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1. Introduction

Consider the following Sturm–Liouville operator L := L(q, U0, U1) defined by

Ly = −y′′ + q(x)y = λy, (1.1)

with boundary conditions

U0(y) := R01(λ)y′(0, λ) +R00(λ)y(0, λ) = 0 (1.2)

and

U1(y) := R11(λ)y′(π, λ) +R10(λ)y(π, λ) = 0, (1.3)

where q is a complex-value function and q ∈ L2(0, π),

Rξk(λ) = Σrξk

j=0Rξkjλ
rξk−j , rξ1 = rξ0 ≥ 0, Rξ10 = 1(ξ, k = 0, 1)

are arbitrary polynomials of degree rξk with complex coefficients such that
Rξ1(λ) and Rξ0(λ)(ξ = 0, 1) have no common zeros.
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For the Sturm–Liouville problem (1.1)–(1.3), Chernozhukova and Freil-
ing [1] established a uniqueness theorem on the potential q(x). They showed
that if coefficient functions R0k(λ)(k = 0, 1) of the boundary condition at
x = 0 are known a priori, then the potential q(x) and coefficient functions
R1k(λ)(k = 0, 1) of the boundary condition at x = π can be uniquely deter-
mined by Weyl function of this operator. By using the method of spectral
mappings, Freiling and Yurko [2] discussed three inverse problems for the
Sturm–Liouville problem (1.1)–(1.3) from the Weyl function, or from discrete
spectral data or from two spectra and provided procedures for reconstruct-
ing this differential operator from the above spectral data, respectively. Later,
using nodal points (zeros of eigenfunctions) as spectral data, Yang (C. F.)
and Yang (X. P.) [3] reconstructed the potential q(x) and coefficient functions
Rξ0(λ)
Rξ1(λ) (ξ = 0, 1) of the boundary conditions. In 1977, Fulton [4] considered
the Sturm–Liouville equation (1.1) with one boundary condition dependent
on the spectral parameter and obtained asymptotic estimates of eigenvalues
or eigenfunctions. Since 1977, one of such Sturm–Liouville equation (1.1) with
boundary conditions dependent on the spectral parameter was discussed by a
number of authors (see [1–11]). Sturm–Liouville problem with eigenparameter
dependent boundary conditions has many applications in engineering, physics,
mathematics, etc (see [1–11]).

Inverse problem for differential operators consists in reconstructing oper-
ators from its spectral data (see [1–28,30,31]). Hochstadt and Lieberman [12]
first considered the half inverse problem for the Sturm–Liouville operator with
separated boundary conditions and showed that if q(x) is prescribed on [π

2 , π],
then the potential q(x) on the interval [0, π] can be uniquely determined by
one spectrum. Later, Castillo [13] also discussed the half inverse problem for
the Sturm–Liouville operator, and by an example, Castillo showed that the
necessity of the boundary condition (1.3) for R11(λ) = 1, R10(λ) = H is
given. Then, one of such half inverse problems for differential operators was
addressed by many authors (see, [11–19]). By using Weyl m-function tech-
niques, Gesztesy and Simon [20] established a uniqueness theorem (see [20,
Theorem 1.3]) by partial spectra and information on the potential, which is a
generalization of Hochstadt–Lieberman’s theorem [12]. While Mochizuki and
Trooshin [21] explored the inverse problem for interior spectral data of Sturm–
Liouville operators on the finite interval [0,1] and showed that a set of values
of eigenfunctions at some interior point and parts of two spectra can uniquely
determine the potential q(x). Then, Yang(C. F.) and Yang(X. P.) [22] dis-
cussed the inverse problem for Sturm–Liouville operators with discontinuous
boundary conditions and proved that the spectral data of parts of two spectra
and some information on eigenfunctions at some interior point of the interval
(0, π) is sufficient to determine the potential q(x). Later, Wang [10] estab-
lished a uniqueness theorem for Sturm–Liouville operators with eigenparam-
eter dependent boundary conditions from a set of values of eigenfunctions at
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some interior point and parts of two spectra. To the best of my knowledge,
half inverse problem and interior inverse problem for the Sturm–Liouville prob-
lem (1.1)–(1.3) are not considered. In this paper, we discuss the half inverse
problem and the interior inverse problem for the Sturm–Liouville problem
(1.1)–(1.3), respectively. We always assume that coefficient functions R00(λ)
and R01(λ) of the boundary condition at x = 0 are given a priori.

The aim of this article is to establish some uniqueness theorems for
Sturm–Liouville equations with boundary conditions polynomially dependent
on the spectral parameter on the finite interval [0, π]. From Lemma 2.1 in
Sect. 2 (the result of Refs. [1] and [2]), we show that if q(x) is prescribed on
[0, π

2 ], then one spectrum is sufficiently to determine the potential q(x) on the
finite interval [0, π] and coefficient functions R1k(λ)(k = 0, 1) of the boundary
condition. By improving Mochizuki–Trooshin’s method and using Lemma 2.1,
we prove that the potential q(x) and coefficient functions R1k(λ)(k = 0, 1) of
the boundary condition are uniquely determined by a set of values of eigen-
functions at some interior point and parts of two spectra.

This article is organized as follows. In Sect. 2, we present some prelim-
inaries. In Sect. 3, we show that the uniqueness theorem of the half inverse
problem for the Sturm–Liouville problem (1.1)–(1.3) holds. In Sect. 4, we prove
some uniqueness theorems for the Sturm–Liouville problem (1.1)–(1.3) from a
set of values of eigenfunctions at some interior point and parts of two spectra.

2. Preliminaries

Let S1(x, λ), S2(x, λ), ϕ(x, λ) and ψ(x, λ) be solutions of Eq. (1.1) under the
initial conditions (see [1,2])

S1(0, λ) = S′
2(0, λ) = 0, S′

1(0, λ) = S2(0, λ) = 1
ϕ(0, λ) = R01(λ), ϕ′(0, λ) = −R00(λ),
ψ(π, λ) = R11(λ), ψ′(π, λ) = −R10(λ).

Denote Δj(λ) = U1(Sj). Clearly, U0(ϕ) = U1(ψ) = 0, and

ϕ(x, λ) = R01(λ)S2(x, λ) −R00(λ)S1(x, λ), (2.1)
ψ(x, λ) = Δ1(λ)S2(x, λ) − Δ2(λ)S1(x, λ). (2.2)

Let

Δ(λ) =< ψ(x, λ), ϕ(x, λ) >, (2.3)

where < y(x), z(x) >:= yz′ − y′z is the Wronskian of y and z. Then

Δ(λ) = R01(λ)Δ2(λ) −R00(λ)Δ1(λ)
= U1(ϕ) = −U0(ψ), (2.4)

which is called the characteristic function of L. Let {λn}∞
0 be the zeros (count-

ing with multiplicities) of the entire functions Δ(λ), when n sufficiently large,
λn is simile.
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Denote λ = ρ2, then S1(x, λ) and S2(x, λ) can be rewritten as (see [30,31])

S1(x, λ) =
sin ρx
ρ

+
1
ρ

∫ x

0

A(x, t) sin(ρt)dt,

S2(x, λ) = cos ρx+
∫ x

0

B(x, t) cos(ρt)dt,
(2.5)

where the kernels A(x, t) and B(x, t) do not depend on λ and satisfy

∂2A(x, t)
∂x2

− q(x)A(x, t) =
∂2A(x, t)
∂t2

,

where q(x) = 2 d
dxA(x, x), A(x, 0) = 0 and

∂2B(x, t)
∂x2

− q(x)B(x, t) =
∂2B(x, t)

∂t2
,

where q(x) = 2 d
dxB(x, x), B(0, 0) = 1, ∂B(x,t)

∂t |t=0 = 0. Therefore,

S′
1(x, λ) = cos ρx+A(x, x)

sin ρx
ρ

+
∫ x

0

∂A(x, t)
∂x

sin(ρt)
ρ

dt,

S′
2(x, λ) = −ρ sin ρx+B(x, x) cos ρx+

∫ x

0

∂B(x, t)
∂x

cos(ρt)dt.
(2.6)

For sufficiently large |λ|, by virtue of (2.1), (2.2), (2.5), (2.6), this yields

ϕ(x, λ) = λr01

(
cos ρx+O

(
eτx

ρ

))
,

ϕ′(x, λ) = λr01(−ρ sin ρx+O(eτx)),
(2.7)

ψ(x, λ) = λr11

(
cos ρ(π − x) +O

(
eτ(π−x)

ρ

))
,

ψ′(x, λ) = λr11(−ρ sin ρ(π − x) +O(eτ(π−x))),
(2.8)

where τ = |Imρ|.
By using (2.1), (2.4), (2.7), we can calculate

Δ(λ) = λr01+r11(−ρ sin ρπ + ω cos ρπ + κ0(ρ)), (2.9)

where

κ0(ρ) =
∫ π

0

f0(t) cos(ρt)dt+O

(
eτπ

ρ

)
, f0(t) ∈ L2(0, π),

ω = q0 −R000 +R100, q0 =
∫ π

0

q(t)dt.

Denote Gδ := {ρ||ρ− k| ≥ δ, k ∈ Z} for fixed δ > 0. From Ref. [2], we have

ρn =
√
λn = n− r01 − r11 +

ω

nπ
+
κn

n
, {κn} ∈ l2, (2.10)

Δ(λ) ≥ Cδ|ρλ(r01+r11)|eτπ, λ ∈ Gδ, |λ| ≥ λ∗. (2.11)
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Let Φ(x, λ) be the solution of Eq. (1.1) satisfying the boundary conditions
U0(Φ) = 1 and U1(Φ) = 0. Then

Φ(x, λ) = −ψ(x, λ)
Δ(λ)

. (2.12)

Denote

M(λ) := Φ(0, λ) = −Δ1(λ)
Δ(λ)

, (2.13)

which is called the Weyl function of the Sturm–Liouville problem (1.1)–(1.3).
In virtue of the result of Refs. [1] and [2], we present Lemma 2.1, which

is important for us to prove main results.

Lemma 2.1. ([1,2]) Let M(λ) be the Weyl function of the Sturm–Liouville
problem (1.1)–(1.3) and M̃(λ) be the Weyl function of the Sturm–Liouville
problem (3.1), (1.2) and (3.2)(see below), respectively. If coefficient functions
R0k(λ)(k = 0, 1) of the boundary condition are given a priori and M(λ) =
M̃(λ), ∀λ ∈ C, then

q(x) = q̃(x) a.e. on [0, π] and R1k(λ) = R̃1k(λ)(k = 0, 1).

3. Half Inverse Problem for the Sturm–Liouville Problem
(1.1)–(1.3)

In this section, we discuss the half inverse problem for the Sturm–Liouville
operators with boundary conditions polynomially dependent on the spectral
parameter on the finite interval [0, π] and prove Hochstadt–Lieberman type
theorem for the Sturm–Liouville problem (1.1)–(1.3). Consider the following
Sturm–Liouville operator L̃ := L̃(q̃, U0, Ũ1) defined by

L̃y = −y′′ + q̃(x)y = λy, (3.1)

with boundary conditions U0(y) and

Ũ1(y) := R̃11(λ)y′(π, λ) + R̃10(λ)y(π, λ) = 0. (3.2)

where q̃ is a complex-value function and q̃ ∈ L2(0, π),

R̃1k(λ) = Σr̃1k
j=0R̃1kjλ

r̃1k−j , r̃11 = r̃10 = r10 ≥ 0, R̃11j = 1 (k = 0, 1)

are arbitrary polynomials of degree r10 with complex coefficients such that
R̃11(λ) and R̃10(λ) have no common zeros.

We establish the following uniqueness theorem for the half inverse prob-
lem of the Sturm–Liouville problem (1.1)–(1.3).

Theorem 3.1. Let {λn(q, U0, U1)}∞
0 be spectrum of the Sturm–Liouville problem

(1.1)–(1.3) and {λ̃n(q̃, U0, Ũ1)}∞
0 be spectrum of the Sturm–Liouville problem
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(3.1), (1.2), (3.2), respectively. If coefficient functions R0k(λ)(k = 0, 1) of the
boundary condition are known a priori, q(x) = q̃(x) on [0, π

2 ], r01 ≥ r11 and

λn(q, U0, U1) = λ̃n(q̃, U0, Ũ1) (∀n ∈ N0), (3.3)

then

q(x) = q̃(x) a.e. on [0, π]

and

R1k(λ) = R̃1k(λ) (k = 0, 1),

where N0 = {0, 1, 2, . . .}.
Proof. Let y1(x, t) be the solution of Eq.(1.1) satisfying y1(π, t) = R11(λ),
y′
1(π, t) = −R10(λ) and y2(x, t) be the solution of the Eq. (1.1) satisfying
y2(π, t) = R̃11(λ), y′

2(π, t) = −R̃10(λ), respectively. By multiplying (2.1) by y1
and (1.1) by y2, and subtracting and integrating from 0 to π, we have∫ π

0

Q(x)y1(x, λ)y2(x, λ)dx

= [y1(x, λ)y2′(x, λ) − y2(x, λ)y1′(x, λ)]π0
= F (π, λ) − F (0, λ), (3.4)

where Q(x) = q̃(x) − q(x) and

F (x, λ) = y1(x, λ)y′
2(x, λ) − y′

1(x, λ)y2(x, λ). (3.5)

From Q(x) = 0 on [0, π
2 ], we get

F (0, λ) = F (π, λ) −
∫ π

π
2

Q(x)y1(x, λ)y2(x, λ)dx. (3.6)

In addition

F (0, λ) = y1(0, λ)y′
2(0, λ) − y′

1(0, λ)y2(0, λ)

= y2(0, λ)
U0(y1)
R01(λ)

− y1(0, λ)
U0(y2)
R01(λ)

. (3.7)

From Eq. (26) and Lemma 1 in Ref. [2], we can see that U0(yj)(j = 1, 2) and
R01(λ) have no common zeros. Therefore,

F (0, λn) = 0, ∀λn ∈ σ(L) (3.8)

and for all λ = λn, we obtain that multiplicity of zero of F (0, λ) is not less
than multiplicity of zero of Δ(λ).

Let

K(λ) =
F (0, λ)
Δ(λ)

. (3.9)
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Then, K(λ) is an entire function in λ. In virtue of (2.8) and (3.6), this yields

|F (0, λ)| ≤ C|λ|r11+r̃11eτπ, (3.10)

where C is a constant.
From (2.11) and (3.10), we have

|K(λ)| = O

(
1

|ρ|[1+2(r01−r11)]

)
, λ ∈ Gδ, |λ| ≥ λ∗. (3.11)

By the maximum modulus principle, we obtain

|K(λ)| = O

(
1

|ρ|[1+2(r01−r11)]

)
, ∀λ ∈ C. (3.12)

From Liouville theorem together with (3.12), this yields

K(λ) = 0, ∀λ ∈ C. (3.13)

Therefore

F (0, λ) = y1(0, λ)y′
2(0, λ) − y′

1(0, λ)y2(0, λ) = 0, ∀λ ∈ C. (3.14)

From (3.14), we get

y1(0, λ)(R01(λ)y′
2(0, λ) +R00(λ)y2(0, λ))

= (R01(λ)y′
1(0, λ) +R00(λ)y1(0, λ))y2(0, λ). (3.15)

By virtue of (3.15), this yields

M(λ) = M̃(λ). (3.16)

From Lemma 2.1 together with (3.16), we have

q(x) = q̃(x) a.e. on [0, π]

and

R1k(λ) = R̃1k(λ)(k = 0, 1).

By now, this completes the proof of Theorem 3.1. �

4. Inverse Problem for Sturm–Liouville Problem (1.1)–(1.3)
from Interior Spectral Data

In this section, we discuss the interior inverse problem for the Sturm–Liouville
problem (1.1)–(1.3) and show that the potential q(x) and coefficient functions
R1k(λ)(k = 0, 1) of the boundary condition are uniquely determined by a set
of values of eigenfunctions at some interior point and parts of two spectra.

When b = π
2 , the following uniqueness theorem is established.
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Theorem 4.1. Let {λn}∞
0 be spectrum of the Sturm–Liouville problem (1.1)–

(1.3) and {λ̃n}∞
0 be spectrum of the Sturm–Liouville problem (3.1), (1.2) and

(3.2), respectively. If coefficient functions R0k(λ)(k = 0, 1) of the boundary
condition are given a priori, r01 = r11 and for any n(n ∈ N0),

λn = λ̃n and
y′

n(π
2 , λn)

yn(π
2 , λn)

=
ỹ′

n(π
2 , λ̃n)

ỹn(π
2 , λ̃n)

, (4.1)

then

q(x) = q̃(x) a.e. on [0, π]

and

R1k(λ) = R̃1k(λ)(k = 0, 1),

where yn(x, λn) is an eigenfunction of λn and ỹn(x, λ̃n) is an eigenfunction of
λ̃n.

Let l(n) and r(n) be a subsequence of natural numbers such that

l(n) =
n

σ1
(1 + ε1,n), 0 < σ1 ≤ 1, ε1,n → 0, (4.2)

r(n) =
n

σ2
(1 + ε2,n), 0 < σ2 ≤ 1, ε2,n → 0 (4.3)

and let μn be the eigenvalues of the boundary-value problem (1.1), (1.2) and
(4.4)(see below) and μ̃n be the eigenvalues of the boundary-value problem
(3.1), (1.2) and (4.4), where the boundary condition (4.4) is defined as follows

U2(y) := R21(λ)y′(π, λ) +R20(λ)y(π, λ) = 0, (4.4)

where R2k(λ)(k = 0, 1) are arbitrary polynomials of degree r2k with complex
coefficients such that R21(λ) and R20(λ) have no common zeros.

When b ∈ (π
2 , π), from a part of the two spectra and some information

on eigenfunctions at the point b, we obtain the following uniqueness theorem
on the potential q(x), which is a generalization of Mochizuki and Trooshin’s
theorem.

Theorem 4.2. Let l(n) and r(n) be subsequence of natural numbers satisfying
(4.2) and (4.3), respectively, and b ∈ (π

2 , π) be such that σ1 >
2b
π −1, σ2 > 2− 2b

π .
Suppose that {λn}∞

0 and {λ̃n}∞
0 be spectrum of both Sturm–Liouville problem

(1.1)–(1.3) and Sturm–Liouville problem (3.1), (1.2) and (3.2), respectively. If
coefficient functions R0k(λ)(k = 0, 1) of the boundary condition are known a
priori and for any n(n ∈ N0),

λn = λ̃n, μl(n) = μ̃l(n) and
y′

r(n)(b, λr(n))

yr(n)(b, λr(n))
=
ỹ′

r(n)(b, λ̃r(n))

ỹr(n)(b, λ̃r(n))
(4.5)

then

q(x) = q̃(x) a.e. on [0, π]
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and

R1k(λ) = R̃1k(λ)(k = 0, 1).

When b ∈ (0, π
2 ), Symmetrically, we have the following Theorem 4.3,

which proof is therefore omitted.

Theorem 4.3. Let l(n) and r(n) be subsequence of natural numbers satisfying
(4.2) and (4.3), respectively, and b ∈ (0, π

2 ) be such that σ1 > 1 − 2b
π , σ2 >

2b
π .

Suppose that {λn}∞
0 and {λ̃n}∞

0 be spectrum of both Sturm–Liouville problem
(1.1)–(1.3) and Sturm–Liouville problem (3.1), (1.2) and (3.2), respectively. If
coefficient functions R0k(λ)(k = 0, 1) of the boundary condition are known a
priori and for any n(n ∈ N0),

λn = λ̃n, μl(n) = μ̃l(n) and
y′

r(n)(b, λr(n))

yr(n)(b, λr(n))
=
ỹ′

r(n)(b, λ̃r(n))

ỹr(n)(b, λ̃r(n))
(4.6)

then

q(x) = q̃(x) a.e. on [0, π]

and

R1k(λ) = R̃1k(λ)(k = 0, 1).

Proof of Theorem 4.1. We give the proof of Theorem 4.1 by two steps. �

Step 1: By multiplying (3.1) by y1 and (1.1) by y2 and subtracting and
integrating from π

2 to π, we have∫ π

π
2

Q(x)y1(x, λ)y2(x, λ)dx

= [y1(x, λ)y2′(x, λ) − y2(x, λ)y1′(x, λ)]ππ
2

= F (π, λ) − F
(π

2
, λ

)
, (4.7)

where Q(x) = q̃(x) − q(x).
From the assumptions of Theorem 4.1, we get

F
(π

2
, λn

)
= 0. (4.8)

Similar to the proof of Theorem 3.1, this yields

F
(π

2
, λ

)
= 0, ∀λ ∈ C. (4.9)

Step 2: Consider the following supplementary problem

L1ỹ = −ỹ′′ + q1(x)ỹ = λỹ,

q1(x) = q(π − x), x ∈ [0, π],
(4.10)

with the boundary conditions

R10(λ)ỹ(0, λ) −R11(λ)ỹ′(0, λ) = 0, (4.11)
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R00(λ)ỹ(π, λ) −R01(λ)ỹ′(π, λ) = 0, (4.12)

and

L̃1ỹ = −ỹ′′ + q̃1(x)ỹ = λỹ,

q̃1(x) = q̃(π − x), x ∈ [0, π],
(4.13)

with the boundary conditions

R̃10(λ)ỹ(0, λ) − R̃11(λ)ỹ′(0, λ) = 0, (4.14)

R̃00(λ)ỹ(π, λ) − R̃01(λ)ỹ′(π, λ) = 0, (4.15)

where ỹ(x, λ) = y(π − x, λ).

By virtue of Step 1, this yields∫ π

π
2

Q1(x)ỹ1(x, λ)ỹ2(x, λ)dx

= [ỹ1(π, λ)ỹ′
2(π, λ) − ỹ2(π, λ)ỹ′

1(π, λ)]ππ
2

= F̃ (π, λ) − F̃
(π

2
, λ

)
, (4.16)

where Q1(x) = q̃1(x)−q1(x), F̃ (x, λ) = ỹ1(x, λ)ỹ′
2(x, λ)− ỹ′

1(x, λ)ỹ2(x, λ), ỹ1 is
the solution of the Sturm–Liouville problem (4.10)–(4.12) and ỹ2 is the solution
of the Sturm–Liouville problem (4.13)–(4.15).

In virtue of (4.9) and ỹk(x, λ) = yk(π − x, λ)(k = 0, 1), this yields

F̃
(π

2
, λ

)
= −F

(π
2
, λ

)
= 0, ∀λ ∈ C. (4.17)

Note that F̃ (π, λn) = −F (0, λn) = 0, from (4.16) and repeating the Step
1 for the supplementary problem, we obtain

F (0, λ) = −F̃ (π, λ) = 0, ∀λ ∈ C. (4.18)

By virtue of (4.18), this yields

M(λ) = M̃(λ), ∀λ ∈ C. (4.19)

From Lemma 2.1, together with (4.19), we have

q(x) = q̃(x) a.e. on [0, π] (4.20)

and

R1k(λ) = R̃1k(λ)(k = 0, 1). (4.21)

The proof of Theorem 4.1 is now completed.
Next, we show that Theorem 4.2 holds.

Proof of Theorem 4.2. By multiplying (3.1) by y1 and (1.1) by y2, and sub-
tracting and integrating from b to π, we obtain
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Gb(λ) : = [y1(π, λ)y′
2(π, λ) − y2(π, λ)y′

1(π, λ)] −
∫ π

b

Qy1y2dx

= [y1(b, λ)y′
2(b, λ) − y2(b, λ)y′

1(b, λ)], (4.22)

where Q(x) = q̃(x) − q(x). �

From the assumption

λm(n) = λ̃m(n) and
y′

m(n)(b, λm(n))

ym(n)(b, λm(n))
=
ỹ′

m(n)(b, λ̃m(n))

ỹm(n)(b, λ̃m(n))
,

we get

Gb(λm(n)) = 0, n ∈ N0. (4.23)

Next, we will prove Gb(λ) = 0, ∀λ ∈ C.
Clearly, the entire function Gb(λ) is a function of exponential type ≤

2(π − b) and for sufficiently large r, we have

|Gb(λ)| ≤ Mrr01+r̃01+
1
2 e2(π−b)r| sin θ|, (4.24)

where M is a positive constant, λ = reiθ.
Define the indicator of function Gb(λ) by

h(θ) = lim sup
λ→+∞

ln |Gb(reiθ)|
r

. (4.25)

Since |Imλ| = r| sin θ|, θ = argλ, from (4.24) and (4.25), we get

h(θ) ≤ 2(π − b)| sin θ|. (4.26)

Let n(r) be the number of zeros of Gb(λ) in the disk |λ| ≤ r. From the assump-
tion of Theorem 4.2 and the asymptotic form (2.10) of the eigenvalues λn, we
obtain

n(r) ≥ 2
∑

| n
σ2

[1− r01+r11
n +O( 1

n2 )]|<r

1 ≥ 2σ2r[1 + o(1)], r → ∞, (4.27)

where [x] is the integer part of x.
For the case σ2 > 2 − 2b

π ,

lim inf
n→∞

n(r)
r

≥ 2σ2 >
4(π − b)

π
≥ 1

2π

∫ 2π

0

h(θ)dθ. (4.28)

According to the theorem 3([[29], theorem 3, p.273]), for any entire function
Gb(λ) of exponential type, not identically zero, we have

lim inf
n→∞

n(r)
r

≤ 1
2π

∫ 2π

0

h(θ)dθ. (4.29)

The inequalities (4.28) and (4.29) imply that

Gb(λ) = 0, ∀λ ∈ C. (4.30)
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Hence

F (b, λ) = y1(b, λ)y′
2(b, λ) − y2(b, λ)y′

1(b, λ)] = 0, ∀λ ∈ C. (4.31)

Define the entire function G(λ) by

G(λ) : =
∫ b

0

Q(x)y1(π, λ)y2(π, λ)dx

= [y1(x, λ)y′
2(x, λ) − y2(x, λ)y′

1(x, λ)]b0. (4.32)

By virtue of (4.31) and (4.32), this yields

G(λ) = −[y1(0, λ)y′
2(0, λ) − y2(0, λ)y′

1(0, λ)]. (4.33)

From (4.33), we obtain

G(λn) = 0, n ∈ N0 (4.34)

and

G(μl(n)) = 0, n ∈ N0, (4.35)

where λn and μl(n) satisfy (2.10).
Let us count the number of the λn and μl(n) located inside the disc of

radius r. It is easy to see that there are 1+2r[1+o(1)] of λn and 1+2rσ1[1+o(1)]
of μl(n) located inside the disc of radius r (sufficiently large r), respectively.
Therefore

n(r) = 2 + 2r[1 + σ1 + o(1)]. (4.36)

From (4.36), similar to the proof of Gb(λ) = 0(∀λ ∈ C), we have

G(λ) = 0, ∀λ ∈ C. (4.37)

In virtue of (4.37) and (4.33), this yields

F (0, λ) = 0, ∀λ ∈ C. (4.38)

From (4.38), we obtain

M(λ) = M̃(λ). (4.39)

By virtue of (4.39), together with Lemma 2.1, this yields

q(x) = q̃(x) a.e. on [0, π] (4.40)

and

R1k(λ) = R̃1k(λ)(k = 0, 1). (4.41)

By now this completes the proof of Theorem 4.2.
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