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Abstract. In this paper, we establish a characterization theorem concern-
ing the complete linear Weingarten spacelike hypersurfaces immersed in
a locally symmetric Lorentz space, whose sectional curvature is supposed
to obey certain appropriated conditions. Under a suitable restriction on
the length of the second fundamental form, we prove that a such spacelike
hypersurface must be either totally umbilical or an isoparametric hyper-
surface with two distinct principal curvatures one of which is simple.
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1. Introduction

Let Ln+1
1 be an (n+1)-dimensional Lorentz space, that is, a semi-Riemannian

manifold of index 1. When the Lorentz space Ln+1
1 has constant sectional cur-

vature c, it is called a Lorentz space form, denoted by Ln+1
1 (c). In particular,

for n ≥ 2, the de Sitter space S
n+1
1 is the standard simply connected Lorentz

space form of positive constant sectional curvature 1.
We recall that a hypersurface Mn immersed in a Lorentz space Ln+1

1 is
said to be spacelike if the metric on Mn induced from that of the ambient
space Ln+1

1 is positive definite.
The interest in the study of spacelike hypersurfaces immersed in a Lorentz

space is motivated by their nice Bernstein-type properties. As for the case of the
de Sitter space, Goddard [10] conjectured that every complete spacelike hyper-
surface with constant mean curvature H in S

n+1
1 should be totally umbilical.
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Although the conjecture turned out to be false in its original statement, it moti-
vated a great deal of work of several authors trying to find a positive answer
to the conjecture under appropriate additional hypotheses. For instance, in [1]
Akutagawa showed that Goddard’s conjecture is true when 0 ≤ H2 ≤ 1 in
the case n = 2, and when 0 ≤ H2 < 4(n − 1)/n2 in the case n ≥ 3. Later,
Montiel [15] solved Goddard’s problem in the compact case proving that the
only closed spacelike hypersurfaces in S

n+1
1 with constant mean curvature are

the totally umbilical hypersurfaces.
Another Goddard-like problem is to study hypersurfaces immersed in a

Lorentz space with constant scalar curvature. An interesting result of Cheng
and Ishikawa [7] states that the totally umbilical round spheres are the only
compact spacelike hypersurfaces in S

n+1
1 with constant normalized scalar cur-

vature R < 1. Many other authors, such as Brasil et al. [3], Camargo et al. [4],
Caminha [5], Hu et al. [11] and Li [12] have also worked on related problems.

It is natural to study the geometry of spacelike hypersurfaces immersed
in more general Lorentz spaces since they have important meaning in the
relativity theory and are of substantial interest from geometric and mathe-
matical cosmology points of view. In this setting, for constants c1 and c2,
Choi et al. [9,18] introduced the class of (n + 1)-dimensional Lorentz spaces
Ln+1

1 which satisfy the following two conditions (here, K denotes the sectional
curvature of Ln+1

1 ):

K(u, v) = −c1

n
, (1.1)

for any spacelike vector u and timelike vector v; and

K(u, v) ≥ c2, (1.2)

for any spacelike vectors u and v.
We observe that Lorentz space forms Ln+1

1 (c) satisfy conditions (1.1) and
(1.2) for − c1

n = c2 = c. Moreover, there are several examples of Lorentz spaces
which are not Lorentz space forms and satisfy (1.1) and (1.2). For instance,
semi-Riemannian product manifolds H

k
1(−c1/n) × Nn+1−k(c2), where c1 > 0,

and R
k
1 × S

n+1−k. In particular, R
1
1 × S

n is a so-called Einstein Static Uni-
verse. Also the so-called Robertsonf́bWalker spacetime N(c, f) = I ×f N3(c)
is another general example of Lorentz space, where I denotes an open inter-
val of R

1
1, f is a positive smooth function defined on the interval I and N3(c)

is a 3-dimensional Riemannian manifold of constant curvature c. N(c, f) also
satisfies conditions (1.1) and (1.2) for an appropriate choice of the function f
(for more details, see [9] and [18]).

Here, our purpose is to study the rigidity of complete linear Weingarten
spacelike hypersurfaces, that is, complete spacelike hypersurfaces whose mean
curvature H and normalized scalar curvature R satisfy

R = aH + b,
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for some a, b ∈ R. In this setting, as a suitable application of the Hopf’s strong
maximum principle and under an appropriated restriction on the squared norm
S of the second fundamental form, we are able to establish a characteriza-
tion theorem concerning to such spacelike hypersurfaces immersed in a locally
symmetric Lorentz space Ln+1

1 , which is supposed to obey conditions (1.1)
and (1.2). We recall that a Lorentz space Ln+1

1 is said locally symmetric if all
the covariant derivative components R̄ABCD;E of the curvature tensor of Ln+1

1

vanish identically.
In order to state our result, we will need some basic facts. Denote by

R̄CD the components of the Ricci tensor of Ln+1
1 satisfying conditions (1.1)

and (1.2), then the scalar curvature R̄ of Ln+1
1 is given by

R̄ =
n+1∑

A=1

εAR̄AA =
n∑

i,j=1

R̄ijji − 2
n∑

i=1

R̄(n+1)ii(n+1) =
n∑

i,j=1

R̄ijji + 2c1.

Moreover, it is well known that the scalar curvature of a locally symmetric
Lorentz space is constant. Consequently,

∑n
i,j=1 R̄ijji is a constant naturally

attached to a locally symmetric Lorentz space satisfying conditions (1.1) and
(1.2).

Now, we are in position to present our result.

Theorem 1.1. Let Ln+1
1 be a locally symmetric Lorentz space satisfying con-

ditions (1.1) and (1.2), with c = c1
n + 2c2 > 0. Let Mn be a complete linear

Weingarten spacelike hypersurface immersed in Ln+1
1 , such that R = aH + b

with b < 1
n(n−1)

∑
i,j R̄ijji. If H can attain the maximum on Mn and S ≤

2
√

n − 1 c, then Mn is either totally umbilical or an isoparametric hypersur-
face with two distinct principal curvatures one of which is simple.

We note that the previous theorem can be regarded as an extension of
rigidity results of the current literature concerning to spacelike hypersurfaces
with either constant mean curvature or constant scalar curvature in locally
symmetric Lorentz spaces. In this sense, we refer the readers to the works of
Ok Baek et al. [16], Liu and Sun [14], and Zhang and Wu [19]. Moreover, we
point out that Li et al. [13] have obtained rigidity theorems related to linear
Weingarten hypersurfaces immersed in the unit Euclidean sphere.

2. Preliminaries

‘From now on, we will consider complete spacelike hypersurfaces Mn immersed
in a Lorentz space Ln+1

1 . We choose a local field of semi-Riemannian ortho-
normal frame {eA}1≤A≤n+1 in Ln+1

1 , with dual coframe {ωA}1≤A≤n+1, such
that, at each point of Mn, e1, . . . , en are tangent to Mn and en+1 is normal to
Mn. We will use the following convention for the indices:

1 ≤ A,B,C, . . . ≤ n + 1, 1 ≤ i, j, k, . . . ≤ n.
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In this setting, denoting by {ωAB} the connection forms of Ln+1
1 , we have

that the structure equations of Ln+1
1 are given by:

dωA = −
∑

B

εBωAB ∧ ωB , ωAB + ωBA = 0, εi = 1, εn+1 = −1, (2.1)

dωAB = −
∑

C

εCωAC ∧ ωCB − 1
2

∑

C,D

εCεDR̄ABCDωC ∧ ωD. (2.2)

Here, R̄ABCD, R̄CD and R̄ denote respectively the Riemannian curvature ten-
sor, the Ricci tensor and the scalar curvature of the Lorentz space Ln+1

1 . In
this setting, we have

R̄CD =
∑

B

εBR̄BCDB, R̄ =
∑

A

εAR̄AA.

Moreover, the components R̄ABCD,E of the covariant derivative of the Rie-
mannian curvature tensor of Ln+1

1 are defined by
∑

E

εER̄ABCD,EωE = dR̄ABCD −
∑

E

εE(R̄EBCDωEA

+R̄AECDωEB + R̄ABEDωEC + R̄ABCEωED).

Next, we restrict all the tensors to the spacelike hypersurface Mn in Ln+1
1 .

First of all, ωn+1 = 0 on Mn, so
∑

i ω(n+1)i ∧ ωi = dωn+1 = 0. Consequently,
by Cartan’s Lemma [6], there are hij such that

ω(n+1)i =
∑

j

hijωj and hij = hji. (2.3)

This gives the second fundamental form of Mn, h =
∑

i,j hijωiωjen+1, and
its square length S =

∑
i,j h2

ij . Furthermore, the mean curvature H of Mn is
defined by H = 1

n

∑
i hii.

The connection forms {ωij} of Mn are characterized by the structure
equations of Mn:

dωi = −
∑

j

ωij ∧ ωj , ωij + ωji = 0, (2.4)

dωij = −
∑

k

ωik ∧ ωkj − 1
2

∑

k,l

Rijklωk ∧ ωl, (2.5)

where Rijkl are the components of the curvature tensor of Mn.
Using the structure equations we obtain the Gauss equation

Rijkl = R̄ijkl − (hikhjl − hilhjk). (2.6)

The components Rij of the Ricci tensor and the scalar curvature R of
Mn are given, respectively, by

Rij =
∑

k

R̄kijk − nHhij +
∑

k

hikhkj (2.7)
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and

n(n − 1)R =
∑

j,k

R̄kjjk − n2H2 + S. (2.8)

The first covariant derivatives hijk of hij satisfy
∑

k

hijkωk = dhij −
∑

k

hikωkj −
∑

k

hjkωki. (2.9)

Then, by exterior differentiation of (2.3), we obtain the Codazzi equation

hijk − hikj = R̄(n+1)ijk. (2.10)

Similarly, the second covariant derivatives hijkl of hij are given by
∑

l

hijklωl = dhijk −
∑

l

hljkωli −
∑

l

hilkωlj −
∑

l

hijlωlk. (2.11)

By exterior differentiation of (2.9), we can get the following Ricci formula

hijkl − hijlk = −
∑

m

himRmjkl −
∑

m

hjmRmikl. (2.12)

Restricting the covariant derivative R̄ABCD;E of R̄ABCD on Mn, then
R̄(n+1)ijk;l is given by

R̄(n+1)ijk;l = R̄(n+1)ijkl + R̄(n+1)i(n+1)khjl

+R̄(n+1)ij(n+1)hkl +
∑

m

R̄mijkhml, (2.13)

where R̄(n+1)ijkl denotes the covariant derivative of R̄(n+1)ijk as a tensor on
Mn so that

∑

l

R̄(n+1)ijklωl = dR̄(n+1)ijk −
∑

l

R̄(n+1)ljkωli

−
∑

l

R̄(n+1)ilkωlj −
∑

l

R̄(n+1)ijlωlk.

The Laplacian Δhij of hij is defined by Δhij =
∑

khijkk. From (2.10),
(2.12) and (2.13), after a straightforward computation we obtain

Δhij = (nH)ij − nH
∑

l

hilhlj + Shij

+
∑

k

(R̄(n+1)ijk;k + R̄(n+1)kik;j)

−
∑

k

(hkkR̄(n+1)ij(n+1) + hijR̄(n+1)k(n+1)k)

−
∑

k,l

(2hklR̄lijk + hjlR̄lkik + hilR̄lkjk). (2.14)
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Since ΔS = 2
(∑

i,j,k h2
ijk +

∑
i,j hijΔhij

)
, from (2.14) we get

1
2
ΔS = S2 +

∑

i,j,k

h2
ijk +

∑

i,j

(nH)ijhij

+
∑

i,j,k

(R̄(n+1)ijk;k + R̄(n+1)kik;j)hij

−
⎛

⎝
∑

i,j

nHhijR̄(n+1)ij(n+1) + S
∑

k

R̄(n+1)k(n+1)k

⎞

⎠

−2
∑

i,j,k,l

(hklhijR̄lijk + hilhijR̄lkjk) − nH
∑

i,j,l

hilhljhij . (2.15)

Now, let φ =
∑

i,j φijωiωj be a symmetric tensor on Mn defined by

φij = nHδij − hij .

Following Cheng–Yau [8], we introduce a operator � associated to φ acting on
any smooth function f by

�f =
∑

i,j

φijfij =
∑

i,j

(nHδij − hij)fij . (2.16)

Setting f = nH in (2.16) and taking a (local) orthonormal frame
{e1, . . . , en} on Mn such that hij = λδij , from Eq. (2.8) we obtain the fol-
lowing

�(nH) =
1
2
Δ(nH)2 −

∑

i

(nH)2i −
∑

i

λi(nH)ii

=
1
2
ΔS − n2|∇H|2 −

∑

i

λi(nH)ii

+
1
2
Δ

⎛

⎝
∑

i,j

R̄ijji − n(n − 1)R

⎞

⎠ . (2.17)

3. Proof of Theorem 1.1

In order to prove Theorem 1.1, we will need three lemmas. The first one is
a classic algebraic lemma due to Okumura in [17], and completed with the
equality case proved in [2] by Alencar and do Carmo.

Lemma 3.1. Let μ1, . . . μn be real numbers such that
∑

iμi = 0 and
∑

iμ
2
i = β2,

where β is constant and β ≥ 0. Then

− (n − 2)√
n(n − 1)

β3 ≤
∑

i

μ3
i ≤ (n − 2)√

n(n − 1)
β3, (3.1)



Vol. 63 (2013) Complete Linear Weingarten Spacelike Hypersurfaces 871

and equality holds if, and only if, either at least (n − 1) of the numbers μi

are equal to β/
√

(n − 1)n or at least (n − 1) of the numbers μi are equal to
−β/

√
(n − 1)n.

Now, we present our second auxiliary lemma. Following the steps of the
proof of Lemma 2.1 of [13], we get

Lemma 3.2. Let Mn be a linear Weingarten spacelike hypersurface immersed
in a locally symmetric Lorentz space Ln+1

1 , such that R = aH + b. Suppose
that

(n − 1)2a2 + 4
∑

i,j

R̄ijji − 4n(n − 1)b ≥ 0. (3.2)

Then,
∑

i,j,k

h2
ijk ≥ n2|∇H|2. (3.3)

Moreover, if the inequality (3.2) is strict and the equality holds in (3.3) on
Mn, then H is constant on Mn.

Proof. Since we are supposing that R = aH + b, from Eq. (2.8) we get

2
∑

i,j

hijhijk =
(
2n2H + n(n − 1)a

)
(H)k.

Thus,

4
∑

k

⎛

⎝
∑

i,j

hijhijk

⎞

⎠
2

=
(
2n2H + n(n − 1)a

)2 |∇H|2.

Consequently, using Cauchy–Schwartz inequality, we obtain that

4S
∑

i,j,k

h2
ijk = 4

⎛

⎝
∑

i,j

h2
ij

⎞

⎠

⎛

⎝
∑

i,j,k

h2
ijk

⎞

⎠

≥ 4
∑

k

⎛

⎝
∑

i,j

hijhijk

⎞

⎠
2

=
(
2n2H + n(n − 1)a

)2 |∇H|2. (3.4)

On the other hand, since R = aH + b, using again Eq. (2.8) we easily verify
that

(
2n2H + n(n − 1)a

)2
= 4n2

∑

i,j

R̄ijji − 4n3(n − 1)b

+n2(n − 1)2a2 + 4n2S. (3.5)
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Consequently, from (3.2), (3.4) and (3.5), we get

S
∑

i,j,k

h2
ijk ≥ n2S|∇H|2.

Therefore, we obtain either S = 0 and
∑

i,j,k h2
ijk = n2|∇H|2 or

∑
i,j,k h2

ijk ≥
n2|∇H|2. Moreover, if the inequality (3.2) is strict, from (3.5) we get that

(
2n2H + n(n − 1)a

)2
> 4n2S.

Consequently, if
∑

i,j,k h2
ijk = n2|∇H|2 holds on Mn, from (3.4) we conclude

that ∇H = 0 on Mn and, hence, H is constant on Mn. �
Now, we consider the Cheng–Yau’s modified operator

L = � +
n − 1

2
aΔ. (3.6)

Related to such operator, we have the following sufficient criteria of ellip-
ticity.

Lemma 3.3. Let Mn be a linear Weingarten spacelike hypersurface immersed
in a locally symmetric Lorentz space Ln+1

1 , such that R = aH + b with b <
1

n(n−1)

∑
i,j R̄ijji. Then, L is elliptic.

Proof. From Eq. (2.8), since R = aH + b with b < 1
n(n−1)

∑
i,j R̄ijji, we easily

see that H can not vanish on Mn and, by choosing the appropriate Gauss
mapping, we may assume that H > 0 on Mn.

Let us consider the case that a = 0. Since R = b < 1
n(n−1)

∑
i,j R̄ijji,

from Eq. (2.8) if we choose a (local) orthonormal frame {e1, . . . , en} on Mn

such that hij = λiδij , we have that
∑

i<j λiλj > 0. Consequently,

n2H2 =
∑

i

λ2
i + 2

∑

i<j

λiλj > λ2
i

for every i = 1, . . . , n and, hence, we have that nH − λi > 0 for every i.
Therefore, in this case, we conclude that L is elliptic.

Now, suppose that a �= 0. From Eq. (2.8) we get that

a =
1

n(n − 1)H

⎛

⎝S − n2H2 +
∑

i,j

R̄ijji − n(n − 1)b

⎞

⎠ .

Consequently, for every i = 1, . . . , n, with a straightforward algebraic compu-
tation we verify that

nH − λi +
n − 1

2
a = nH − λi +

1
2nH

⎛

⎝S − n2H2 +
∑

i,j

R̄ijji − n(n − 1)b

⎞

⎠

=
1

2nH

⎛

⎝
∑

j �=i

λ2
j + (

∑

j �=i

λj)2 +
∑

i,j

R̄ijji − n(n − 1)b

⎞

⎠ .
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Therefore, since b < 1
n(n−1)

∑
i,j R̄ijji, we also conclude in this case that L is

elliptic. �

Proof of Theorem 1.1. Initially, we observe that the local symmetry of Ln+1
1

implies that
∑

i,j,k

(R̄(n+1)ijk;k + R̄(n+1)kik;j)hij = 0.

Consequently, if we choose a (local) orthonormal frame {e1, . . . , en} on Mn

such that hij = λiδij , taking into account Eqs. (2.15) and (2.17) we get from
(3.6) that

L(nH) =
∑

i,j,k

h2
ijk − n2|∇H|2 + S2 − nH

∑

i

λ3
i

−2
∑

i,k

(λiλkR̄kiik + λ2
i R̄ikik)

−
(
∑

i

nHλiR̄(n+1)ii(n+1) + S
∑

k

R̄(n+1)k(n+1)k

)
. (3.7)

Thus, from Lemma 3.2, we have

L(nH) ≥ S2 − nH
∑

i

λ3
i − 2

∑

i,k

(λiλkR̄kiik + λ2
i R̄ikik)

−
(
∑

i

nHλiR̄(n+1)ii(n+1) + S
∑

k

R̄(n+1)k(n+1)k

)
. (3.8)

Now, set Φij = hij − Hδij . We will consider the following symmetric
tensor

Φ =
∑

i,j

Φijωiωj .

Let |Φ|2 =
∑

i,j

Φ2
ij be the square of the length of Φ. It is easy to check that Φ

is traceless and

|Φ|2 = S − nH2.

If we take a (local) frame field e1, . . . , en at p ∈ Mn, such that

hij = λiδij and Φij = μiδij ,

it is straightforward to check that
∑

i

μi = 0,
∑

i

μ2
i = |Φ|2 and

∑

i

μ3
i =

∑

i

λ3
i − 3H|Φ|2 − nH3.
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Consequently, by applying Lemma 3.1 to the real numbers μ1, . . . , μn, we get

S2 − nH
∑

i

λ3
i = (|Φ|2 + nH2)2 − n2H4

−3nH2|Φ|2 − nH
∑

i

μ3
i

≥ |Φ|4 − nH2|Φ|2 − n(n − 2)√
n(n − 1)

H|Φ|3. (3.9)

Using curvature conditions (1.1) and (1.2), we get

−
⎛

⎝
∑

i,j

nHλiR̄(n+1)ii(n+1) + S
∑

k

R̄(n+1)k(n+1)k

⎞

⎠ = c1(S − nH2) (3.10)

and

− 2
∑

i,j,k,l

(λiλkR̄kiik + λ2
i R̄ikik) ≥ c2

∑

i,k

(λi − λk)2

= 2nc2(S − nH2). (3.11)

Hence, setting c = c1
n +2c2, from (3.8), (3.9), (3.10) and (3.11) we obtain

that

L(nH) ≥ |Φ|2
(

nc + S − 2nH2 − n(n − 2)√
n(n − 1)

H|Φ|
)

. (3.12)

On the other hand, with a straightforward computation we verify that

S − 2nH2 =
1

2
√

n − 1

(
(
√

n − 1 + 1)|Φ| − (
√

n − 1 − 1)
√

nH
)2

+
n(n − 2)√
n(n − 1)

H|Φ| − n

2
√

n − 1
S.

Thus, since we are supposing that S ≤ 2
√

n − 1 c, from (3.12) we get

L(nH) ≥ |Φ|2
(

nc − n

2
√

n − 1
S

)
≥ 0. (3.13)

Since Lemma 3.3 guarantees that L is elliptic and as we are suppos-
ing that H attains its maximum on Mn, from (3.13) we conclude that H is
constant on Mn. Thus, taking into account Eq. (3.7), we get

∑

i,j,k

h2
ijk = n2|∇H|2 = 0,

and it follows that λi is constant for every i = 1, . . . , n. Moreover, from (3.13)
we have

|Φ|2
(

nc − n

2
√

n − 1
S

)
= 0. (3.14)
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If S < 2
√

n − 1 c, then |Φ|2 = 0 and Mn is totally umbilical. If S =
2
√

n − 1 c, since all the inequalities that we have obtained are, in fact, equali-
ties, we easily verify that

|Φ| =
(
√

n − 1 − 1)
√

n√
n − 1 + 1

H. (3.15)

Thus, in the case that n = 2, from (3.15) we obtain that |Φ|2 = 0. Hence, M2

is totally umbilical. Finally, when n ≥ 3, since the equality holds in (3.1) of
Lemma 3.1, we conclude that Mn is either totally umbilical or an isoparametric
hypersurface with two distinct principal curvatures one of which is simple. �
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