ α > 0.
This complete the proof. �

By (V), there exists a constant V0 > 0 such that V̄ (x) := V (x)+V0 ≥ a0+
1 > 0 for all x ∈ R

3, where a0 is the same as (2.2). Let f̄(x, u) = f(x, u)+V0u.
Then it is easy to verify the following lemma.

Lemma 2.9. Problem (1.1) is equivalent to the following problem{−�u + V̄ (x)u + φu = f̄(x, u), in R
3,

−�φ = u2, in R
3.

(2.23)

Lemma 2.10 [5]. Let X be an infinite dimensional Banach space, X = Y ⊕ Z,
where Y is finite dimensional. If I ∈ C1(X, R) satisfies (C)c-condition for all
c > 0, and

(I1) I(0) = 0, I(−u) = I(u) for all u ∈ X;
(I2) there exist constants ρ, α > 0 such that Φ|∂Bρ∩Z ≥ α;
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(I3) for any finite dimensional subspace X̃ ⊂ X, there is R = R(X̃) > 0 such
that I(u) ≤ 0 on X̃\BR;

then I possesses an unbounded sequence of critical values.

Proof of Theorem 1.2. Let X = E, Y = Ym and Z = Zm. Obviously, f̄ satisfies
(f1′)–(f3′) and (f5). By Lemmas 2.4, 2.8 and Corollary 2.6, all conditions of
Lemma 2.10 are satisfied. Thus, problem (2.23) possesses infinitely many non-
trivial solutions. By Lemma 2.9, problem (1.1) also possesses infinitely many
nontrivial solutions. �
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