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1. Introduction

In the 1940s G. M. Mirakjan [16], J. Favard [13] and O. Szàsz [19] indepen-
dently studied a sequence (Sn)n≥1 of positive linear operators, that nowadays
are called Szász–Mirakjan operators. These operators are defined by

Sn(f)(x) :=
∞∑

k=0

e−nx (nx)k

k!
f

(
k

n

)
(n ≥ 1, x ≥ 0)

for all functions f : [0,+∞[−→ R for which the series at the right-hand side
is absolutely convergent. The space of such functions includes, in particular,
the space S ([0,+∞[) of all functions f : [0,+∞[−→ R such that |f(x)| ≤
M exp(αx) (x ≥ 0), for some M ≥ 0 and α ∈ R.
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Later on, in order to furnish an approximation process for spaces of locally
integrable functions on unbounded intervals, Butzer [8] introduced and studied
an integral modification of the operators Sn; they are defined by setting, for
every n ≥ 1, f ∈ T ([0,+∞[) and x ≥ 0,

Kn(f)(x) := n

∞∑

k=0

e−nx (nx)k

k!

k+1
n∫

k
n

f(t) dt,

where T ([0,+∞[) is the space of all Borel measurable locally integrable func-
tions f : [0,+∞[−→ R such that the antiderivative F (x) :=

∫ x

0
f(t) dt(x ≥ 0)

belongs to S ([0,+∞[).
The operators (Kn)n≥1 were named in [20] as to Szàsz–Mirakjan–Kant-

orovich operators by analogy with the Kantorovich operators that constitute a
similar integral modification of Bernstein operators (see, e.g. [2, pp. 333–335]).

In more recent years, Szász–Mirakjan–Kantorovich operators and their
modifications have been object of investigation by several mathematicians. For
example, some saturation results were discussed by Totik in [21] (see also [20])
and further properties were studied in [11, Chapter 9]. More recent results may
be found in [12].

In this paper we deal with a further generalization of such operators,
that extends to the unbounded setting an idea first developed in [4], where
the authors introduced and studied a generalization of Kantorovich operators.
Namely, we will focus our attention on a sequence (Cn)n≥1 of positive linear
operators defined by

Cn(f)(x) :=
n

bn − an

∞∑

k=0

e−nx (nx)k

k!

k+bn
n∫

k+an
n

f(t) dt (n ≥ 1, x ≥ 0)

for every f ∈ T ([0,+∞[), where (an)n≥1 and (bn)n≥1 are two sequences of
the real numbers satisfying 0 ≤ an < bn ≤ 1 for every n ≥ 1.

Of course, if an = 0 and bn = 1 for all n ≥ 1, then the Cn’s turn into
the Szàsz–Mirakian–Kantorovich operators. A possible interest in the study of
Cn’s rests on the fact that, by means of them, it is possible to reconstruct a
continuous or an integrable function by knowing its mean values on subinter-
vals of [0,+∞[ which do not necessarily constitute a subdivision of [0,+∞[.

We investigate the approximation properties of the sequence (Cn)n≥1

on several continuous and weighted continuous function spaces as well as on
Lebesgue spaces and we also establish some estimates of the rate of conver-
gence by means of suitable moduli of smoothness.

The paper is organized as follows. After some preliminaries, in Sect. 2 we
present our operators and their main properties.

Subsequently, in Sect. 3, we discuss their behavior on some continuous
function spaces and on weighted continuous function spaces with polynomial
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weights by proving that they are an approximation process with respect to the
uniform norm and to particular weighted norms. Moreover, we prove that our
operators are an approximation process also on Lp([0,+∞[)(1 ≤ p < +∞).

In the last section, we estimate the rate of convergence; in particular,
with a similarity technique, we prove that, up an isometric isomorphism, the
study of such questions is equivalent to the study of the rate of convergence
of suitable approximation processes acting on [0, 1]. Similar arguments can be
found in [7].

2. Generalizing Szász–Mirakjan–Kantorovich Operators

Throughout this paper we shall denote by C ([0,+∞[) the space of all continu-
ous real valued functions on [0,+∞[. We shall also denote by Cb([0,+∞[) the
subspace of all functions in C ([0,+∞[) that are bounded.

The space Cb([0,+∞[), endowed with the sup-norm ‖·‖∞ and the natural
pointwise ordering, is a Banach lattice. The space of all continuous functions
that converge at infinity will be denoted by C∗([0,+∞[); clearly, C∗([0,+∞[)
is a Banach sublattice of Cb([0,+∞[).

Further, C0([0,+∞[) stands for the subspace of C∗([0,+∞[) consisting of
all continuous real valued functions on [0,+∞[ that vanish at infinity.

Moreover, for m ≥ 1 we set wm(x) := (1 + xm)−1 (x ≥ 0) and

Em :=
{
f ∈ C ([0,+∞[) | sup

x≥0
wm(x)|f(x)| ∈ R

}
;

Em is a Banach lattice, provided that it is endowed with the pointwise ordering
and the weighted norm

‖f‖m := sup
x≥0

wm(x)|f(x)| (f ∈ Em).

Further, we shall consider the spaces

E∗
m :=

{
f ∈ Em | lim

x→+∞wm(x)f(x) ∈ R
}

and

E0
m :=

{
f ∈ E∗

m | lim
x→+∞wm(x)f(x) = 0

}
,

that turn out to be Banach sublattices of Em.
Note that, by Stone–Weierstrass theorem, C0([0,+∞[) is dense in each

E0
m,m ≥ 1.

As usual, if 1 ≤ p < +∞, we shall denote by Lp([0,+∞[) the space of
all (equivalence classes of) Borel measurable functions on [0,+∞[ such that

‖f‖p :=
(∫ +∞

0
|f(t)|p dt

) 1
p

< +∞. Moreover, L∞([0,+∞[) stands for the space
of all (equivalence classes of) Borel measurable functions on [0,+∞[ that are
λ1-a.e. bounded, λ1 being the Borel-Lebesgue measure on [0,+∞[.
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Consider the sequence (Sn)n≥1 of Szász–Mirakjan operators defined e.g.,
on the space S ([0,+∞[) of all functions f : [0,+∞[−→ R such that |f(x)| ≤
M exp(αx) (x ≥ 0), for some M ≥ 0 and α ∈ R, by setting

Sn(f)(x) :=
∞∑

k=0

e−nx (nx)k

k!
f

(
k

n

)
(n ≥ 1, x ≥ 0). (2.1)

An integral modification of them was introduced by Butzer [8] in order
to furnish a positive approximation process for locally integrable functions on
[0,+∞[. These operators are defined on the space T ([0,+∞[) of all Borel
measurable locally integrable functions f : [0,+∞[−→ R such that the anti-
derivative F (x) :=

∫ x

0
f(t) dt(x ≥ 0) belongs to S ([0,+∞[), by setting

Kn(f)(x) := n

∞∑

k=0

e−nx (nx)k

k!

k+1
n∫

k
n

f(t) dt (n ≥ 1, x ≥ 0).

Note that T ([0,+∞[) contains S ([0,+∞[) ∩ C ([0,+∞[) (and hence
Em,m ≥ 0) as well as Lp([0,+∞[) spaces, 1 ≤ p ≤ +∞.

The operators Kn, n ≥ 1, were named in [20] as to Szász–Mirakjan–
Kantorovich operators. Thus, they can be used to approximate functions in
T ([0,+∞[) by having information about their mean values on the intervals[

k
n ,

k+1
n

]
, n ≥ 1, k ≥ 1.

In this paper, in the spirit of a similar idea developed in [4] for compact
intervals (see also [3]), we introduce a generalization of the operators Kn by
involving the mean values of the approximating functions on possibly smaller
subintervals of

[
k
n ,

k+1
n

]
, n ≥ 1, k ≥ 1.

More precisely, consider two sequences of real numbers (an)n≥1 and
(bn)n≥1 such that 0 ≤ an < bn ≤ 1 for every n ≥ 1 and, for every
f ∈ T ([0,+∞[), x ≥ 0 and n ≥ 1, set

Cn(f)(x) :=
n

bn − an

∞∑

k=0

e−nx (nx)k

k!

k+bn
n∫

k+an
n

f(t) dt. (2.2)

Thus, Cn(f) is defined throughout the mean values of f on the sets[
k+an

n , k+bn

n

]
(k ≥ 0) that do not cover the whole [0,+∞[.

Of course, if an = 0 and bn = 1 for every n ≥ 1, then the C ′
ns turn into

the operators Kn.
For a given f ∈ T ([0,+∞[), considering the antiderivative F (x) =∫ x

0
f(t) dt(x ≥ 0), we can also write

Cn(f)(x) =
n

bn − an

∞∑

k=0

e−nx (nx)k

k!

[
F

(
k + bn
n

)
− F

(
k + an

n

)]

=
n

bn − an
Sn(σn(F ))(x), (2.3)
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where Sn is given by (2.1) and the mapping σn is defined as

σn(F )(x) := F

(
x+

bn
n

)
− F

(
x+

an

n

)
(x ≥ 0). (2.4)

It will be also useful to represent Cn(f) as

Cn(f)(x) :=

+∞∫

0

f dμn,x (n ≥ 1, x ≥ 0), (2.5)

where

μn,x :=
n

bn − an
e−nx

∞∑

k=0

(nx)k

k!
μn,k

and each μn,k designates the Borel measure on [0,+∞[ having density the char-
acteristic function of

[
k+an

n , k+bn

n

]
with respect to the Borel-Lebesgue measure

λ1 on [0,+∞[.
From now on, for every m ≥ 0 the symbol em will denote the function

defined by setting em(x) = xm(x ≥ 0); in particular e0 = 1, where 1 denotes
the constant function on [0,+∞[ of constant value 1. Finally, for a fixed x ≥ 0,
we shall set ψx(y) := y − x (y ≥ 0).

It will be useful to recall the behavior of the Szász–Mirakjan operators
(2.1) on the above mentioned functions; more precisely (see [6, Lemma 3]), for
every n ≥ 1 and m ≥ 0,

Sn(em) =
m∑

j=0

am,jn
j−mej , (2.6)

for some positive coefficients am,j satisfying the following properties:
(i) aj,j = 1 for every j = 0, . . . ,m and aj,0 = 0 for every j ≥ 1;
(ii) aj,1 = 1 for every j = 1, . . . ,m;
(iii) aj,j−1 = j(j − 1)/2 for every j = 1, . . . ,m;
(iv) aj+2,j+1 − 2aj+1,j + aj,j−1 = 1 for every j = 1, . . . ,m− 2.

Hence, for every m ≥ 1, Sn(em) is a polynomial of degree m with no
constant terms.

In particular,

Sn(1) = 1, Sn(e1) = e1 and Sn(e2) = e2 +
1
n
e1. (2.7)

Moreover, for every x ≥ 0,

Sn(ψx)(x) = 0 and Sn(ψ2
x)(x) =

x

n
. (2.8)

Finally, for a given λ > 0, if we set

fλ(x) := e−λx (x ≥ 0), (2.9)

we get
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Sn(fλ)(x) = exp
(
nx
(
e− λ

n − 1
))

(2.10)

(see, e.g., [2, pp. 339–340]).
For the sake of brevity we omit the details of the proof of the next result

that can be achieved by direct calculations on account also of the formula

Cn(f) = Kn(fn), (2.11)

where

fn(x) =

1∫

0

f(x+ ((bn − an)y + an)/n)dy (2.12)

for every f ∈ T ([0,+∞[), x ≥ 0 and n ≥ 1.

Proposition 2.1. For every n ≥ 1 and m ≥ 0,

Cn(em) =
1

(m+ 1)nm

m∑

k=0

(
m+ 1
k

)m−k∑

p=0

bpna
m−k−p
n

k∑

j=0

ak,jn
jej

= em +
1
n
Fm−1, (2.13)

where the coefficients ak,j are the same as in (2.6) and Fm−1 is a positive
polynomial of degree m− 1. In particular, em ≤ Cn(em) for every m ≥ 0.

Further, denoting by Pm the space of (the restrictions to [0,+∞[) of) all
polynomials of degree no grater than m,m ≥ 1, then

Cn(Pm) ⊂ Pm

for every n,m ≥ 1.
Moreover, for every m ≥ 1, n ≥ 1 and x ≥ 0,

wm(x)Cn(em)(x) ≤ wm(x)em(x) +
dm

n
, (2.14)

where

dm := max
x≥0

wm(x)

⎧
⎨

⎩

m−1∑

j=0

am,jx
j +

m−1∑

k=0

(
m

k

) k∑

j=0

ak,jx
j

⎫
⎬

⎭ (2.15)

and wm(x) = (1 + xm)−1(x ≥ 0).
Hence, for every m ≥ 0,

lim
n→∞ ||Cn(em) − em||m = 0. (2.16)

Finally, for every n,m ≥ 1 and x ≥ 0,

Cn(ψm
x ) =

m∑

h=0

(
m

h

)
(−1)m−hxm−h

(h+ 1)nh

h∑

k=0

(
h+ 1
k

) h−k∑

p=0

bpna
h−k−p
n

k∑

j=0

ak,jn
jej .

(2.17)
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In particular,

Cn(1) = 1, Cn(e1) = e1 +
an + bn

2n
1, (2.18)

Cn(e2) = e2 +
bn + an + 1

n
e1 +

a2
n + anbn + b2n

3n2
1 (2.19)

and, for every x ≥ 0,

Cn(ψx)(x) =
an + bn

2n
and Cn(ψ2

x)(x) =
x

n
+
a2

n + anbn + b2n
3n2

. (2.20)

Another useful result is stated below.

Proposition 2.2. For every λ > 0, let fλ be as in (2.9). Then,

Cn(fλ) =
n

λ(bn − an)

(
e− λan

n − e− λbn
n

)
Sn(fλ) (n ≥ 1), (2.21)

where Sn(fλ) is evaluated in (2.10) (see also (2.1)).
Moreover, for every n ≥ 1 and λ > 0,

Cn(fλ) ≤ Sn(fλ) ≤ S1(fλ). (2.22)

Proof. Formula (2.21) follows after a straightforward computation. As regards
(2.22), the first inequality is an easy consequence of the fact that

n

λ(bn − an)

(
e− λan

n − e− λbn
n

)
≤ n

λ(bn − an)

(
1 − e−(λbn

n − λan
n )
)

≤ 1;

here we have used the well-known inequality 1 − e−x ≤ x (x ≥ 0).
On the other hand, by the monotonicity of (Sn(f))n≥1 on convex func-

tions (see [9, p. 247]), we get the second inequality in (2.22). �

3. Approximation Properties

In this section we deal with some approximation properties of the sequence
(Cn)n≥1 in several spaces of both continuous and integrable functions.

We begin with the following result.

Theorem 3.1. Consider the operators Cn, n ≥ 1, defined by (2.2). Then, for
n ≥ 1 and m ≥ 1 fixed,
(a) Cn is a positive continuous linear operator from Cb([0,+∞[) into itself

and ||Cn||Cb([0,+∞[) = 1;
(b) Cn(C0([0,+∞[)) ⊂ C0([0,+∞[);
(c) Cn is a positive continuous linear operator from Em into itself and

||Cn||Em
≤ 1 + dm/n, dm being defined by (2.15); in particular,

sup
n≥1

||Cn||Em
≤ 1 + dm; (3.1)

(d) Cn(E0
m) ⊂ E0

m.
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Proof. Statement (a) can be easily verified, since Cn(1) = 1. To prove state-
ment (b), fix f ∈ C0([0,+∞[) and ε > 0; then, there exists x1 ≥ 0 such that
|f(x)| ≤ ε/2 for any x ≥ x1.

Moreover, consider x2 > x1 such that, for every x ≥ x2,

(nx)he−nx

h!
≤ ε

2||f ||∞(n[x1] + 1)
,

for any h = 0, . . . , n[x1], where [x1] denotes the integer part of x1.
Now, for x ≥ x2,

|Cn(f)(x)| ≤ n

bn − an

n[x1]∑

k=0

e−nx (nx)k

k!

k+bn
n∫

k+an
n

|f(t)| dt

+
n

bn − an

∞∑

k=n[x1]+1

e−nx (nx)k

k!

k+bn
n∫

k+an
n

|f(t)| dt

≤ ε

2
+
ε

2

∞∑

k=0

e−nx (nx)k

k!
= ε.

Statement (c) is a consequence of (2.14) because, for every f ∈ Em and
x ≥ 0,

wm(x)|Cn(f)(x)| ≤ ||f ||mwm(x)Cn(1 + em)(x) ≤ ||f ||m
(

1 +
dm

n

)
.

To prove statement (d), consider the subspace D generated by the fam-
ily (fλ)λ>0 defined by (2.9), that by Stone–Weierstrass theorem is dense in
C0([0,+∞[) and hence in E0

m. Since

Cn(D) ⊂ C0([0,+∞[) ⊂ E0
m,

we get inclusion (d). �

Remark 3.2. We point out that, since Cn(1) = 1, from Theorem 3.1, (b), it
also follows that Cn(C∗([0,+∞[)) ⊂ C∗([0,+∞[) for all n ≥ 1.

Moreover, (2.13) implies that Cn(1 + em) = 1 + Cn(em) ∈ E∗
m, i.e.,

Cn(em) ∈ E∗
m. Then, again by Theorem 3.1, (d), we also get that Cn(E∗

m) ⊂
E∗

m.

In order to state the next approximation results, we first notice that if
λ > 0, n ≥ 1 and 0 ≤ an < bn ≤ 1, then

0 ≤ 1 − n

λ(bn − an)

(
e− λan

n − e− λbn
n

)
≤ λ

n
. (3.2)



Vol. 63 (2013) On a Generalization of Szász–Mirakjan–Kantorovich Operators 845

In fact, by using the inequalities 1−e−x ≤ x, 1−e−x ≥ x−x2/2 (x ≥ 0),
we get

0 ≤ 1 − n

λ(bn − an)

(
e− λan

n − e− λbn
n

)

= 1 − n

λ(bn − an)
e− λan

n

(
1 − e− λ(bn−an)

n

)

≤ 1 − n

λ(bn − an)
e− λan

n

(
λ
bn − an

n
− λ2 (bn − an)2

2n2

)

= 1 − e− λan
n + λ

bn − an

2n
≤ λ

2n
(an + bn) ≤ λ

n
.

As far as bounded continuous functions are concerned, the following
approximation result holds.

Theorem 3.3. If f ∈ C∗([0,+∞[), then limn→+∞ Cn(f) = f uniformly on
[0,+∞[.

Moreover, if f ∈ Cb([0,+∞[), then limn→+∞ Cn(f) = f uniformly on
compacts subsets of [0,+∞[.

Proof. It suffices to show the first part of the statement for f ∈ C0([0,+∞[)
or, in fact, for each function fλ, λ > 0, defined by (2.9), since the subspace
generated by them is dense in C0([0,+∞[) and the sequence (Cn)n≥1 is equi-
bounded on C0([0,+∞[). Now, by using (2.21) and (3.2), for every x ≥ 0 and
n ≥ 1, we get

|Cn(fλ)(x) − fλ(x)|
≤
∣∣∣∣

n

λ(bn − an)

(
e− λan

n − e− λbn
n

)
− 1
∣∣∣∣Sn(fλ)(x) + |Sn(fλ)(x) − fλ(x)|

≤
(

1 − n

λ(bn − an)

(
e− λan

n − e− λbn
n

))
+ ||Sn(fλ) − fλ||∞

≤ λ

n
+ ||Sn(fλ) − fλ||∞.

Since the sequence (Sn)n≥1 of Szász–Mirakjan operators (see (2.1)) is
an approximation process on C0([0,+∞[) (see [2, Sect. 5.3.9]), the result is
obviously achieved.

In order to prove the final statement, we notice that, from (2.18) and
(2.19), it follows that limn→+∞ Cn(h) = h uniformly on compact subsets of
[0+∞[ for every h ∈ {1, e1, e2}. Since {1, e1, e2} ⊂ E∗

2 , the result follows from
[1, Theorem 3.5]. �

The approximation properties of the operators Cn on the weighted func-
tion spaces E0

m, E
∗
m and Em are shown below.
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Theorem 3.4. For a given m ≥ 1, if f ∈ E∗
m (and, in particular, if f ∈ E0

m),
then

lim
n→+∞wm(Cn(f) − f) = 0 uniformly on [0,+∞[ (3.3)

i.e., limn→+∞ Cn(f) = f with respect to ‖ · ‖m.
If f ∈ Em, then

lim
n→+∞wm(Cn(f) − f) = 0 (3.4)

uniformly on compact subsets of [0,+∞[.

Proof. Consider again the functions fλ, λ > 0, defined by (2.9). Then
limn→+∞ Cn(fλ) = fλ with respect to ‖ · ‖∞ and hence with respect to ‖ · ‖m.
Since the sequence (Cn)n≥1 is equibounded on E0

m (see (3.1)) and the lin-
ear subspace generated by (fλ)λ>0 is dense in E0

m, (3.3) is certainly true for
f ∈ E0

m. On the other hand, if f ∈ E∗
m, then f = g + αm(1 + em), where

αm := limx→+∞ wm(x)f(x) ∈ R and g = f − αm(1 + em) ∈ E0
m. Therefore

(3.3) follows for f too on account of (2.16).
The preceding result and the inclusion Em ⊂ E0

m+1 imply formula (3.4)
because, if J is a compact subset of [0,+∞[, then

wm(x)|Cn(f)(x) − f(x)| ≤ M‖Cn(f) − f‖m+1

for every x ∈ J , where M := sup
x∈J

wm(x)
wm+1(x) . �

Finally, we show that, in some particular cases, the Cn’s furnish an
approximation process in Lp([0,+∞[) spaces (1 ≤ p < +∞).

Theorem 3.5. Let (Cn)n≥1 be the sequence of operators defined by (2.2) and
fix 1 ≤ p < +∞. Then, Cn(Lp([0,+∞[)) ⊂ Lp([0,+∞[) and

‖Cn‖Lp,Lp ≤ (bn − an)− 1
p .

for every n ≥ 1.
Moreover, if there exists M > 0 such that 1

bn−an
≤ M for every n ≥ 1,

then, for every f ∈ Lp([0,+∞[),

lim
n→+∞Cn(f) = f in Lp([0,+∞[).

Proof. Consider n ≥ 1 and f ∈ Lp([0,+∞[). A twofold application of Jensen’s
inequality (see, e.g., [5, Theorem 3.9]) yields
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|Cn(f)(x)|p ≤
∞∑

k=0

e−nx (nx)k

k!

∣∣∣∣∣∣∣

n

bn − an

k+bn
n∫

k+an
n

f(t) dt

∣∣∣∣∣∣∣

p

≤
∞∑

k=0

e−nx (nx)k

k!
n

bn − an

k+bn
n∫

k+an
n

|f(t)|p dt

for every x ≥ 0.
By integrating with respect to x ≥ 0 and by using the identities

+∞∫

0

e−nxxk dx =
k!
nk+1

(k ≥ 0),

we get

+∞∫

0

|Cn(f)(x)|p dx ≤
∞∑

k=0

⎛

⎜⎝
n

bn − an

k+bn
n∫

k+an
n

|f(t)|p dt

⎞

⎟⎠
nk

k!

+∞∫

0

e−nxxk dx

=
1
n

∞∑

k=0

⎛

⎜⎝
n

bn − an

k+bn
n∫

k+an
n

|f(t)|p dt

⎞

⎟⎠ ≤ 1
bn − an

‖f‖p
p,

which shows the first part of the theorem.
Assume now that there exists M > 0 such that 1

bn−an
≤ M for every

n ≥ 1; then, the sequence (Cn)n≥1 is equibounded in Lp([0,+∞[).
Moreover, by [2, Proposition 4.2.5, (2)] (see also [1, Corollary 8.9]), the

subset {fλ | λ > 0} is a Korovkin set in Lp([0,+∞[) (see (2.9)) (in fact,
any subset {fλ1 , fλ2 , fλ3} with 0 < λ1 < λ2 < λ3 is a Korovkin subset in
Lp([0,+∞[)). So, in order to prove the final claim, it is sufficient to ascertain
that Cn(fλ) → fλ in Lp([0,+∞[) for every λ > 0. By Theorem 3.3 we already
know that Cn(fλ) → fλ uniformly and, hence, pointwise on [0,+∞[. On the
other hand, by (2.10) and (2.22) we get

0 ≤ |Cn(fλ)|p ≤ |S1(fλ)|p ∈ L1([0,+∞[).

Then, by the dominated convergence theorem,

lim
n→+∞Cn(fλ) = fλ in Lp([0,+∞[).

�
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4. Estimating the Rate of Convergence

We pass now to present several estimates of the rate of convergence of
(Cn(f))n≥1 to f by means of suitable moduli of smoothness.

For the convenience of the reader we split up the discussion of the several
types of convergence into the following three subsections.

4.1. Pointwise and Uniform Estimates for the Rate of Convergence

In what follows, we state some estimates of the pointwise and uniform rate of
convergence involving the usual moduli of smoothness of the first and second
order ω(f, δ) and ω2(f, δ) (for the definitions of the above-mentioned moduli
of smoothness we refer, e.g., to [2, Sect. 5.1] or [10, Chapter 2, § 7]).

By using some results in [17], we start to provide for some estimates for
the rate of pointwise convergence.

Theorem 4.1. Consider f ∈ Cb([0,+∞[), n ≥ 1 and x ≥ 0. Then

|Cn(f)(x) − f(x)| ≤ an + bn
2
√
n

ω

(
f,

1√
n

)

+
[
1 +

1
2

(
x+

a2
n + anbn + b2n

3n

)]
ω2

(
f,

1√
n

)
.

(4.1)

Proof. Since (2.5) holds, by means of [17, Theorem 2.2.1] and (2.20), we have
that, for every δ > 0,

|Cn(f)(x) − f(x)|
≤ |Cn(1)(x) − 1||f(x)| +

1
δ
|Cn(ψx)(x)|ω(f, δ)

+
[
Cn(1)(x) +

1
2δ2

Cn(ψ2
x)(x)

]
ω2(f, δ)

=
1
δ

an + bn
2n

ω(f, δ) +
[
1 +

1
2δ2

(
x

n
+
a2

n + anbn + b2n
3n2

)]
ω2(f, δ).

If δ = n−1/2, then we get (4.1). �

It is possible to present other estimates of the rate of convergence of the
Cn’s in Cb([0,+∞[). In fact from (2.3) it follows that, for every f ∈ Cb([0,+∞[)
and x ≥ 0,

|Cn(f)(x) − f(x)|
≤ n

bn − an
|Sn(σn(F ))(x) − σn(F )(x)| +

∣∣∣∣
n

bn − an
σn(F )(x) − f(x)

∣∣∣∣ ,

where σn is given by (2.4) and F is the antiderivative of f .
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Therefore we can obtain some quantitative estimates for the rate of
pointwise convergence of (Cn(f))n≥1 by means of similar ones held by Szàsz–
Mirakjan operators and by using the following lemma (see also [4, Theorem
3.3]).

Lemma 4.2. Let 0 ≤ an < bn ≤ 1 (n ≥ 1), f ∈ Cb([0,+∞[) and F (x) =∫ x

0
f(t) dt (x ≥ 0). Then, for every x ≥ 0 and n ≥ 1,

∣∣∣∣
n

bn − an
σn(F )(x) − f(x)

∣∣∣∣ ≤ ω

(
f,
bn − an

n

)
. (4.2)

Moreover, for every δ > 0,

ω(σn(F ), δ) ≤ bn − an

n
ω

(
f, δ +

bn − an

n

)
. (4.3)

Proof. Fix x ≥ 0 and n ≥ 1; by applying Lagrange’s theorem to the function
F and the interval

[
x+ an

n , x+ bn

n

]
, there exists ζn,x ∈ [x+ an

n , x+ bn

n

]
such

that
n

bn − an
σn(F )(x) = f(ζn,x).

Then∣∣∣∣
n

bn − an
σn(F )(x)−f(x)

∣∣∣∣= |f(ζn,x)−f(x)| ≤ ω(f, |ζn,x−x|)≤ω
(
f,
bn−an

n

)
.

Now fix δ > 0 and x, y ≥ 0 such that |x−y| < δ; then, again by Lagrange’s
theorem,

|σn(F )(x)−σn(F )(y)|= bn − an

n
|f(ζn,x)−f(ηn,y)|≤ bn − an

n
ω(f, |ζn,x−ηn,y|),

where ζn,x is defined as above and ηn,y is a suitable element of the interval[
y + an

n , y + bn

n

]
, and hence the claim, since

|ζn,x − ηn,y| ≤ |x− y| +
bn − an

n
≤ δ +

bn − an

n
.

�

We are now in a position to state the following result.

Theorem 4.3. Consider f ∈ Cb([0,+∞[), n ≥ 1 and x ≥ 0. Then

|Cn(f)(x) − f(x)| ≤ (2 +
√
x
)
ω

(
f,

√
n+ bn − an

n

)
. (4.4)

Furthermore, if f is differentiable on [0,+∞[ and f ′ ∈ Cb([0,+∞[), then

|Cn(f)(x) − f(x)| ≤
√
x

n
(1 +

√
x)ω

(
f ′,

√
n+ bn − an

n

)
+ ‖f ′‖∞

bn − an

n
.

(4.5)
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Proof. From [2, Theorem 5.2.4], it follows that, for every δ > 0,

|Sn(f)(x) − f(x)| ≤
(

1 +
1
δ

√
x

n

)
ω(f, δ). (1)

From this and from (4.2) and (4.3), we obtain

|Cn(f)(x) − f(x)|
≤ n

bn − an
|Sn(σn(F ))(x) − σn(F )(x)| +

∣∣∣∣
n

bn − an
σn(F )(x) − f(x)

∣∣∣∣

≤
(

1 +
1
δ

√
x

n

)
n

bn − an
ω(σn(F ), δ) + ω

(
f,
bn − an

n

)

≤
(

1 +
1
δ

√
x

n

)
ω

(
f, δ +

bn − an

n

)
+ ω

(
f,
bn − an

n

)

≤
(

2 +
1
δ

√
x

n

)
ω

(
f, δ +

bn − an

n

)
.

Setting δ = n−1/2, we get (4.4).
As for (4.5), assume that f is differentiable on [0,+∞[ and f ′ ∈

Cb([0,+∞[); then

ω

(
f,
bn − an

n

)
≤ ‖f ′‖∞

bn − an

n
. (2)

Moreover, from [2, Theorem 5.2.4], we obtain, for δ > 0,

|Sn(f)(x) − f(x)| ≤
√
x

n

(
1 +

1
δ

√
x

n

)
ω(f ′, δ). (3)

We notice that, along with f, σn(F ) is differentiable and its derivative is
continuous and bounded. Moreover, for every x ≥ 0 and n ≥ 1,

σn(F )′(x) = f

(
x+

bn
n

)
− f

(
x+

an

n

)
.

Pick now x, y ≥ 0, such that |x − y| < δ; then, arguing as in the
proof of Lemma 4.2, by applying Lagrange’s theorem, there exist ζn,x ∈[
x+ an

n , x+ bn

n

]
and ηn,y ∈ [y + an

n , y + bn

n

]
such that

|σn(F )′(x) − σn(F )′(y)|
=
∣∣∣∣f
(
x+

bn
n

)
− f

(
x+

an

n

)
− f

(
y +

bn
n

)
+ f

(
y +

an

n

)∣∣∣∣

=
bn − an

n
|f ′(ζn,x) − f ′(ηn,y)| ≤ bn − an

n
ω

(
f ′, δ +

bn − an

n

)
.

Hence,

ω(σn(F )′, δ) ≤ bn − an

n
ω

(
f ′, δ +

bn − an

n

)
(4)
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and by (2), (3) and (4),

|Cn(f)(x) − f(x)|
≤ n

bn − an
|Sn(σn(F ))(x) − σn(F )(x)| +

∣∣∣∣
n

bn − an
σn(F )(x) − f(x)

∣∣∣∣

≤ n

bn − an

√
x

n

(
1 +

1
δ

√
x

n

)
ω(σn(F )′, δ) + ω

(
f,
bn − an

n

)

≤
√
x

n

(
1 +

1
δ

√
x

n

)
ω

(
f ′, δ +

bn − an

n

)
+ ‖f ′‖∞

bn − an

n
.

In particular, for δ = n−1/2, we get (4.5). �

We pass now to state some uniform estimates of the rate of convergence.
To this end, some preliminaries are needed.

Lemma 4.4. Let (Cn)n≥1 be the sequence of operators defined by (2.2). Then
∣∣Cn(fλ) (− log x) − xλ

∣∣ ≤ 5λ
4n

(4.6)

for every λ > 0, n ≥ 1 and 0 < x ≤ 1, where fλ is given by (2.9).

Proof. We note that, for every 0 < x ≤ 1, there exists s > 0 such that x = e−s.
Therefore, using [15, Lemma 3.1],

xn(1−e− λ
n ) − xλ ≤ λ

2ne
.

Then, on account of (2.21), (2.10) and (3.2) for every n ≥ 1, λ > 0 and
0 < x ≤ 1 we get
∣∣Cn(fλ) (− log x) − xλ

∣∣ =
∣∣∣∣

n

λ(bn − an)

(
e− λan

n − e− λbn
n

)
xn(1−e− λ

n ) − xλ

∣∣∣∣

≤ n

λ(bn − an)

(
e− λan

n − e− λbn
n

)(
xn(1−e− λ

n ) − xλ

)

+xλ

(
1 − n

λ(bn − an)

(
e− λan

n − e− λbn
n

))

≤ n

λ(bn − an)
e− λan

n

(
1 − e− λ(bn−an)

n

) λ

2ne
+
λ

n
≤ 5λ

4n
.

�

In order to present some uniform estimates, we shall also use a similarity
technique. In other words, given an approximation process (Ln)n≥1 on some
Banach space X, if Φ : X → Y is an isometric isomorphism between X and
another Banach space Y , then it is possible to construct an approximation
process on Y by setting

L∗
n := Φ ◦ Ln ◦ Φ−1 (n ≥ 1).
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In this case, we say that (Ln)n≥1 and (L∗
n)n≥1 are similar or isomorphic.

Clearly, for every u ∈ X,

‖Ln(u) − u‖X = ‖L∗
n(Φ(u)) − Φ(u)‖Y , (4.7)

which transfers the problem of estimating the rate of convergence for (Ln)n≥1

in X to the (possibly easier to handle) sequence (L∗
n)n≥1 in Y .

As a first example of application of this technique, consider the isometric
isomorphism Φ : C∗([0,+∞[) → C ([0, 1]) defined by setting

Φ(f)(t) =

{
f (− log t) if 0 < t ≤ 1,
lim

x→+∞ f(x) if t = 0, for every f ∈ C∗([0,+∞[).

We observe that Φ−1 : C ([0, 1]) → C∗([0,+∞[) is defined as Φ−1(g)(t) :=
g(e−t) for every g ∈ C ([0, 1]) and t ≥ 0.

Moreover, for every n ≥ 1 and g ∈ C ([0, 1]), set

C∗
n(g) := Φ(Cn(Φ−1(g))). (4.8)

A simple computation shows that C∗
n(1) = 1,

C∗
n(ψx)(t) =

{
Cn(f1 − x1)(− log t) if 0 < t ≤ 1,
0 if t = 0 (4.9)

and

C∗
n(ψ2

x)(t) =
{
Cn(f2 − 2xf1 + x21)(− log t) if 0 < t ≤ 1,
0 if t = 0, (4.10)

(x ∈ [0, 1]), where fλ, λ = 1, 2, is defined by (2.9).

Theorem 4.5. Let (Cn)n≥1 be the sequence of operators defined by (2.2) and
acting on C∗([0,+∞[). Then, for every n ≥ 1 and f ∈ C∗([0,+∞[),

‖Cn(f) − f‖∞ ≤ 5
4
√
n
ω

(
Φ(f),

1√
n

)
+

7
2
ω2

(
Φ(f),

1√
n

)
.

Proof. Thanks to the general equality (4.7) we pass to establish a uniform esti-
mate for ‖C∗

n(Φ(f)) − Φ(f)‖∞. To this end we apply [17, Theorem 2.2.1] (see
also [14, Theorem 10]) from which, for every n ≥ 1, f ∈ C∗([0,+∞[), 0 ≤ x ≤ 1
and δ > 0, we get

|C∗
n(Φ(f))(x) − Φ(f)(x)| ≤ |C∗

n(1)(x) − 1||Φ(f)(x)|
+

1
δ
|C∗

n(ψx)(x)|ω(Φ(f), δ) +
(
C∗

n(1)(x) +
1

2δ2
C∗

n(ψ2
x)(x)

)
ω2(Φ(f), δ).

From (4.9) and from estimate (4.6) it follows that

|C∗
n(ψx)(x)| ≤ 5

4n
and, by (4.10),



Vol. 63 (2013) On a Generalization of Szász–Mirakjan–Kantorovich Operators 853

C∗
n(ψ2

x)(x) = Cn(f2)(− log x) − x2 − 2x(Cn(f1)(− log x) − x)≤ 5
2n

+
5
2n

=
5
n
.

Setting δ = n−1/2 the claim is proved. �
4.2. Weighted Uniform Estimates of the Rate of Convergence

Now we present some estimates of the rate of convergence in (3.4). To this end
we have to introduce some preliminaries.

For every n ≥ 1 and x ≥ 0, consider the Borel measure on [0,+∞[

νn,x := wm(x)
n

bn − an
e−nx

∞∑

k=0

(nx)k

k!
νn,k

where each νn,k designates the Borel measure on [0,+∞[ having density
the product of w−1

m and the characteristic function of
[

k+an

n , k+bn

n

]
with

respect to the Borel-Lebesgue measure on [0,+∞[. Clearly, Cb([0,+∞[) ⊂
L1(μn,x, [0,+∞[).

Moreover, for every g ∈ L1(μn,x, [0,+∞[), set

V ∗
n (g)(x) :=

+∞∫

0

g dνn,x ∈ R.

Now, consider the isometric isomorphism Θm : Em → Cb([0,+∞[)
defined by setting Θm(f) = wmf for every f ∈ Em; we observe that
Θ−1

m : Cb([0,+∞[) → Em is defined as Θ−1
m (g) := w−1

m g for every g ∈
Cb([0,+∞[). Finally, for every n ≥ 1, define the positive linear operator
L∗

n : Cb([0,+∞[) → Cb([0,+∞[) by setting, for every g ∈ Cb([0,+∞[),

L∗
n(g) := Θm(Cn(Θ−1

m (g))).

It is easy to prove that, for every n ≥ 1, x ≥ 0 and g ∈ Cb([0,+∞[),

L∗
n(g)(x) = V ∗

n (g)(x) =

+∞∫

0

g dνn,x. (4.11)

Moreover, for every x ≥ 0 and f ∈ Em,

wm(x)|Cn(f)(x) − f(x)| = |Θm(Cn(f))(x) − Θm(f)(x)|
= |L∗

n(Θm(f))(x) − Θm(f)(x)|,
so that, in order to study the rate of convergence in (3.4), it is enough establish
the relevant result for the sequence (L∗

n(Θm(f))(x))n≥1(x ≥ 0).

Theorem 4.6. Consider the sequence (Cn)n≥1 of operators defined by (2.2) and
acting on Em(m ≥ 1). Then, for every f ∈ Em, n ≥ 1 and x ≥ 0,

wm(x)|Cn(f)(x) − f(x)| ≤ dm

n
wm(x)f(x)

+
Km√
n
ω

(
wmf,

1√
n

)
+
[
1 +

dm

n
+
x+K ′

m

2

]
ω2

(
wmf,

1√
n

)
, (4.12)
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where dm is defined by (2.15) and Km and K ′
m are suitable positive constants

depending on m, only.

Proof. Since (4.11) holds, by means of [17, Theorem 2.2.1], for every x ≥ 0, f ∈
Em, n ≥ 1 and δ > 0, we obtain

|L∗
n(Θm(f))(x) − Θm(f)(x)|
≤ |L∗

n(1)(x) − 1||Θm(f)(x)|
+

1
δ
|L∗

n(ψx)(x)|ω(Θm(f), δ) +
[
L∗

n(1)(x) +
1

2δ2
L∗

n(ψ2
x)(x)

]
ω2(Θm(f), δ).

Since, by (2.14),

L∗
n(1)(x) = wm(x)Cn(1 + em)(x) ≤ wm(x) + wm(x)em(x) +

dm

n
= 1 +

dm

n
,

where dm is defined by (2.15), we get

|L∗
n(1)(x) − 1| ≤ dm

n
. (1)

Moreover, from (2.13) and (2.20) it follows that

L∗
n(ψx)(x) = wm(x)Cn((1 + em)ψx)(x)
= wm(x) (Cn(ψx)(x) + Cn(em+1)(x) − xCn(em)(x))

= wm(x)

(
an + bn

2n
+

1
(m+ 2)nm+1

m+1∑

k=0

(
m+ 2
k

)m+1−k∑

p=0

bpna
m+1−k−p
n

×
k∑

j=0

ak,jn
jxj − 1

(m+ 1)nm

m∑

k=0

(
m+ 1
k

)m−k∑

p=0

bpna
m−k−p
n

k∑

j=0

ak,jn
jxj+1

⎞

⎠

=
1
n
wm(x)

⎛

⎝an + bn
2

+
1
nm

m∑

j=0

am+1,jn
jxj +

1
(m+ 2)nm

m∑

k=0

(
m+ 2
k

)

×
m+1−k∑

p=0

bpna
m+1−k−p
n

k∑

j=0

ak,jn
jxj − 1

nm−1

m−1∑

j=0

am,jn
jxj+1

− 1
(m+ 1)nm−1

m−1∑

k=0

(
m+ 1
k

)m−k∑

p=0

bpna
m−k−p
n

k∑

j=0

ak,jn
jxj+1

⎞

⎠ ;

therefore, there exists Km > 0 such that, for every x ≥ 0,

|L∗
n(Ψx)(x)| ≤ Km

n
. (2)

Finally, we prove that for every m ≥ 1 there exists a constant K ′
m > 0

such that
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L∗
n(ψ2

x)(x) = wm(x)Cn(ψ2
x(1 + em))(x) ≤ (x+K ′

m)
n

(3)

for all n ≥ 1 and x ≥ 0.
In fact, since ψ2

xem = em+2 − 2xem+1 + x2em, taking (2.6) and (2.13)
into account, we get

Cn(ψ2
xem)(x) =

1

(m+ 3)nm+2

m+2∑

k=0

(
m+ 3

k

)
m+2−k∑

p=0

bpna
m+2−k−p
n

k∑

j=0

ak,jn
jxj

− 2

(m+ 2)nm+1

m+1∑

k=0

(
m+ 2

k

)
m+1−k∑

p=0

bpna
m+1−k−p
n

k∑

j=0

ak,jn
jxj+1

+
1

(m+ 1)nm

m∑

k=0

(
m+ 1

k

)
m−k∑

p=0

bpna
m−k−p
n

k∑

j=0

ak,jn
jxj+2

=
1

nm+2

m+2∑

j=0

am+2,jn
jxj +

1

(m+ 3)nm+2

m+1∑

k=0

(
m+ 3

k

)
m+2−k∑

p=0

bpna
m+2−k−p
n

×
k∑

j=0

ak,jn
jxj − 2

nm+1

m+1∑

j=0

am+1,jn
jxj+1 − 2

(m+ 2)nm+1

m∑

k=0

(
m+ 2

k

)

×
m+1−k∑

p=0

bpna
m+1−k−p
n

k∑

j=0

ak,jn
jxj+1 +

1

nm

m∑

j=0

am,jn
jxj+2 +

1

(m+ 1)nm

×
m−1∑

k=0

(
m+ 1

k

)
m−k∑

p=0

bpna
m−k−p
n

k∑

j=0

ak,jn
jxj+2 =

1

n

×
((

(m+ 1)(m+ 2)

2
+

1

m+ 3

(
m+ 3

m+ 1

)
1∑

p=0

bpna
1−p
n −m(m+ 1)

− 2

m+ 2

(
m+ 2

m

)
1∑

p=0

bpna
1−p
n +

(m− 1)m

2
+

1

m+ 1

(
m+ 1

m− 1

)

×
1∑

p=0

bpna
1−p
n

)
xm+1 + Fm(x)

)
=

1

n

((
1+

m+ 2

2
(an + bn)−(m+ 1)(an + bn)

+
m

2
(an + bn)

)
xm+1 + Fm(x)

)
=

1

n
(xm+1 + Fm(x)),

where Fm(x) is a polynomial of degree m.
Hence, from (2.20) it follows that

wm(x)Cn(ψ2
x(1 + em))(x)

= wm(x)Cn(ψ2
x)(x) + wm(x)Cn(ψ2

xem)(x)

=
1
n

(
wm(x)

(
x+

a2
n + anbn + b2n

3n

)
+ wm(x)(xm+1 + Fm(x))

)

≤ 1
n

(x+K ′
m),
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for a suitable K ′
m > 0 and, taking (1), (2) and (3) into account, we get (4.12)

when δ = n−1/2. �

In order to estimate the rate of the convergence with respect to the
weighted norm ‖ · ‖m, we introduce the isometric isomorphism Φm : E∗

m →
C ([0, 1]) defined by

Φm(f)(t) =

{
(wmf) (− log t) if 0 < t ≤ 1,
lim

x→+∞(wmf)(x) if t = 0, for every f ∈ E∗
m. (4.13)

We observe that Φ−1
m : C ([0, 1]) → E∗

m is defined as Φ−1
m (g)(t) := w−1

m (t)g(e−t)
for every g ∈ C ([0, 1]) and t ≥ 0.

Moreover, for every n ≥ 1, we consider the similar positive linear operator
W ∗

n : C ([0, 1]) → C ([0, 1]) defined by setting, for every g ∈ C ([0, 1]),

W ∗
n(g) := Φm(Cn(Φ−1

m (g))). (4.14)

Theorem 4.7. Let (Cn)n≥1 be the sequence of operators defined by (2.2) and
acting on E∗

m. Then, for every n ≥ 1 and f ∈ E∗
m,

‖Cn(f) − f‖m ≤ H1,m

n
||Φm(f)||∞

+H2,mω

(
Φm(f),

1√
n

)
+
(

1 +
dm +H3,m

√
n

n

)
ω2

(
Φm(f),

1√
n

)
,

where dm is defined by (2.15) and H1,m,H2,m,H3,m are suitable positive con-
stants which depend on m, only.

Proof. Thanks to (4.7) we establish a uniform estimate for ‖W ∗
n(Φm(f)) −

Φm(f)‖∞. To this end by [17, Theorem 2.2.1] (see also [14, Theorem 10]), for
every n ≥ 1, f ∈ E∗

m, 0 ≤ x ≤ 1 and δ > 0, we get

|W ∗
n(Φm(f))(x) − Φm(f)(x)| ≤ |W ∗

n(1)(x) − 1||Φm(f)(x)|
+

1
δ
|W ∗

n(ψx)(x)|ω(Φm(f), δ) +
(
W ∗

n(1)(x) +
1

2δ2
W ∗

n(ψ2
x)(x)

)
ω2(Φm(f), δ).

From (4.14), (4.13) and Proposition 2.1 it follows that

W ∗
n(1)(x) =

{
(wmCn(1 + em))(− log x) if 0 < x ≤ 1,
1 if x = 0,

W ∗
n(ψx)(x) =

{
(wmCn((1 + em)(f1 − x1)))(− log x) if 0 < x ≤ 1,
0 if x = 0

and

W ∗
n(ψ2

x)(x) =
{

(wmCn((1 + em)(f2 − 2xf1 + x21)))(− log x) if 0 < x ≤ 1,
0 if x = 0,

where fλ, λ = 1, 2, is defined by (2.9).
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Now, fix 0 < x ≤ 1; hence, thanks to (2.13),

|wm(− log x)Cn(1 + em)(− log x) − 1| =
1
n
wm(− log x)Fm−1(− log x),

where Fm−1 is a positive polynomial of degree m − 1 (see Proposition 2.1);
hence, there exists H1,m > 0 such that

||W ∗
n(1) − 1||∞ ≤ H1,m

n
.

Moreover, for every 0 < x ≤ 1, by using (4.10) and the Cauchy–Schwartz
inequality, we get

|W ∗
n(ψx)(x)| ≤ wm(− log x)Cn(|(1 + em)(f1 − x)|)(− log x)

≤ wm(− log x)
√
Cn((1 + em)2)(− log x)

√
Cn((f1 − x)2)(− log x)

= wm(− log x)
√
Cn((1 + em)2)(− log x)

√
C∗

n(ψ2
x)(x).

Then, arguing as in the proof of Theorem 4.5 and since, by (2.13), Lm :=
sup0<x≤1 wm(− log x)

√
Cn((1 + em)2)(− log x) ∈ R, there exists H2,m > 0

such that

|W ∗
n(ψx)(x)| ≤ H2,m√

n
.

Finally, for every 0 < x ≤ 1, we get

W ∗
n(ψ2

x)(x) = wm(− log x)Cn((1 + em)(f2 − 2xf1 + x2))(− log x)

≤ wm(− log x)
√
Cn((1 + em)2)(− log x)

√
Cn(f2 − 2xf1 + x2)2)(− log x)

≤ Lm

√
C∗

n(ψ4
x)(x),

where, again, C∗
n is defined by (4.8).

Because of Lemma 4.4, there exists K3 > 0 such that

C∗
n(ψ4

x)(x) = Cn(f4)(− log x) − x4 − 4x(Cn(f3)(− log x) − x3)

+6x2(Cn(f2)(− log x) − x2) − 4x3(Cn(f1)(− log x) − x) ≤ K3

n
,

so that

W ∗
n(ψ2

x)(x) ≤ H3,m√
n
,

for a suitable constant H3,m > 0 depending on m, only.
Then,

|W ∗
n(Φm(f))(x) − Φm(f)(x)| ≤ H1,m

n
|Φm(f)(x)|

+
1
δ

H2,m√
n
ω(Φm(f), δ) +

(
1 +

dm

n
+

1
δ2
H3,m√
n

)
ω2(Φm(f), δ),

In particular, for δ := n−1/2 we get the required assertion. �
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4.3. Lp-Estimates of the Rate of Convergence

Finally, we deal with the rate of convergence in Theorem 3.5 by means of the
second-order integral modulus of smoothness ω2(f, δ)p in Lp([0, 1]) (for the
definition see, e.g., [10, Chapter 2, § 7]) by using again a similarity technique.

From now on we assume that the sequence (1/(bn − an))n≥1 is bounded.
First of all, consider the isometric isomorphism Φp : Lp([0,+∞[) →

Lp([0, 1]) defined by setting, for every f ∈ Lp([0,+∞[),

Φp(f)(t) =
{
t−

1
p f(− log t) if 0 < t ≤ 1,

S1(f)(0) if t = 0,

S1 being the first Szász–Mirakjan operator (see (2.1)). We note that its inverse
Φ−1

p : Lp([0, 1]) → Lp([0,+∞[) is defined as Φ−1
p (g)(t) := e− t

p g(e−t) for every
g ∈ Lp([0, 1]) and t ≥ 0.

Moreover, for every n ≥ 1, define the similar positive linear operator
P ∗

n : Lp([0, 1]) → Lp([0, 1]) as follows

P ∗
n(g) := Φp(Cn(Φ−1

p (g))) (g ∈ Lp([0, 1])). (4.15)

Before stating the main result, some preliminary lemmas are needed.

Lemma 4.8. For every n ≥ 1, λ > 0 and x ∈]0, 1] we have

0 < xn(1−e− λ
n )−λ − 1 ≤ λ2

2n
x− λ2

2 log
1
x
. (4.16)

Moreover, the function gλ(x) = x− λ2
2 log 1

x (x ∈]0, 1]) belongs to Lp([0, 1])
provided that

λ2p < 2. (4.17)

Proof. Indeed, by means of the classical inequalities 1 − e−x ≥ x − x2/2 and
ex − 1 ≤ xex(x ≥ 0), we get

0 ≤ xn(1−e− λ
n )−λ − 1 ≤ e

λ2
2n log 1

x − 1 ≤ λ2

2n
x− λ2

2n log
1
x

≤ λ2

2n
x− λ2

2 log
1
x
.

�
Lemma 4.9. For every p ∈ [1 + ∞[, x ∈]0, 1], k ≥ 1 and n ≥ ( 1

p + k)2/k,

x
n

(
1−e

− 1
n ( 1

p
+k)

)
− 1

p − xn(1−e
− 1

np )− 1
p +k ≤ 1

n

(
1
p

+ k

)2

log
1
x
.

Proof. First of all, notice that, for every k, n ≥ 1 and p ∈ [1,+∞[

n
(
1 − e− 1

n ( 1
p +k)

)
− 1
p

≤ n
(
1 − e− 1

np

)
− 1
p

+ k.

Moreover, for n ≥
( 1

p + k)2

k
, we have that

n
(
1 − e− 1

n ( 1
p +k)

)
− 1
p

≥ 0,
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since

n
(
1 − e− 1

n ( 1
p +k)

)
− 1
p

≥ k

n
− 1
n2

(
1
p

+ k

)2

≥ 0.

Finally,

n
(
1 − e− 1

np

)
− 1
p

+ k ≥ 0,

because

n
(
1 − e− 1

np

)
− 1
p

+ k ≥ − 1
np2

+ k ≥ 0.

Summing up, for every x ∈]0, 1], k ≥ 1 and n ≥
( 1

p + k)2

k
, we get

x
n

(
1−e

− 1
n ( 1

p
+k)

)
− 1

p − x
n

(
1−e

− 1
np

)
− 1

p +k

= e
−n

(
1−e

− 1
n ( 1

p
+k)− 1

p

)
log 1

x − e
−
(

n

(
1−e

− 1
np

)
− 1

p +k

)
log 1

x

≤ log
1
x

(
n
(
1 − e− 1

np

)
− 1
p

+ k − n
(
1 − e− 1

n ( 1
p +k)

)
+

1
p

)

≤ log
1
x

(
1
p

+ k − n

(
1
n

(
1
p

+ k

)
− 1
n2

(
1
p

+ k

)2
))

=
1
n

(
1
p

+ k

)2

log
1
x
,

where, for the last inequality, we have used again the inequalities 1 − e−x ≤ x
and 1 − e−x ≥ x− x2/2 (x ≥ 0). �

We are now in a position to get the desired Lp-estimate.

Theorem 4.10. Let (Cn)n≥1 be the sequence of positive linear operators
defined by (2.2) and acting on Lp([0,+∞[), p ∈ [1,+∞[. Then, for every
f ∈ Lp([0,+∞[) and n ≥ ( 1

p + 2)2/2,

‖Cn(f) − f‖p ≤ Kp

(
n− 2p

2p+1 ‖Φp(f)‖p + ω2

(
Φp(f), n− p

2p+1

)

p

)
,

where Kp is a positive constant that depends on p, only.

Proof. By applying to the sequence (P ∗
n)n≥1 a result due to Swetits and Wood

(see [18, Theorem 1]), setting

μn,p :=
(

max
{

‖P ∗
n(1) − 1‖p, ‖αn‖p, ‖βn‖

2p
2p+1
p

})1/2

,
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where αn(x) := P ∗
n(ψx)(x) and βn(x) := P ∗

n(ψ2
x)(x)(0 ≤ x ≤ 1), it is enough

to show that

lim
n→+∞μn,p = 0,

in order to obtain that, for every f ∈ Lp([0,+∞[),

‖Cn(f)−f‖p =‖P ∗
n(Φp(f))−Φp(f)‖p ≤Kp

(
μ2

n,p‖Φp(f)‖p+ω2(Φp(f), μn,p)p

)
.

We start by evaluating P ∗
n on 1, ψx and ψ2

x. Taking (4.15), (2.7) and (2.8)
into account, we get

P ∗
n(1)(t) =

{
t−

1
pCn

(
f 1

p

)
(− log t) if 0 < t ≤ 1,

1 if t = 0,

P ∗
n(ψx)(t) =

{
t−

1
pCn

(
f 1

p +1 − xf 1
p

)
(− log t) if 0 < t ≤ 1,

0 if t = 0

and

P ∗
n(ψ2

x)(t) =

{
t−

1
pCn

(
f 1

p +2 − 2xf 1
p +1 + x2f 1

p

)
(− log t) if 0 < t ≤ 1,

0 if t = 0,

where fλ, λ = 1
p ,

1
p + 1, 1

p + 2, is defined by (2.9).
Thanks to (4.16), with λ = 1

p , and (3.2) we get

|P ∗
n(1) − 1| =

∣∣∣∣
np

bn − an

(
e− an

np − e− bn
np

)
xn(1−e

− 1
np )− 1

p − 1
∣∣∣∣

≤ np

bn − an

(
e− an

np − e− bn
np

)(
xn(1−e

− 1
np )− 1

p − 1
)

+1 − np

bn − an

(
e− an

np − e− bn
np

)
≤ 1

2np2
x

− 1
2p2 log

1
x

+
1
np

;

hence

|P ∗
n(1) − 1|p ≤ 2p−1

((
1

2np2

)p

x− 1
2p logp 1

x
+
(

1
np

)p)

so that

‖P ∗
n(1) − 1‖p ≤ Ap

n
(1)

(for a suitable positive constant Ap), since λ = 1
p satisfies (4.17).

In order to estimate ‖αn‖p, fix 0 < x ≤ 1 and n ≥ p−2; taking Lemma
4.9 with k = 1 and (3.2) into account, we have
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|αn(x)| =

∣∣∣∣∣∣
n(

1
p + 1

)
(bn − an)

(
e

−
(

1
p
+1
)

an
n − e

−
(

1
p
+1
)

bn
n

)
x

n

(
1−e

− 1
n ( 1

p
+1)

)
− 1

p

− np

bn − an

(
e

− an
pn − e

− bn
pn

)
x

n

(
1−e

− 1
np

)
− 1

p
+1

∣∣∣∣∣

≤
⎛

⎝1− n(
1
p +1

)
(bn−an)

(
e

−
(

1
p
+1
)

an
n −e−

(
1
p
+1
)

bn
n

)⎞

⎠x
n

(
1−e

− 1
n ( 1

p
+1)

)
− 1

p

+x
n

(
1−e

− 1
n ( 1

p
+1)

)
− 1

p − x
n

(
1−e

− 1
np

)
− 1

p
+1

+

(
1 − pn

bn − an

(
e

− an
pn − e

− bn
np

))
x

n

(
1−e

− 1
np

)
− 1

p
+1

≤ 1

n

(
1

p
+ 1

)
+

1

n

(
1

p
+ 1

)2

log
1

x
+

1

np
.

Then,

|αn(x)|p ≤ 22(p−1) 1
np

((
1
p

+ 1
)p

+
(

1
p

+ 1
)2p

logp 1
x

+
(

1
p

)p
)

and hence ther exists Bp > 0 such that

‖αn‖p ≤ Bp

n
. (2)

In order to evaluate P ∗
n(ψ2

x)(x), by means of Lemma 4.9, for k = 2, and
(3.2), we have that, for every x ∈]0, 1] and n ≥ ( 1

p + 2)2/2,

|P ∗
n(ψ2

x)(x)| = x− 1
p

∣∣∣Cn

(
f 1

p +2

)
(− log x)

−x2Cn

(
f 1

p

)
(− log x) − 2x

(
Cn

(
f 1

p +1

)
(− log x) − xCn

(
f 1

p

)
(− log x)

)∣∣∣

≤
∣∣∣∣∣∣

n(
1
p + 2

)
(bn − an)

(
e−( 1

p +2) an
n − e−( 1

p +2) bn
n

)
x

n

(
1−e

− 1
n ( 1

p
+2)

)
− 1

p

− np

bn − an

(
e− an

pn − e− bn
pn

)
x

n

(
1−e

− 1
np

)
− 1

p +2

∣∣∣∣∣+ 2|P ∗
n(ψx)(x)|

≤
⎛

⎝1 − n(
1
p + 2

)
(bn − an)

(
e−( 1

p +2) an
n − e−( 1

p +2) bn
n

)
⎞

⎠x
n

(
1−e

− 1
n ( 1

p
+2)

)
− 1

p

+x
n

(
1−e

− 1
n ( 1

p
+2)

)
− 1

p − x
n

(
1−e

− 1
np

)
− 1

p +2

+
(

1 − pn

bn − an

(
e− an

pn − e− bn
np

))
x

n

(
1−e

− 1
np

)
− 1

p +2
+ 2|P ∗

n(ψx)(x)|
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≤ 1
n

(
1
p

+ 2
)

+
1
n

(
1
p

+ 2
)2

log
1
x

+
1
np

+ 2|P ∗
n(ψx)(x)|.

Hence,

‖βn‖
2p

2p+1
p ≤ Cp n

− 2p
2p+1 , (3)

for a suitable Cp > 0.
Collecting (1)–(3), there exists a constant Mp that only depends on p,

such that

μn,p ≤ Mp n
− p

2p+1 ,

for any n ≥ ( 1
p + 2)2/2. Then μn,p → 0 as n → +∞ and the claim easily

follows. �

References

[1] Altomare F.: Korovkin-type theorems and approximation by positive linear oper-
ators. Surv. Approx. Theory 5, 92–164 (2010) free available online at http://
www.math.techmion.ac.il/sat/papers/13/

[2] Altomare, F., Campiti, M.: Korovkin-type approximation theory and its appli-
cations, de Gruyter Studies in Mathematics 17. Walter de Gruyter & Co., Berlin
(1994)

[3] Altomare, F., Cappelletti Montano, M., Leonessa, V.: On a generalization
of Kantorovich operators on simplices and hypercubes. Adv. Pure Appl.
Math. 1(3), 359–385 (2010)

[4] Altomare, F., Leonessa, V.: On a sequence of positive linear operators associ-
ated with a continuous selection of Borel measures. Mediterr. J. Math. 3, 363–
382 (2006)

[5] Bauer, H.: Probability theory, de Gruyter Studies in Mathematics 23. Walter de
Gruyter & Co., Berlin (1996)

[6] Becker, M.: Global approximation theorems for Szász–Mirakjan and Baskakov
operators in polynomial weight spaces. Indiana Univ. Math. J. 27(1), 127–
142 (1978)

[7] Bustamante, J., Morales de la Cruz, L.: Korovkin type theorems for weighted
approximation. Int. J. Math. Anal. 26(1), 1273–1283 (2007)

[8] Butzer, P.L.: On the extensions of Bernstein polynomials to the infinite inter-
val. Proc. Amer. Math. Soc. 5, 547–553 (1954)

[9] Cheney, E.W., Sharma, A.: Bernstein power series. Canadian J. of Math.
16(2), 241–264 (1964)

[10] DeVore, R.A., Lorentz, G.G.: Constructive Approximation, Grundlehren der
mathematischen Wissenschaften 303. Springer, Berlin (1993)

[11] Ditzian, Z., Totik, V.: Moduli of smoothness, Springer Series in Computational
Mathematics 9. Springer, New-York (1987)
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Università degli Studi della Basilicata
Viale dell’Ateneo Lucano no. 10, Macchia Romana,
85100, Potenza, Italy
e-mail: vita.leonessa@unibas.it

Received: May 4, 2011.

Accepted: February 11, 2012.


	On a Generalization of Szász--Mirakjan-- Kantorovich Operators
	Abstract
	1. Introduction
	2. Generalizing Szász--Mirakjan--Kantorovich Operators
	3. Approximation Properties
	4. Estimating the Rate of Convergence
	4.1. Pointwise and Uniform Estimates for the Rate of Convergence
	4.2. Weighted Uniform Estimates of the Rate of Convergence
	4.3. Lp-Estimates of the Rate of Convergence

	References


