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Abstract. We consider the continuous Laplacian on an infinite uniformly
locally finite network under natural transition conditions as continuity
at the ramification nodes and the classical Kirchhoff flow condition at all
vertices in a L∞-setting. The characterization of eigenvalues of infinite
multiplicity for trees with finitely many boundary vertices (von Below
and Lubary, Results Math 47:199–225, 2005, 8.6) is generalized to the
case of infinitely many boundary vertices. Moreover, it is shown that on
a tree, any eigenspace of infinite dimension contains a subspace isomor-
phic to �∞(N). As for the zero eigenvalue, it is shown that a locally finite
tree either is a Liouville space or has infinitely many linearly indepen-
dent bounded harmonic functions if the edge lengths do not shrink to
zero anywhere. This alternative is shown to be false on graphs containing
circuits.
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1. Introduction

We consider the continuous Laplacian on a uniformly locally finite network
under natural transition conditions as continuity at the ramification nodes
and the classical Kirchhoff flow condition at all vertices in a L∞-setting. The
main concern of the present paper is the occurrence of eigenvalues of infinite
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geometric multiplicity on trees, in particular their common occurrence and
their corresponding combinatorial constraints.

The spectrum, especially the point spectrum, of the Laplacian on finite
networks has been considered by many authors, see e.g. [1,2,4,5,17–19,22] and
the references therein. For the infinite case we can refer to [7–10,13,20], for
the finite algebraic graph theory to the monographs [12,14,15], while for the
�2-setting in the infinite case we can refer to [21,24] and the references therein,
and for the �∞-setting to [3,6–10].

The present paper is organized as follows. Some graph theoretical pre-
liminaries, the basic node transition conditions for the Laplacian and some
results about harmonic functions are summarized in Sects. 2 and 3. The fol-
lowing main result of Sect. 4 is the solution of a conjecture from [7] under an
edge length constraint.

Theorem 4.1. A uniformly locally finite tree satisfying inf{�j j ∈ N} > 0 either
is a Liouville network or has infinitely many linearly independent bounded har-
monic functions.

Moreover, it is shown that the alternative is false for graphs containing
circuits. In fact, for each M ∈ N there exists an infinite uniformly locally finite
graph that has exactly M linearly independent bounded harmonic functions.

Section 5 is devoted to eigenvalues of the Laplacian of infinite multi-
plicity, in particular to the occurrence of inseparable eigenspaces containing a
subspace isomorphic to �∞(N). In fact, the following result will be shown.

Theorem 5.2. Let T be an infinite uniformly locally finite tree and λ ∈ [0,∞)
an eigenvalue of the Laplacian in C2

K(T ) ∩ L∞(T ). Then the geometric mul-
tiplicity of λ is infinite iff the corresponding eigenspace in C2

K(T ) ∩ L∞(T )
contains a subspace isomorphic to �∞(N).

It has been shown in [8] that the point spectrum is exactly [0,∞) for a
uniformly locally finite infinite tree with all edge lengths equal to 1 and with
finitely many boundary vertices. Without the latter condition, this assertion
does no longer hold, but it can be shown that the point spectrum lies between
[0,∞) and [0,∞)\ (

π
2 + πZ

)2 (Theorem 5.3), and that these bounds are opti-
mal. Furthermore, the equivalence [8, 8.6] can be conceivably extended to the
general case as follows.

Theorem 5.5. Let T be a uniformly locally finite tree with all edge lengths equal
to 1. Then the following conditions are equivalent:

(a) There exists an eigenvalue λ ∈ (0,∞)\ (
π
2 + πZ

)2 of infinite geometric
multiplicity.

(b) All λ ∈ (0,∞)\ (
π
2 + πZ

)2 are eigenvalues of infinite geometric multiplic-
ity.

(c) The tree T has infinitely many vertices of internal degree at least 3.

Again this result is shown to be optimal by means of an example.
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2. Preliminaries, Vertex Transition and Laplacian

For any graph Γ = (V,E,∈), the vertex set is denoted by V = V (Γ), the edge
set by E = E(Γ) and the incidence relation by ∈⊂ V ×E. The valency of each
vertex v is denoted by γ(v) = card{e ∈ E v ∈ e}.

Unless otherwise stated, all graphs considered in this paper are assumed
to be nonempty, simple, connected and uniformly locally finite, i.e.

max
v∈V (Γ)

γ(v) =: γmax < ∞. (1)

The simplicity property means that Γ contains no loops, and at most one edge
can join two vertices in Γ. Moreover, the conditions imply that Γ is countable.
For a given numbering of the vertices vi, i ∈ N, set γi = γ(vi) and define the
adjacency matrix or adjacency operator by

A(Γ) = (eih)i,h∈N
: R

V (Γ) −→ R
V (Γ) (2)

where

eih =

{
1 if vi and vh are adjacent in Γ
0 else

Note that A(Γ) is indecomposable iff Γ is connected. By simplicity, any two
adjacent vertices vi and vh determine uniquely the edge es joining them, and
we can set

s(i, h) =

{
s if es ∩ V = {vi, vh},

1 otherwise.

The sequences or vectors with constant entries equal to 1 are denoted by e.
For a subgraph Θ in Γ let Θ̄ = (V (Θ), E(Θ̄),∈) denote the subgraph of Γ
spanned by the vertices in Θ with

E(Θ̄) = {e e ∈ E(Γ), e ∩ V (Γ) ⊂ V (Θ)}.

The subgraph Θ is called induced if Θ̄ = Θ. The (combinatorial) distance
between two vertices v1 and v2 is defined to be the minimal number of edges
of all paths joining v1 and v2. For further graph theoretical terminology we
refer to [16,23,25], and for the algebraic graph theory to [12,15].

Moreover, without loss of generality, we consider each graph as a con-
nected topological graph in R

m, i.e. V (Γ) ⊂ R
m and the edge set consists of a

collection of Jordan curves

E(Γ) = {πj : [0, �j ] → R
m j ∈ N}

with the following properties: each support ej := πj ([0, �j ]) has its endpoints in
the set V (Γ), any two vertices in V (Γ) can be connected by a path with arcs in
E(Γ), and any two edges ej �= eh satisfy ej ∩ eh ⊂ V (Γ) and card(ej ∩ eh) ≤ 1.
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The arc length parameter of an edge ej is denoted by tj . Unless otherwise
stated, we identify the graph Γ = (V,E,∈) with its associated network

G =
⋃

j∈N

πj ([0, �j ]) ,

especially each edge πj with its support ej . G is called a Cν-network, if all
πj ∈ Cν([0, �j ], Rm). We shall distinguish the boundary vertices Vb = {vi ∈
V γi = 1} from the ramification nodes Vr = {vi ∈ V γi ≥ 2}, especially, we
define the essential ramification nodes by Vess = {vi ∈ V γi ≥ 3}. By defini-
tion, a boundary edge is one being incident to a boundary vertex. Moreover,
introduce the internal degree of a vertex v by

γ◦(v) = γ(v) − # {w ∈ Vb v is adjacent to w} .

The orientation of Γ or the network is given by the incidence factors

dij =

⎧
⎪⎨

⎪⎩

1 if πj(�j) = vi,

−1 if πj(0) = vi,

0 otherwise.
(3)

The two-sided unbounded path Γ1 is the graph with V (Γ1) = Z and the adja-
cency relation

eik = 1 ⇐⇒ |i − k| = 1, (4)

while the one-sided unbounded path Γ0 is the induced subgraph for V (Γ0) = N.
Numbering each edge by its left node, in both cases the edges are oriented by
dii = −1 and di i+1 = 1.

For a function u : G → R we set uj := u ◦ πj : [0, �j ] → R and use the
abbreviations

uj(vi) := uj

(
π−1

j (vi)
)
, ∂juj(vi) :=

∂

∂tj
uj(tj)

∣
∣
∣
π−1

j (vi)
etc.

As the basic geometric transition condition at ramification nodes we impose
the continuity condition

∀vi ∈ Vr : ej ∩ es = {vi} =⇒ uj(vi) = us(vi), (5)

that clearly is contained in the condition u ∈ C(G). Moreover, at all vertices
we impose the classical Kirchhoff condition

∀i ∈ N :
∑

j∈N

dij∂juj(vi) = 0, (6)

that includes the Neumann boundary condition at boundary vertices. Note
that Condition (6) does not depend on the orientation.

In the present context we consider the Laplacian Δ on a C2-network G
defined as the operator

Δ = ΔK
G =

(
u �→ (

∂2
j uj

)
j∈N

)
,
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with the domain

C2
K(G) = {u ∈ C(G) ∩ L∞(G) ∀j ∈ N : uj ∈ C2([0, �j ]), u satisfies (6)}.

We might also consider Δ in a weighted Sobolev space setting as e.g. W 2,∞
K,c (G),

but, due to classical regularity results in one dimension, working in spaces of
continuous functions does not constitute a restriction. Including the vertex
transition conditions, the eigenvalue problem for Δ = ΔK

G in question reads

0 �= u ∈ C2
K(G) ∩ L∞(G) and ∂2

j uj = −λuj for j ∈ N. (7)

For the sake of simplicity, we shall use the following notations for the point
spectra and the geometric multiplicities.

Definition 2.1.

�∞(Γ) = �∞(V (Γ))

S(G) = σp

(−ΔK
G , C2

K(G) ∩ L∞(G)
)

M(λ) = M(λ;G) = mg

(
λ,−ΔK

G , C2
K(G) ∩ L∞(G)

)

Let us recall some basic results for infinite graphs from [8–10]. All the
eigenvalues of (7) are nonnegative. As in the finite case [2], the eigenvalues
and their multiplicities can be determined in terms of the eigenvalues of the
weighted transition operator Diag (L(Γ) e)−1 L(Γ) resulting from the length
adjacency operator L, where Diag (L(Γ) e) denotes the diagonal matrix of
the row sums of L. In the case of equal edge lengths, the eigenvalues and
their multiplicities are directly obtained from those of the transition operator
Diagi (γi)

−1 A(Γ) stemming from the adjacency operator A, except for the
ones satisfying sin

√
λ = 0, whose multiplicities depend only on the corank

and the parity of the graph.

3. Harmonic Functions

In this section we recall some basic facts and results about harmonic functions
on networks from [7]. On networks with rectifiable edges that are not neces-
sarily parametrized in a C2-manner, harmonic functions can be defined intrin-
sically without referring to the Laplacian. Conceivably, a continuous function
u : G → R is called harmonic if on each edge ej it is of the form tj �→ αjtj + bj

and satisfies the Kirchhoff condition (6). Of course, in the C2-case, they are
just the functions satisfying Δ = 0 on G. The set of all harmonic functions
in G will be denoted by H(G) or H(Γ). Any element u ∈ H(Γ) is uniquely
determined by its values in the vertices

x = (xi)i∈N
, xi = u(vi).
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Using the slopes on the edges αj = uj(�j)−uj(0)
�j

, the Kirchhoff condition (6)
reads

∀i ∈ N :
∑

j∈N

dij αj = 0. (8)

In turn, using the inverse length adjacency operator P(Γ) = (pih)i,h∈N
:

R
V (Γ) −→ R

V (Γ) defined by pih = eih�−1
s(i,h), the latter condition becomes

the mean value property

∀i ∈ N :
∑

h∈N

pih xh = xi

∑

h∈N

pih, (9)

or, equivalently, Zx := Diag (P(Γ) e)−1 P(Γ)x = x. It is easy to see that

mg(1,Z, �∞(V (Γ)) = dimH(G) ∩ L∞(G) = mg(0,Δ, C2
K(G) ∩ L∞(G)). (10)

Definition 3.1. M(0; Γ) = dimH(G) ∩ L∞(G)

A network G is called a Liouville network, if M(0; Γ) = 1. A viaduct in
a graph Γ is a path π of length at least 2 in Γ joining two distinct vertices u
and v such that there is no other walk in Γ joining u and v having a vertex in
the set V (π)\{u, v}.

Definition 3.2. The reduced graph Γred of a given graph Γ is constructed as
follows. Introduce the operations
(I) Withdraw all edges in Γ incident to boundary vertices.

(II) Withdraw each one-sided unbounded path π in Γ whose ramification
nodes Vr(π) are all nodes of valency 2 in Γ.

(III) Replace any viaduct π in Γ by a single edge of length l, where l is the
sum of the lengths of all edges of π.

Repeat (I) and (II) successively until there are no more vertices of valency 1
and no more one-sided unbounded paths as in (II) in the remaining graph.
Then apply (III) such that there are no more vertices of valency 2. The result-
ing graph is called the reduced graph Γred of Γ.

Note that, in general, the reduced graph can display multiple edges, but
for trees it is always a simple graph. If #V (Γred) < ∞, then Γ is a Liouville
space, [7, 4.10].

4. Simplicity Versus Infinite Multiplicity for Bounded
Harmonic Functions

It has been conjectured in [7, 5.10] that under the hypothesis

inf{�j j ∈ N} > 0, (11)

a uniformly locally finite tree either is a Liouville space or has infinitely many
linearly independent bounded harmonic functions. This will be confirmed. The
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Figure 1. Construction of an independent harmonic at vip

alternative holds in particular for trees with equal edge lengths. If the edge
lengths shrink to 0, then the alternative can fail to hold. Take e.g. an infinite
star graph Σ formed by K ≥ 3 one-sided unbounded paths Γ0 having their
endpoints as common essential ramification node v0. Now, let the edge lengths
on each of the paths shrink successively by a given factor 0 < λ < 1, starting
with the K edges incident to v0. The resulting graph is not a Liouville network
and satisfies M(0; Σ) = K − 1, since the graph Σ corresponds to a finite star
graph without transition condition at all boundary vertices.

Theorem 4.1. A uniformly locally finite tree T satisfying Condition (11) either
is a Liouville network or satisfies M(0;T ) = ∞.

Proof. Let 1 denote the constant harmonic function equal to 1 and suppose
that M(0;T ) ≥ 2. We shall show that M(0;T ) = ∞ by constructing a sequence
(uk)k∈N

of linearly independent nonconstant functions in H(T ) ∩ L∞(T ) and
H(Tred)∩L∞(Tred). By hypothesis, there exists such a function on T and Tred,
say u0. Let k0 be an edge in Tred on which u0 has non zero slope α0 and set
v0 := π0(0). W.l.o.g. endow Tred with the orientation given by choosing v0 as
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a source and by choosing the indegree to be 1 for all the remaining vertices:

γ+
i = #{j ∈ N | dij = 1} = 1, γ−

i = #{j ∈ N | dij = −1} = γi − 1.

By (6), there exists a one-sided unbounded path π ∼= Γ0 in Tred with ini-
tial node v0 such that on each edge of π the slope αi of u0 does not vanish.
Condition (11) and the boundedness of u0 imply

lim
i→∞

αi = 0.

Set i1 := min{j > 0 αj �= α0} and αi1,1 := αi1 . Let ki1,1 be the edge in π
on which u0 has slope αi1,1 and set vi1 := πi1,1(0). The remaining outgoing
incident edges at vi1 will be denoted by ki1,2, . . . , ki1,γ(vi1 )−1. Then (6) implies

γ(vi1 )−1∑

j=1

αi1,j = α0 �= 0.

Thus, there exists n,m ∈ {1, . . . , γ(vi1) − 1} such that

n �= m, αi1,n �= 0, and αi1,m �= 0.

Let Ti1,n and Ti1,m denote the subtrees obtained by cutting Tred at vi1 that
contain ki1,n and ki1,m respectively. Now we can define u1 ∈ H(Tred)∩L∞(Tred)
by setting

u1

Ti1,n

:= u0

Ti1,n

− u0(vi1)1

u1

Ti1,m

:= − αi1,n

αi1,m
u0

Ti1,m

+
αi1,n u0(vi1)

αi1,m
1

and by extending u1 by 0 outside Ti1,n and Ti1,m. Then 1, u0, and u1 are line-
arly independent since λ1+λ0u0 +λ1u1 = 0 with λ, λi ∈ R implies λ = λ0 = 0
as u1 vanishes on k0. Thus, λ1 = 0.

Next suppose that for p ≥ 2, u1, . . . , up−1 ∈ H(Tred) ∩ L∞(Tred) are
non constant such that 1, u0, . . . , up−1 are linearly independent with indices
iκ and supports Tiκ,n and Tiκ,m as above for 1 ≤ κ ≤ p − 1. As indicated in
Fig. 1, we can repeat the above construction involving u0 and π ∼= Γ0 and set
ip := min{j > ip−1 : αj �= αip−1}, αip,1 := αip

. Let kip,1 be the edge on which
u0 has slope αip,1 and set vip

:= πip,1(0). The remaining outgoing incident
edges at vip

will be denoted by kip,2, . . . , kip,γ(vip )−1. Again (6) implies

γ(vip )−1∑

j=1

αip,j = αip−1 �= 0.

Thus, there exists n,m ∈ {1, . . . , γ(vip
) − 1} such that n �= m, αip,n �= 0

and αip,m �= 0. Let Tip,n and Tip,m denote the subtrees obtained by cut-
ting Tred at vip

that contain kip,n and kip,m respectively. Now we can define



Vol. 63 (2013) Eigenvalue multiplicities of the Laplacian on trees 1339

up ∈ H(Tred) ∩ L∞(Tred) by setting

up

Tip,n

:= u0

Tip,n

− u0(vip
),1

up

Tip,m

:= − αip,n

αip,m
u0

Tip,m

+
αip,n u0(vip

)
αip,m

1

and by extending up by 0 outside Tip,n and Tip,m. It remains to show that
1, u0, . . . , up are linearly independent. For λ, λ0, . . . , λp ∈ R such that λ1 +
λ0u0 + . . . + λpup = 0, by construction and induction hypothesis, we obtain
successively λ = λ0 = . . . λp−1 = 0, by evaluating on the edge kiκ−1 . Finally,
λp = 0. This permits to conclude. �

Next, we shall show that the assertion of Theorem 4.1 is false for graphs
with circuits. In fact, for each given m ≥ 2 we shall construct a uniformly
locally finite graph G satisfying M(0;T ) = m, see Fig. 2. First, we use infi-
nitely many copies of the complete bipartite graph K4,2 to construct a graph
G satisfying M(0;G) = 2. Define a graph H as follows. Number the vertices
of H by V (H) =

⋃

k≥1

V (k), where the k-th floor is denoted by

V (k) = {v
(k)
i 1 ≤ i ≤ 2k}.

The adjacencies in H are defined by the following rules:
(a) There is no edge between two vertices on the same floor or between two

floors of level difference at least 2.
(b) For k ≥ 1, the adjacencies between the k-th floor and the (k + 1)-th

floor are defined by 2k−1 copies of K4,2 between v
(k)
i , v

(k)

2k−i+1
and

v
(k+1)
4i−3 , v

(k+1)
4i−2 , v

(k+1)
4i−1 , v

(k+1)
4i for 1 ≤ i ≤ 2k−1, see Fig. 2.

(c) The outgoing incident edges at v
(k)
i will be denoted by e

(k)
i,j for 1 ≤ j ≤ 4.

Label the vertices of K4,2 by the numbers 2 to 7 as displayed by bold
edges in Fig. 2. Then glue two copies of H to a K4,2 by identifying 4 and 5
with v

(1)
1 and v

(1)
2 respectively and, again, by identifying 6 and 7 with v

(1)
1

and v
(1)
2 respectively. Finally, add the node 1 and an edge between 1 and 2

and another one between 1 and 3 in order to obtain the graph G, see Fig. 2.
All edge lengths in G are supposed to be equal to 1. Each edge is oriented
by choosing the incident vertex of lower number or index as initial node. The
edges between the vertices {1, 2, 3, 4, 5, 6, 7, 8} are denoted by aij . Note that,
by construction, γmax(G) = 6.

Lemma 4.2. M(0;G) = 2.

Proof. For a presumed harmonic function on G, let αij denote the slope on
the edge aij , and α

(k)
i,j denote the slope on the edge e

(k)
i,j . We show that the

harmonic functions vanishing in 1 are bounded and form a vector space of
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= =

Figure 2. The graph G satisfying M(0;G) = 2

dimension 1. The Kirchhoff conditions at 1, 2, 3 and the continuity at 4, 5, 6, 7
yield

(i) α12 + α13 = 0,
(ii) α24 + α25 + α26 + α27 = α12 and α34 + α35 + α36 + α37 = α13,
(iii) α12 + α2i = α13 + α3i for 4 ≤ i ≤ 7.
Thus, summing up yields α12 = α13 = 0. By continuity α2i = α3i for 4 ≤ i ≤ 7.
The Kirchhoff conditions at 4, 5 and the continuity at v

(2)
i yield

(iv)
4∑

j=1

α
(1)
1,j = 2α24 and

4∑

j=1

α
(1)
2,j = 2α25,

(v) α
(1)
1,j + α24 = α

(1)
2,j + α25 for 1 ≤ j ≤ 4.

Summing up yields α24 = α25. Together with α24 + α25 + α26 + α27 = 0, we
get

α := α24 = α25 = −α26 = −α27,

and, by continuity and symmetry of G,

α = α34 = α35 = −α36 = −α37,

We shall show that α determines a unique element in H(G) vanishing
in 1. Using the above formulae and the symmetry of G, it suffices to consider
only the graph H. As the essential step, we shall show by induction on k that
the slopes between the floors V (k) and V (k+1) are all equal to α

2k . For that
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purpose, we first note that, by summing up all Kirchhoff conditions in each
k-th floor, all sums of slopes of the same floor are equal:

2∑

i=1

4∑

j=1

α
(1)
i,j =

2k
∑

i=1

4∑

j=1

α
(k)
i,j = 4α.

For k = 1, using continuity at v
(2)
i we have α

(1)
1,j = α

(1)
2,j for 1 ≤ j ≤ 4. By

the Kirchhoff conditions at v
(2)
1 and v

(2)
4

4∑

j=1

α
(2)
1,j = 2α

(1)
1,1,

4∑

j=1

α
(2)
4,j = 2α

(1)
1,4,

and by continuity at v
(3)
i we have α

(2)
1,j + α

(1)
1,1 = a

(2)
4,j + α

(1)
1,4 for 1 ≤ j ≤ 4.

Summing up yields α
(1)
1,1 = α

(1)
1,4 and, in the same way, α

(1)
1,2 = α

(1)
1,3. This shows

also α
(2)
1,j = α

(2)
4,j and α

(2)
2,j = α

(2)
3,j for 1 ≤ j ≤ 4.

It remains to show that α
(1)
1,1 = α

(1)
1,2. Summing up the Kirchhoff conditions

in all v
(3)
1 , . . . , v

(3)
4 yields

4∑

i=1

4∑

j=1

α
(3)
i,j =

4∑

j=1

α
(2)
1,j + α

(2)
4,j = 2

4∑

j=1

α
(2)
1,j = 4α

(1)
1,1,

and in all v
(3)
5 , . . . , v

(3)
8 ,

8∑

i=5

4∑

j=1

α
(3)
i,j = 2

4∑

j=1

α
(2)
2,j = 4α

(1)
1,2.

The continuity condition in the 4-th floor gives for 1 ≤ j ≤ 4:

α
(3)
1,j + α

(2)
1,1 + α

(1)
1,1 = α

(3)
8,j + α

(2)
2,4 + α

(1)
1,2

α
(3)
2,j + α

(2)
1,2 + α

(1)
1,1 = α

(3)
7,j + α

(2)
2,3 + α

(1)
1,2

α
(3)
3,j + α

(2)
1,3 + α

(1)
1,1 = α

(3)
6,j + α

(2)
2,2 + α

(1)
1,2

α
(3)
4,j + α

(2)
1,4 + α

(1)
1,1 = α

(3)
5,j + α

(2)
2,1 + α

(1)
1,2

Thus, summing up these 16 equations yields
4∑

i=1

4∑

j=1

α
(3)
i,j + 4

4∑

j=1

α
(2)
1,j + 16α

(1)
1,1 =

8∑

i=5

4∑

j=1

α
(3)
i,j + 4

4∑

j=1

α
(2)
2,j + 16α

(1)
1,2,

and shows α
(1)
1,1 = α

(1)
1,2. Thus, the assertion is shown for k = 1.

By induction, suppose that the slopes between the κ-th floor and the
(κ + 1)-th floor are all equal for 1 ≤ κ ≤ k − 1. Thus, all slopes between the
floors V (k−1) and V (k) amount to 2−k+1α, and by the Kirchhoff condition at
v
(k)
i , the sum of the four outgoing slopes amounts to 2−k+2α. Thus, it suffices
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to show that at each v
(k)
i , all the four outgoing slopes are the same. In fact, we

can follow the proof of the case k = 1. By continuity at v
(k+2)
i for 1 ≤ i ≤ 4,

we have

α
(k)
1,1 + α

(k+1)
1,j = α

(k)

2k−1,4
+ α

(k+1)

2k+1,j
.

Summing up yields α
(k)
1,1 = α

(k)

2k−1,4
, and correspondingly, α

(k)
1,j = α

(k)

2k−1,5−j
for

1 ≤ j ≤ 4. Now we only have to sum up the Kirchhoff laws at v
(k+2)
1 , . . . , v

(k+2)
4

and proceed as above in order to obtain

α
(k)
1,j = α

(k)

2k−1,5−j
=

α

2k
for 1 ≤ j ≤ 4.

This shows that each u ∈ H(G) is completely determined by its value at the
node 1 and the slope α = α24. Thus, M(0;G) = 2. �

Now we take m ≥ 2 copies H1, . . . , Hm of the graph H, identify the
nodes v

(1)
1 and v

(2)
1 of each Hi with two boundary vertices of a 3-star with

ramification node vi,1 and of edge length 1 and identify the remaining bound-
ary vertex of each 3-star to one ramification node v0 of valency m, that will
be considered as a source. The resulting graph will be denoted by Hm and
satisfies γmax(Hm) = max {6,m}, see Figs. 3 and 4. It will be shown that
M(0;Hm) = m.

1

H2 H3

v0

v2,1 v3,1

v1,1

v
(1)
1 v

(1)
2

v
(2)
1 v

(2)
3 v

(2)
4v

(2)
2

α1

α2 α3

H

Figure 3. The graph H3
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0

1

H3

H1

H2 H3H2

α1

−α 1 α2 −α 20

H

Figure 4. Nonconstant independent harmonic functions on H3

Corollary 4.3. M(0;Hm) = m.

Proof. We show that a harmonic u ∈ H(Hm) is completely defined by its value
in v0 and m−1 slopes on the edges incident with v0. Let α1, . . . , αm denote the
slopes of u on these edges. Thus, αm = −∑m−1

j=1 αj . In H1, we use the same
notations for edges, vertices and slopes as for H above. Let α1j denote the
slope of u on the edge between v1,1 and v

(1)
j , with v1,1 as indicated in Fig. 3.

Then the Kirchhoff law at v1,1, v
(1)
1 , v

(1)
2 and the continuity at v

(2)
1 , . . . , v

(2)
4

yield
(i) α1 = α11 + α12,

(ii) α11 =
4∑

j=1

α
(1)
1,j and α12 =

4∑

j=1

α
(1)
2,j ,

(iii) α11 + α
(1)
1,j = α12 + α

(1)
2,j for 1 ≤ j ≤ 4.

Thus, summing up yields α11 = α12 = α1
2 . As in the proof of Lemma 4.2, the

slopes of u between the k-th floor and (k + 1)-th floor in H1 are all equal to
α1

2k+2 . The same holds on each Hi. For 1 ≤ i ≤ m−1, let w(i) denote the unique
harmonic bounded function on Hm with w(i)(v0) = 0 and having the slopes
αi = 1, αm = −1 and αj = 0 for j �∈ {i,m}. Then

u = u(v0)1 +
m−1∑

i=1

αiw
(i) ∈

〈
1, w(1), . . . , w(m−1)

〉

R

,

which permits to conclude that M(0;Hm) = m, since the functions 1, w(1),
. . . , w(m−1) are linearly independent. �

Theorem 4.1 can be extended to graphs with a finite number of circuits.

Corollary 4.4. A uniformly locally finite graph Γ having only finitely many
finite circuits and satisfying Condition (11) either is a Liouville network or
satisfies M(0; Γ) = ∞.
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Proof. By hypothesis, Γ consists of a finite graph F containing all the cir-
cuits of Γ and of finitely many trees T1, . . . , Tm with

{
vi
0

}
= V (Ti) ∩ V (F ).

Increasing the parameter m if necessary, we can assume w.l.o.g. that for each
i ∈ {1, . . . , m}, the vertex vi

0 is a boundary vertex in Ti. If m = 0 then
M(0; Γ) = 1. Thus, we can suppose m ≥ 1. If one of the trees, say Tk, satisfies
M(0;Tk) = ∞, then M(0; Γ) = ∞, as the harmonic functions on Tk define
such functions on the whole graph by constant extension. Using Theorem 4.1,
we can assume that all the Tk are Liouville graphs. If all u ∈ H(Γ) ∩ L∞(Γ)
are constant on each edge incident with vi

0 in Ti for all i ∈ {1, . . . , m}, then
M(0; Γ) = 1. If there is a function u ∈ H(Γ) ∩ L∞(Γ) with non zero slope
on the edge in Tk incident with vk

0 for some k ∈ {1, . . . , m}, then the same
construction as in the proof of Theorem 4.1 shows that there are non constant
harmonic bounded functions on Tk though the restriction of u to Tk does not
satisfy the Kirchhoff condition at vk

0 ∈ V (Tk) in Tk. This is impossible and
permits to conclude that Γ is a Liouville graph. �

5. Infinite Eigenvalue Multiplicities on Trees

According to [9, Thm. 7.5] all eigenvalues on a uniformly locally finite tree are
nonnegative and, according to [9, Thm. 7.3], a uniformly locally finite infinite
tree T with finitely many boundary vertices satisfies S(T ) = [0,∞). On the
other hand, medusas G, i.e. graphs with #Vess(G) < ∞, can only have finite
eigenvalue multiplicities using the recurrences corresponding to homogeneous
or inhomogeneous eigenvalue equations on the respective one-sided unbounded
paths in G. In [8, Thm. 8.6] the following result has been shown for equal edge
lengths, but the proof given there is readily extended to trees with arbitrary
edge lengths.

Theorem 5.1. Let T be a uniformly locally finite tree with at most a finite
number of boundary vertices. Then the following conditions are equivalent:
(a) ∃λ ∈ (0,∞) : M(λ;T ) = ∞
(b) ∀λ ∈ (0,∞) : M(λ;T ) = ∞
(c) #Vess(T ) = ∞

Furthermore, in this class of trees, all trees with Vess = Vr are isospectral
and have each nonnegative real number as black hole eigenvalue, cf. [10]. In
fact, any eigenvalue of infinite multiplicity on an infinite uniformly locally finite
tree is a black hole eigenvalue. This is the contents of the following theorem.

Theorem 5.2. Let T be an infinite uniformly locally finite tree and λ ∈ [0,∞).
Then M(λ;T ) = ∞ iff the corresponding eigenspace in C2

K(T ) ∩ L∞(T ) con-
tains a subspace isomorphic to �∞(N).

Proof. The proof consists of the following steps. Clearly, if the eigenspace con-
tains some �∞(N), then M(λ;T ) = ∞. Suppose M(λ;T ) = ∞.
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(a) If T contains only finitely many essential ramification nodes, then all
multiplicities are finite as stated above.

(b) If Vess = Vr and #Vb(T ) < ∞, then the assertion follows from [10, Thm.
3.2]. Note that here, all eigenvalues are black holes.

(c) If # {v ∈ Vr(T ) γ◦(v) ≥ 3} < ∞, then T has a very special form: T con-
sists of a finite tree F connected to finitely many one-sided unbounded
paths Γ0 that at each node allow additional boundary edges. Let us call
these subtrees outside F , τ1, . . . , τm. If cos

√
λ �= 0, then the value and

the slope at the initial node on each τk determines completely the eigen-
solution thereon which permits to conclude that M(λ;T ) < ∞. Thus, we
can assume that cos

√
λ = 0. Then an eigenfunction vanishes at all nodes

adjacent to boundary vertices, especially at the nodes of valency ≥ 3
on all τk. By hypothesis, one of the subtrees τk contains infinitely many
essential ramification nodes that will be denoted by wi following the Γ0-
orientation on τk. Then there are infinitely many eigenfunctions of com-
pact support on τk. This can be seen as follows. If # {wi γ(wi) ≥ 4} = ∞,
then the assertion follows readily by using pairs of boundary edges as an
appropriate cosinus support. Thus, by enlarging F to a suitable finite
subgraph containing finitely many wi with γ(wi) ≥ 4 if necessary, we can
suppose that τk contains only nodes of degree 3, 2 or 1. But then the
support of an eigenfunction cannot contain pairs of subsequent nodes wi

and wi+1 of odd distance. Thus, by infinite multiplicity, there must be
infinitely many different pairs of subsequent ramification nodes wi and
wi+1 of even distance. These lead to infinitely many linearly independent
eigenfunctions uk of compact support as indicated in Fig. 5. Then a linear
injection Φ : �∞ → C2

K(T ) ∩ L∞(T ) is given by Φ(α) =
∑

k∈N
αk uk for

α = (αk)k∈N
∈ �∞.

(d) If # {v ∈ Vr(T ) γ◦(v) ≥ 3} = ∞ and cos
√

λ �= 0, then the same recur-
sive construction as in the proof of [8, Thm. 8.4] or [9, Thm. 7.3] leads
to the assertion.

(e) It remains to show the assertion in the case # {v ∈ Vr(T ) γ◦(v) ≥ 3} =
∞ and cos

√
λ = 0. If there are three or more linearly independent eigen-

functions on a subtree Σ of T , then there is an eigenfunction having its
support in Σ and vanishing on a given edge in Σ, since the multiplicity on
each edge is at most 2. This leads to irreducible supports Σ of eigenfunc-
tions that have at most two linearly independent eigenfunctions. Under
the hypothesis M(λ;T ) = ∞, there exists a family {Σk k ∈ N} of irre-
ducible subtrees and corresponding linearly independent eigenfunctions{
uk ∈ C2

K(T ) ∩ L∞(T ) k ∈ N
}

such that each uk has its support in Σk

and ‖uk‖∞ ≤ 1
1+k2 , and such that each Σk possesses an edge that all the

others of the family do not have. Then, for each α = (αk)k∈N
∈ �∞

Φ(α) =
∑

k∈N

αk uk
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0 0 0

1 1

0 −1 0 1 0 −1 0

0 0 0

Figure 5. Defining an eigenfunction of compact support for
cos

√
λ = 0

defines an element of C2
K(T ) ∩ L∞(T ). Moreover, Φ : �∞ → C2

K(T ) ∩ L∞(T ) is
linear and injective by construction. This permits to conclude. �

In the presence of different edge lengths, the eigenvalues depend strongly
on the edge lengths in general. But in the case of equal edge lengths, all point
spectra of uniformly locally finite infinite trees coincide outside of a common
countable set of nonnegative numbers. This is the contents of the following

Theorem 5.3. Let T be a uniformly locally finite infinite tree with all edge
lengths equal to 1. Then

[0,∞) ⊃ S(T ) ⊃ [0,∞)\
(π

2
+ πZ

)2

.

Proof. The first inclusion follows from [8,9]. For the second one and λ ∈
[0,∞)\ (

π
2 + πZ

)2, i.e. cos
√

λ �= 0, we can follow the construction of an ei-
genfunction from [8, Thm. 8.4]. By hypothesis, on each edge kj incident to
some boundary vertex, prescribing the value at the ramification node and the
zero slope at the boundary vertex defines a unique eigenfunction restriction uj

on this edge. Moreover, at each ramification node v, the infinite and connected
character of T ensures the existence of at least one adjacent ramification node.
Thus, the cited iteration procedure works also in the present case. �

Note that both inclusions are optimal. For uniformly locally finite infinite
trees with finitely many boundary vertices [0,∞) = S(T ) holds, while for the
infinite comb Z1, i.e. Z̃2 below without the boundary edge incident to the va-
lencies 1 and 2, S(Z1) = [0,∞)\ (

π
2 + πZ

)2, see [8, Ex. 8.2]. In fact, adding a
single edge, or doubling exactly one edge length can change the point spectrum
from the minimal case to the maximal one.

Example 5.4. Let Z2 be the infinite tree obtained by adding in the two-sided
unbounded Γ1 to each vertex one boundary edge such that all vertices of the
resulting tree have valency 1 or 3 as depicted in Fig. 6, and such that one
boundary edge,say at 0, has length 2, while all the other lengths amount to 1.
Let Z̃2 be the tree obtained by dividing in Z2 the edge of length 2 into two
edges of lengths 1. Then

S(Z2) = S(Z̃2) ⊃ [0,∞)\ (
2−1π + πZ

)2
,
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Figure 6. The trees Z2 and Z̃2

where the second inclusion follows from Theorem 5.3. But for cos
√

λ = 0, Z2

admits eigenfunctions of compact support in the subgraph that is displayed by
bold edges in Fig. 6. This permits to conclude that S(Z2) = S(Z̃2) = [0,∞)
while S(Z1) = [0,∞)\ (

π
2 + πZ

)2.

Let us come back to Theorem 5.1 under equal edge lengths that can be
generalized to the case of infinitely many boundary nodes as follows, by taking
into account the special role of the eigenvalues of the form cos

√
λ = 0. In fact,

these exceptional numbers stem from the iteration procedure [8, Thm. 8.4] and
from the equation ∂2

j uj + λuj = 0 on a boundary edge ej of length 1 under
inhomogeneous Dirichlet condition at the ramification node and Neumann con-
dition at the boundary vertex. For cos

√
λ = 0 it is not always possible to

extend a partially defined eigenfunction to ej .

Theorem 5.5. Let T be a uniformly locally finite tree with all edge lengths equal
to 1. Then the following conditions are equivalent:

(a) ∃λ ∈ (0,∞)\ (
π
2 + πZ

)2 : M(λ;T ) = ∞
(b) ∀λ ∈ (0,∞)\ (

π
2 + πZ

)2 : M(λ;T ) = ∞
(c) # {v ∈ Vr(T ) γ◦(v) ≥ 3} = ∞
Proof. Note first that S(T ) ⊃ [0,∞)\ (

π
2 + πZ

)2 by Theorem 5.3. In order
to conclude (a) ⇒ (c) we observe that for trees T with finitely many inter-
nal nodes satisfying γ◦(v) ≥ 3 the eigenvalue λ has finite multiplicity, since
cos

√
λ �= 0 and since, again, T has the special form described already under c)

in the proof on Theorem 5.2. Now we can follow the above argument.
It remains to show (c) ⇒ (b). In fact, we can follow the construction in

the proof of [8, Thm. 8.4]. The hypothesis on # {v ∈ Vr(T ) γ◦(v) ≥ 3} = ∞
guarantees that the recursive construction in the cited proof leads to infinitely
many linearly independent bounded eigensolutions. �

Note that this result can be extended neither to eigenvalues of the form
cos

√
λ = 0, nor to trees violating Condition (c). The same example as in [8]

illustrates this.
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Figure 7. Example 5.6

Example 5.6. Let Γ be the infinite tree as depicted in Fig. 7. For λ = 0, at all
boundary vertices, the slopes vanish, so any bounded harmonic function on Γ
leads to such a function on Γ1 and has to be constant, see also [7]. But in the
general case, we readily deduce

M(λ) =

⎧
⎪⎨

⎪⎩

1 if λ = 0,

2 if cos
√

λ �= 0,

∞ if cos
√

λ = 0.

The example shows also that there are trees with eigenvalues of infinite mul-
tiplicity though {v ∈ Vr(T ) γ◦(v) ≥ 3} = ∅.

Remark 5.7. We note in passing that for another common edge length, say
� > 0, the exceptional values read

(
1
�

(
π
2 + πZ

))2. Admitting different edge
lengths can cause the impossibility of many real numbers to be eigenvalues.
As explained above, the iteration procedure for the construction of a bounded

eigenfunction might fail if λ =
(

1
�j

(
π
2 + πk

))2

for some edge ej incident to a
boundary vertex with k ∈ Z. Thus, avoiding all these numbers leads to eigen-
values for −Δ. Thus, Theorem 5.3 can be generalized to the case of different
edge lengths by the formula

[0,∞) ⊃ S(T ) ⊃ [0,∞)\
⋃

j∈N

1
�2j

(π

2
+ πZ

)2

.

Nevertheless, the possible exception form a countable set. If −Δ is replaced
by the canonical Laplacian

ΔK
G =

(
u �→ (

�2j∂
2
j uj

)
j∈N

)
,

under continuity in Vr and the Kirchhoff condition

∀i ∈ N :
∑

j∈N

dij�
2
j∂juj(vi) = 0,

then the assertions of Theorems 5.3 and 5.5 remain valid. Here the zeros of
cos

√
λ play the same role as above.
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[11] von Below, J., Gensane, T.: Massé, Some spectral estimates for periodic graphs.
Cahiers du LMPA Joseph Liouville, vol. 84, (1999)

[12] Biggs, N.L.: Algebraic graph theory. Cambridge Tracts Math. 67. Cambridge
University Press, Cambridge (1967)

[13] Cattaneo, C.: The spectrum of the continuous Laplacian on a graph. Monats-
hefte für Mathematik. 124, 215–235 (1997)

[14] Chung, F.R.K.: Spectral graph theory. In: Conference Series in Mathematics,
vol. 92. AMS, Rhode Island (1997)
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