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Abstract. In this paper, we establish a characterization theorem concern-
ing the complete linear Weingarten spacelike hypersurfaces immersed in
a locally symmetric Lorentz space, whose sectional curvature is supposed
to obey certain appropriated conditions. Under a suitable restriction on
the length of the second fundamental form, we prove that a such spacelike
hypersurface must be either totally umbilical or an isoparametric hyper-
surface with two distinct principal curvatures one of which is simple.
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1. Introduction

Let L7t be an (n+ 1)-dimensional Lorentz space, that is, a semi-Riemannian
manifold of index 1. When the Lorentz space L} has constant sectional cur-
vature c, it is called a Lorentz space form, denoted by L' (c). In particular,
for n > 2, the de Sitter space S]”’l is the standard simply connected Lorentz
space form of positive constant sectional curvature 1.

We recall that a hypersurface M™ immersed in a Lorentz space L?'H is
said to be spacelike if the metric on M"™ induced from that of the ambient
space L’f+1 is positive definite.

The interest in the study of spacelike hypersurfaces immersed in a Lorentz
space is motivated by their nice Bernstein-type properties. As for the case of the
de Sitter space, Goddard [10] conjectured that every complete spacelike hyper-
surface with constant mean curvature H in ST should be totally umbilical.
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Although the conjecture turned out to be false in its original statement, it moti-
vated a great deal of work of several authors trying to find a positive answer
to the conjecture under appropriate additional hypotheses. For instance, in [1]
Akutagawa showed that Goddard’s conjecture is true when 0 < H? < 1 in
the case n = 2, and when 0 < H? < 4(n — 1)/n? in the case n > 3. Later,
Montiel [15] solved Goddard’s problem in the compact case proving that the
only closed spacelike hypersurfaces in S?H with constant mean curvature are
the totally umbilical hypersurfaces.

Another Goddard-like problem is to study hypersurfaces immersed in a
Lorentz space with constant scalar curvature. An interesting result of Cheng
and Ishikawa [7] states that the totally umbilical round spheres are the only
compact spacelike hypersurfaces in S’f“ with constant normalized scalar cur-
vature R < 1. Many other authors, such as Brasil et al. [3], Camargo et al. [4],
Caminha [5], Hu et al. [11] and Li [12] have also worked on related problems.

It is natural to study the geometry of spacelike hypersurfaces immersed
in more general Lorentz spaces since they have important meaning in the
relativity theory and are of substantial interest from geometric and mathe-
matical cosmology points of view. In this setting, for constants c¢; and cs,
Choi et al. [9,18] introduced the class of (n + 1)-dimensional Lorentz spaces
L7 which satisfy the following two conditions (here, K denotes the sectional
curvature of L]T1):

C1

K(u,v):—n, (1.1)

for any spacelike vector u and timelike vector v; and
K(U,U) > C2, (12)

for any spacelike vectors u and v.

We observe that Lorentz space forms L7 (¢) satisfy conditions (1.1) and
(1.2) for —%- = ¢y = c. Moreover, there are several examples of Lorentz spaces
which are not Lorentz space forms and satisfy (1.1) and (1.2). For instance,
semi-Riemannian product manifolds H¥(—c; /n) x N"*1=#(cy), where ¢; > 0,
and R¥ x S"*1=% 1In particular, R} x S" is a so-called Einstein Static Uni-
verse. Also the so-called RobertsonfbWalker spacetime N(c, f) = I x ¢ N3(c)
is another general example of Lorentz space, where I denotes an open inter-
val of R}, f is a positive smooth function defined on the interval I and N3(c)
is a 3-dimensional Riemannian manifold of constant curvature ¢. N(c, f) also
satisfies conditions (1.1) and (1.2) for an appropriate choice of the function f
(for more details, see [9] and [18]).

Here, our purpose is to study the rigidity of complete linear Weingarten
spacelike hypersurfaces, that is, complete spacelike hypersurfaces whose mean
curvature H and normalized scalar curvature R satisfy

R=aH +b,
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for some a, b € R. In this setting, as a suitable application of the Hopf’s strong
maximum principle and under an appropriated restriction on the squared norm
S of the second fundamental form, we are able to establish a characteriza-
tion theorem concerning to such spacelike hypersurfaces immersed in a locally
symmetric Lorentz space L', which is supposed to obey conditions (1.1)
and (1.2). We recall that a Lorentz space LT is said locally symmetric if all
the covariant derivative components Ragc p;E of the curvature tensor of L;’H
vanish identically.

In order to state our result, we will need some basic facts. Denote by
Rep the components of the Ricci tensor of LT satisfying conditions (1.1)
and (1.2), then the scalar curvature R of L?H is given by

n+1 n n n
R = Z EARAA = Z Rijji — 22 R(nJrl)“-(nJrl) = Z Rijji + 201_
A=1 i,j=1 =1 i,j=1

Moreover, it is well known that the scalar curvature of a locally symmetric
Lorentz space is constant. Consequently, Z:L =1
attached to a locally symmetric Lorentz space satisfying conditions (1.1) and
(1.2).

Now, we are in position to present our result.

R;jj: is a constant naturally

Theorem 1.1. Let L?‘H be a locally symmetric Lorentz space satisfying con-
ditions (1.1) and (1.2), with ¢ = <+ +2co > 0. Let M"™ be a complete linear
Weingarten spacelike hypersurface immersed in L{LH, such that R = aH + b
with b < ﬁ Zi’j Rijji. If H can attain the mazximum on M"™ and S <
2v/n — lec, then M™ is either totally umbilical or an isoparametric hypersur-
face with two distinct principal curvatures one of which is simple.

We note that the previous theorem can be regarded as an extension of
rigidity results of the current literature concerning to spacelike hypersurfaces
with either constant mean curvature or constant scalar curvature in locally
symmetric Lorentz spaces. In this sense, we refer the readers to the works of
Ok Bacek et al. [16], Liu and Sun [14], and Zhang and Wu [19]. Moreover, we
point out that Li et al. [13] have obtained rigidity theorems related to linear
Weingarten hypersurfaces immersed in the unit Euclidean sphere.

2. Preliminaries

‘From now on, we will consider complete spacelike hypersurfaces M immersed
in a Lorentz space LT™!. We choose a local field of semi-Riemannian ortho-
normal frame {es}i1<a<pt1 in L?H, with dual coframe {wa}i1<a<nt1, such
that, at each point of M™ eq,..., e, are tangent to M™ and e, is normal to
M™. We will use the following convention for the indices:

1<ABC,...<n+1, 1<i,j,k,... <n.
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In this setting, denoting by {wap} the connection forms of L7, we have
that the structure equations of L?H are given by:

dws = —Zé‘BwAB ANwp, wap+twpa=0, & =1¢ep41=-1, (2'1)
B
1 _
dwap :—XC:ECwAc/\wCB—§;€C€DRABCch/\wD. (2.2)

Here, Rapcp, Rep and R denote respectively the Riemannian curvature ten-
sor, the Ricci tensor and the scalar curvature of the Lorentz space L7+ In
this setting, we have

Rep = ZEBRBCDBa R= ZéARAA~
B A

Moreover, the components RABCQ g of the covariant derivative of the Rie-
mannian curvature tensor of L7 are defined by

> epRapep pwe = dRapep — Y ep(Repcpwea
E E
+RarcpweB + RaBEpwEC + RABCEWED).

Next, we restrict all the tensors to the spacelike hypersurface M in L},
First of all, wp,41 =0 on M", 50 ), Wini1) Awi = dwp g1 = 0. Consequently,
by Cartan’s Lemma [6], there are h;; such that

W(n+1)i = Zhijwj and hij = hji. (23)
J

This gives the second fundamental form of M™ h = Zi,j hijwiwjent1, and
its square length S = )", j h?j. Furthermore, the mean curvature H of M™" is
defined by H = %El hi;.

The connection forms {w;;} of M™ are characterized by the structure
equations of M™:

dw; = — Zwij A Wi, Wi +wj; = 0, (24)
J
1
dwij = — zk:wik AWk = 5 ;Rijk;l(&)k A wy, (2.5)

where R;ji; are the components of the curvature tensor of M™.
Using the structure equations we obtain the Gauss equation

Rijii = Rijii — (hikhji — hahji). (2.6)

The components R;; of the Ricci tensor and the scalar curvature R of
M™ are given, respectively, by

Rij = Z Ryijr. — nHhij + Z hikhy; (2.7)
k k
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and

n(n—1)R=> Ryjx —n’H>+ 8. (2.8)
7.k

The first covariant derivatives h;j of h;; satisfy
Z hijkwk = dhlj — Z hikwkj - Z hjkwki. (29)
k k k

Then, by exterior differentiation of (2.3), we obtain the Codazzi equation
hijk — hikj = Rint1)ijk- (2.10)

Similarly, the second covariant derivatives hy;x; of h;; are given by
Z hijriwr = dhijr — Z hyjrwii — Z hinwij — Z hijiwik. (2.11)
1 1 1 1
By exterior differentiation of (2.9), we can get the following Ricci formula

hijit = hijie = = Y Bim Rt = Y hjm R (2.12)

Restricting the covariant derivative Rapep.r of Rapcp on M™, then
R(ni1)ijry is given by
R 1yijist = Rent1yiget + Rint1yitns1)rhi
+ Rt 1)ij(nr1) bt + Z Rijichmi, (2.13)

where R(n+1)ijkl denotes the covariant derivative of R(nJrl)ijk as a tensor on
M™ so that

Z Rint1yijiws = dR(i1yijn — Z Rins1yinwis
] ]
- Z R(n+1)ilkwlj - Z R(n+1)ijlw1k-
] 1

The Laplacian Ah” of hij is defined by Ah” = Zkhijkk' From (2.10),
(2.12) and (2.13), after a straightforward computation we obtain

Ahij = (TLH)Z'j — TLHZ hilhlj + Sh”
l

+ Z(R(n—i-l)ijk;k + R(n+1)kik;j)
k

- Z(hkké(n+1)ij(n+l) + hij Rins1)k(n+1)k)
%

- Z(QhklRlijk + hjiRikik + haRikjr)- (2.14)
Kl
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Since AS =2 (ZZ NG hijAhij>, from (2.14) we get
AS SQ-FZ}L”]C-FZ(TLH)”h”

(N

+ Z (n+1)ijk;k + R(n+1)k7k,j)h
1,5,k

Z nHhi; Rni1)ijntr) + S Z Rin41)k(n+1)k

irj
—2> " (hwhijRigjr + hahijRigie) —nH > hahijhij.  (2.15)
ikl il

Now, let ¢ =", j ¢ijwiw; be a symmetric tensor on M™ defined by
d)ij = nHéU — h”

Following Cheng—Yau [8], we introduce a operator [J associated to ¢ acting on
any smooth function f by

Of = Z¢ijfij = Z(TLH%' — hij) fis- (2.16)
2 1.7
Setting f = nH in (2.16) and taking a (local) orthonormal frame

€1,...,en} on M™ such that h;; = A\J;;, from Eq. (2.8) we obtain the fol-
J J
lowing

Q) = GAMHY =3 (nH) = 3 Nt

i

1 2 2
= SAS —n*|VH| fzi:Ai(nH)i,;

1 _

3. Proof of Theorem 1.1

In order to prove Theorem 1.1, we will need three lemmas. The first one is
a classic algebraic lemma due to Okumura in [17], and completed with the
equality case proved in [2] by Alencar and do Carmo.

Lemma 3.1. Let 1, . ..y, be real numbers such that > ,pu; = 0 and >, pu? = 32,

where (8 is constant and > 0. Then

(n—2) (n—2)
mﬁg < Z 2 < ﬁﬂg, (3.1)
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and equality holds if, and only if, either at least (n — 1) of the numbers p;
are equal to B/+/(n — 1)n or at least (n — 1) of the numbers u,; are equal to

—06/y/(n—1)n.

Now, we present our second auxiliary lemma. Following the steps of the
proof of Lemma 2.1 of [13], we get

Lemma 3.2. Let M™ be a linear Weingarten spacelike hypersurface immersed
m a locally symmetric Lorentz space L?H, such that R = aH + b. Suppose
that

(n—1)%a®+4>  Rij;; —4n(n —1)b > 0. (3.2)
57
Then,
> iy = n®|VH|. (3.3)
i,9,k

Moreover, if the inequality (3.2) is strict and the equality holds in (3.3) on
M™, then H is constant on M™.

Proof. Since we are supposing that R = aH + b, from Eq. (2.8) we get
23 hishijr = (20°H +n(n — 1)a) (H).
4,J
Thus,
2

23S hijhige | = (2n2H +n(n —1)a)” [VH|?.
k i.j

Consequently, using Cauchy—Schwartz inequality, we obtain that

48 Z hip =4 Z h; Z hZx
N i, i,7,k
2

> 42 Zhijhijk
5\ iy

— (2n*H + n(n —1)a)? |VH|*. (3.4)
On the other hand, since R = aH + b, using again Eq. (2.8) we easily verify
that
(2n2H + n(n — 1)&)2 = 4n2 Z Rijji — 4n3(n — 1)b
2%
+n%(n —1)%a* + 4n?S. (3.5)
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Consequently, from (3.2), (3.4) and (3.5), we get
S hZy = n?S|VH|.
i4,k
Therefore, we obtain either S =0 and >, ;
n?|V H|?. Moreover, if the inequality (3.2) is strict, from (3.5) we get that

(2n*H +n(n — 1)a)2 > 4n?S.
Consequently, if >, ; h?jk = n?|VH|? holds on M™, from (3.4) we conclude

h?jk =n?|VH|? or Zi,j,k h?jk =

that VH = 0 on M™ and, hence, H is constant on M". O
Now, we consider the Cheng—Yau’s modified operator
-1
L:D+"2 al. (3.6)

Related to such operator, we have the following sufficient criteria of ellip-
ticity.
Lemma 3.3. Let M™ be a linear Weingarten spacelike hypersurface immersed
in a locally symmetric Lorentz space L?‘H, such that R = aH + b with b <
L ) Z” R;jji. Then, L is elliptic.

n(n—1
Proof. From Eq. (2.8), since R = aH + b with b < 71(%_1) Ei’j Rijji, we easily
see that H can not vanish on M"™ and, by choosing the appropriate Gauss
mapping, we may assume that # > 0 on M"™. -

Let us consider the case that a = 0. Since R = b < ﬁ E” Rijji,
from Eq. (2.8) if we choose a (local) orthonormal frame {ej,...,e,} on M"
such that h;; = \;d;;, we have that ZKJ- AiAj > 0. Consequently,

nPH? =) A7 42 NN > A
i i<j

for every ¢ = 1,...,n and, hence, we have that nH — X\; > 0 for every 1.

Therefore, in this case, we conclude that L is elliptic.
Now, suppose that a # 0. From Eq. (2.8) we get that

1

— _ n27g2 R.... —
a_n(n—l)H S—n“H —I—;Rm, n(n —1)b
Consequently, for every ¢ = 1,...,n, with a straightforward algebraic compu-
tation we verify that
Heon+ " La—nm—xn+— [s-n2m2+ 3R (n—1)b
nH — )\ a=nH -\ —n i — n(n —
2nH 1

]

271% ZA? T (Z NP+ ZRijji —n(n—1)b
]

J#i J#i
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Therefore, since b < ﬁ Do j Rl-jji, we also conclude in this case that L is
elliptic. 0

Proof of Theorem 1.1. Initially, we observe that the local symmetry of L’f“
implies that

> (Rins1yijhk + Binyaykinghij = 0.
64,k
Consequently, if we choose a (local) orthonormal frame {ej,...,e,} on M"

such that h;; = X\;d;5, taking into account Eqs. (2.15) and (2.17) we get from
(3.6) that

L(nH) =Y _hZ), —n’|VH[ + 5% = nH > A}
0,5,k i

-2 Z(Ai)\kRkiik + M Rigir)
ik

- <Z nHN; R (n11)ii(nt1) + SZ R(n+1)k(n+1)k> . (37
B !

Thus, from Lemma 3.2, we have

L(nH) > 52 — nHZ /\:E — QZ(Ai)\kRm'ik + )‘?Rikik)
i ik

- (Z nHXR(ni1yii(nt1) + 5 Z R(n+1)k(n+1)k> . (38)

Now, set ®;; = h;; — Hd;;. We will consider the following symmetric
tensor

o = Z@ijwiwj.
5]

Let |®|> = Z@?j be the square of the length of ®. It is easy to check that ®
is traceless ;ﬁd
|®|> =S —nH?%
If we take a (local) frame field eq,...,e, at p € M™, such that
hij = Xidy;  and Py = 4,

it is straightforward to check that

D=0, p =0 and }pi =3 AT 3H|OP —nH”.
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Consequently, by applying Lemma 3.1 to the real numbers p1, ..., fi,, we get
S®—nHY» X = (|®] + nH?)* = n*H*
—3nH?|®|* - nHZ,uf

nin —2)
Vn(n—1)

Using curvature conditions (1.1) and (1.2), we get

> |®|* — nH?®? - H|®?. (3.9)

- Z nH}\rLR(n+1)Zl(n+1) + S Z R(n+1)k(n+1)k =C (S — nHQ) (310)
ij k
and
=2 ) " (NidkRuiik + A Rikie) > €2 > _(Ai — M)
igkl ik

2ncy (S — nH?). (3.11)

Hence, setting ¢ = - +2c¢y, from (3.8), (3.9), (3.10) and (3.11) we obtain
that

L(nH) > |®[? <nc+S—2nH2 - ”(7(‘__2)1)H|q>|>. (3.12)

On the other hand, with a straightforward computation we verify that

S —2nH? = 2\/%((\/n— 1+1)® - (Vn—1- 1)\/ﬁH)2
n(n —2) n

H|®| — ——=5S.
n(n—1) 2! 2y/n—1

Thus, since we are supposing that S < 2y/n — 1¢, from (3.12) we get

L(nH) > |®|? <nc — (3.13)

n
—=5 | >0.
2y/n —1 ) -
Since Lemma 3.3 guarantees that L is elliptic and as we are suppos-
ing that H attains its maximum on M", from (3.13) we conclude that H is
constant on M™. Thus, taking into account Eq. (3.7), we get

> by =n?VH? =0,

i,k
and it follows that \; is constant for every ¢ = 1,...,n. Moreover, from (3.13)
we have

[ (nc - 2\/%5) = 0. (3.14)
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If S < 2y/n—T1c, then |®]2 = 0 and M" is totally umbilical. If S =
2v/n — 1 ¢, since all the inequalities that we have obtained are, in fact, equali-
ties, we easily verify that

(Vn—1-1)/n I
vn—1+1
Thus, in the case that n = 2, from (3.15) we obtain that |®|?> = 0. Hence, M?
is totally umbilical. Finally, when n > 3, since the equality holds in (3.1) of
Lemma 3.1, we conclude that M™ is either totally umbilical or an isoparametric
hypersurface with two distinct principal curvatures one of which is simple. [J

| = (3.15)
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