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Abstract. In this paper, using the exp-function method we obtain some
new exact solutions for (1+1)-dimensional and (2+1)-dimensional Kaup–
Kupershmidt (KK) equations. We show figures of some of the new solu-
tions obtained here. We conclude that the exp-function method presents
a wider applicability for handling nonlinear partial differential equations.
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1. Introduction

In recent years, nonlinear evolution equations(NLEEs) have important role in
several scientific and engineering fields [1–10,21,22]. Many effective and reli-
able methods are used in the literature to investigate exact solutions of NLEEs
[1–10,21,22].

In this study, we consider the (2+1)-dimensional Kaup–Kupershmidt
(KK) equation [11]

9ut + u5x + 15uuxxx+
75
2

uxuxx + 45u2ux + 5σuxxy−5σ∂−1
x uyy + 15σuuy

+15σux∂−1
x uy = 0 (1)

where σ2 = 1, ∂−1
x = ∫d x. If we take u (x, y, t) = u (x, t) , then Eq. (1) becomes

the (1+1)-dimensional KK equation [11]
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9ut + u5x + 15uuxxx +
75
2

uxuxx + 45u2ux = 0 (2)

Some researchers investigated exact solutions of KK equations [11–14].
Recently, Ling and Qiang [11] used the symmetry method and obtained some
new solutions of the (2+1)-dimensional KK equation.

We apply the exp-function method to obtain new solutions of the (1+1)-
dimensional and (2+1)-dimensional KK equations. The exp-function method,
firstly introduced by He and Wu in [15], shown to be effective and reliable
for several nonlinear problems. It was successfully applied to NLEEs [16–21]
and so on. The exp-function method is just a special case of the transformed
rational function method [22], which generates various travelling wave solu-
tions, and is generalized to a multiple exp-function method [23], which gener-
ates multiple wave solutions.

2. The Exp-Function Method

We consider the general nonlinear partial differential equation of the type

P (u, ut, ux, utt, uxx, uxxx, . . .) = 0 (3)

Using a transformation

η = kx + wt (4)

where k and w are constants, we can rewrite Eq. (3) in the following nonlinear
ODE

Q(u, u′, u′′, u′′′, u(iv), u(v), . . .) = 0 (5)

According to the exp-function method [15], we assume that the wave solutions
can be expressed in the following form

u(η) =
∑d

n=−c anexp (nη)
∑q

m=−p bmexp (mη)
(6)

where p, q, d and c are positive integers which are known to be further deter-
mined, an and bm are unknown constants. We can rewrite Eq. (6) in the
following equivalent form.

u(η) =
ac exp (cη) + · · · + a−dexp (−dη)
bp exp (pη) + . . . + b−qexp(−qη)

(7)

This equivalent formulation plays an important and fundamental part for find-
ing the analytic solution of problems. To determine the value of c and p, we
balance the linear term of highest order of Eq. (6) with the highest order non-
linear term. Similarly, to determine the value of d and q, we balance the linear
term of lowest order of Eq. (5) with lowest order non linear term.
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3. Exp-Function Method for (1+1)-Dimensional KK Equation

We consider the (1+1)-dimensional KK equation in the form [11]

9ut + u5x + 15uuxxx +
75
2

uxuxx + 45u2ux = 0 (8)

Introducing a transformation as η = kx + wt, we can convert Eq. (8) into
ordinary differential equation

9wu′ + k5u(5) + 15k3uu′′′ +
75
2

k3u′u′′ + 45ku2u′ = 0 (9)

where the prime denotes the derivative with respect to η. The solution of Eq.
(9) can be expressed in the form

u(η) =
ac exp(cη) + · · · + a−dexp(−dη)
bp exp(pη) + · · · + b−qexp(−qη)

To determine the value of c and p, we balance the linear term of highest order
of Eq. (9) with the highest order nonlinear term

u(5) =
c1 exp[(31p + c)η] + · · ·

c2 exp[(32p)η] + · · · and (10)

u2u′ =
c3 exp[(p + 3c)η] + · · ·

c4 exp[(4p)η] + · · · =
c3 exp[(29p + 3c)η] + · · ·

c4 exp[(32p)η] + · · · (11)

where ci are determined coefficients only for simplicity; balancing the highest
order of exp-function in (10) and (11), we have

31p + c = 29p + 3c which in turn gives (12)
p = c. (13)

To determine the value of d and q, we balance the linear term of lowest order
of Eq. (9) with the lowest order non-linear term

u(5) =
· · · + d1 exp[(−d − 31q)η]

· · · + d2 exp[(−32q)η]
and (14)

uu′′′ =
· · · + d3 exp[(−2d − 7q)η]

· · · + d4 exp[(−9q)η]
=

· · · + d3 exp[(−2d − 30q)η]
. . . + d4 exp[(−32q)η]

(15)

where di are determined coefficients only for simplicity. Now, balancing the
lowest order of exp-function in (14) and (15), we have

−d − 31q = −2d − 30q which in turn gives (16)
q = d. (17)

We can freely choose the values of c and d, but we will illustrate that the final
solution does not strongly depend upon the choice of values of c and d. For
simplicity, we set p = c = 1 and q = d = 1, then the trial solution, Eq. (8)
reduces to

u(η) =
a1exp(η) + a0 + a−1exp(−η)
b1 exp(η) + b0 + b−1exp(−η)

(18)
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Substituting Eq. (18) into Eq. (9) we have
1
A

[c5 exp(5η) + c4 exp(4η) + c3 exp(3η) + c2 exp(2η) + c1 exp(η)

+c0 + c−1 exp(−η) + c−2 exp(−2η) + c−3 exp(−3η)
+c−4 exp(−4η) + c−5 exp(−5η)] = 0 (19)

where A = (b1 exp(η) + b0 + b−1exp(−η))6.
Equating the coefficients of exp (ηn) to be zero, we obtain

{c−5 = 0, c−4 = 0, c−3 = 0, c−2 = 0, c−1 = 0,

c0 = 0, c1 = 0, c2 = 0, c3 = 0, c4 = 0, c5 = 0} (20)

Solution of (20) will yield

a0 = −2k2b0

3
, a−1 =

10k2b−1

3
, a1 = 0, b1 = 0, w = −11k5

9
(21)

We, therefore, obtain the following generalized solitary solution u(x, t) of Eq.
(8)

u(x, t) =
10k2b−1

3 e(−kx+ 11k5
9 t) − 2k2b0

3

b−1e(−kx+ 11k5
9 t) + b0

(22)

where b0, b−1 and k are real numbers. Also we can show Eq. (22) as

u(x, t) =

10k2b−1
3 cosh

(
kx − 11k5

9 t
)

− 10k2b−1
3 sinh

(
kx − 11k5

9 t
)

− 2k2b0
3

b−1 cosh
(
kx − 11k5

9 t
) − b−1 sinh

(
kx − 11k5

9 t
)

+ b0

(23)

Soliton solution of Eq. (8), when b0 = k = 1 and b−1 = −1, is (Fig. 1)

u(x, t) =
10
3 cosh

(
x − 11t

9

) − 10
3 sinh

(
x − 11t

9

)
+ 2

3

cosh
(
x − 11t

9

) − sinh
(
x − 11t

9

) − 1
(24)

4. Exp-Function Method for (2+1)-Dimensional KK Equation

Now, we consider the (2+1)-dimensional KK equation in the form [11]

9ut + u5x + 15uuxxx +
75
2

uxuxx + 45u2ux + 5σuxxy − 5σ∂−1
x uyy

+15σuuy + 15σux∂−1
x uy = 0 (25)

where σ2 = 1, ∂−1
x = ∫d x. Integrating the (2+1)-dimensional KK (25) respect

to x, we get the equivalent form of Eq. (25) as follows

9uxt + u6x + 15uxuxxxx +
75
2

uxxuxxx + 45u2
xuxx + 5σuxxxy

−5σuyy + 15σuxuxy + 15σuxxuy = 0 (26)
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Figure 1. Soliton solution of Eq. (8)

Introducing a transformation as η = kx+ ly+wt, we can convert Eq. (26) into
ordinary differential equation

9wku′′ + k6u(6) + 15k5u′u′′′′ +
75
2

k5u′′u′′′ + 45k4u′2u′′

+5σk3lu′′′′ − 5σl2u′′ + 30σk2lu′u′′ = 0 (27)

where the prime denotes the derivative with respect to η. The solution of
Eq. (27) can be expressed in the form

u(η) =
ac exp (cη) + · · · + a−dexp (−dη)
bp exp (pη) + · · · + b−qexp (−qη)

To determine the value of c and p, we balance the linear term of highest order
of Eq. (27) with the highest order nonlinear term

u(6) =
c1 exp[(63p + c)η] + · · ·

c2 exp[(64p)η] + · · · and (28)

u′2u′′ =
c3 exp[(5p + 3c)η] + · · ·

c4 exp[(8p)η] + · · · =
c3 exp[(61p + 3c)η] + · · ·

c4 exp[(64p)η] + · · · (29)

where ci are determined coefficients only for simplicity; balancing the highest
order of exp-function in (28) and (29), we have
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63p + c = 61p + 3c which in turn gives (30)
p = c. (31)

To determine the value of d and q, we balance the linear term of lowest order
of Eq. (27) with the lowest order non-linear term

u(6) =
· · · + d1 exp[(−d − 63q)η]

· · · + d2 exp[(−64q)η]
and (32)

u′u′′′′ =
· · · + d3 exp[(−2d − 16q)η]

· · · + d4 exp[(−18q)η]
=

· · · + d3 exp[(−2d − 62q)η]
· · · + d4 exp[(−64q)η]

(33)

where di are determined coefficients only for simplicity. Now, balancing the
lowest order of exp-function in (32) and (33), we have

−d − 63q = −2d − 62q which in turn gives (34)
q = d. (35)

We can freely choose the values of c and d, but we will illustrate that the final
solution does not strongly depend upon the choice of values of c and d. For
simplicity, we set p = c = 1 and q = d = 1, then the trial solution of Eq. (26)
reduces to

u(η) =
a1exp(η) + a0 + a−1exp(−η)
b1 exp(η) + b0 + b−1exp(−η)

(36)

Substituting Eq. (36) into Eq. (27) we have

1
A

[c6 exp(6η) + c5 exp(5η) + c4 exp(4η) + c3 exp(3η)

+c2 exp(2η) + c1 exp(η) + c0 + c−1 exp(−η)
+c−2 exp(−2η) + c−3 exp(−3η) + c−4 exp(−4η) + c−5 exp(−5η)
+c−6 exp(−6η)] = 0 (37)

where A = (exp(η) + b0 + b−1exp(−η))7.
Equating the coefficients of exp (ηn) to be zero, we obtain

{c−6 = 0, c−5 = 0, c−4 = 0, c−3 = 0, c−2 = 0, c−1 = 0,

c0 = 0, c1 = 0, c2 = 0, c3 = 0, c4 = 0, c5 = 0, c6 = 0}. (38)

Case 1. Solution of (38) will yield

a0 = 0, a1 =
16kb−1 + a−1

b−1
, b0 = 0, l = −8k3, w =

464k5

9
(39)

We obtain the following generalized solitary solution u(x, y, t) of Eq. (25)

u (x, y, t) =
a−1e

(−kx+8k3y− 464k5
9 t) + 16kb−1+a−1

b−1
e(kx−8k3y+ 464k5

9 t)

b−1e(−kx+8k3y− 464k5
9 t) + e(kx−8k3y+ 464k5

9 t)
(40)
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Figure 2. Soliton solution of Eq. (25) for t = 0. (Case 1)

where a−1, b−1 and k are real numbers. We can also show Eq. (40) as

u (x, y, t)

(
16kb−1+a−1+a−1b−1

b−1

)

cosh
(
kx−8k3y+ 464k5

9
t
)
+

(
16kb−1+a−1−a−1b−1

b−1

)

sinh
(
kx−8k3y+ 464k5

9
t
)

(
b−1+1

)
cosh

(
kx−8k3y+ 464k5

9
t
)
+(−b−1+1) sinh

(
kx−8k3y+ 464k5

9
t
)

(41)

Soliton solution of Eq. (25), when a−1 = k = 1 and b−1 = −1, is (Fig. 2)

u (x, y, t) =
8 cosh

(
x − 8y + 464t

9

)
+ 7 sinh

(
x − 8y + 464t

9

)

sinh
(
x − 8y + 464t

9

) (42)

Case 2. Solution of (38) will yield

a−1 = − 4
27

kb2
0 +

2
9
a0b0, a1 =

kb0 + 3a0

3b0
, b−1 =

2
9
b2
0, l = −k3

4
, w =

k5

16
(43)

We obtain the following generalized solitary solution u(x, y, t) of Eq. (25)

u (x, y, t)=

(− 4
27kb2

0+ 2
9a0b0

)
e(−kx+ k3

4 y−k5
16 t) + a0 +

(
kb0+3a0

3b0

)
e(kx− k3

4 y+ k5
16 t)

2
9b2

0e
(−kx+ k3

4 y− k5
16 t)+b0 + e(kx− k3

4 y+ k5
16 t)

(44)

where a0, b0 and k are real numbers.
Soliton solution of Eq. (25), when a0 = b0 = −1 and k = 1, is (Fig. 3)

u (x, y, t) =
38
27 cosh

(
x − y

4 + t
16

)
+ 34

27 sinh
(
x − y

4 + t
16

) − 1
11
9 cosh

(
x − y

4 + t
16

)
+ 7

9 sinh
(
x − y

4 + t
16

) − 1
(45)
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Figure 3. Soliton solution of Eq. (25) for t = 0. (Case 2)

Case 3. Solution of (38) will yield

a−1 = −kb2
0 +

1
4
a0b0, a1 =

4kb0 + a0

b0
, b−1 =

1
4
b2
0, l = −2k3, w =

29k5

9
(46)

We obtain the following generalized solitary solution u(x, y, t) of Eq. (25)

u (x, y, t)=

(−kb2
0+ 1

4a0b0

)
e(−kx+2k3y− 29k5

9 t)+a0+(4kb0+a0
b0

)e(kx−2k3y+ 29k5
9 t)

1
4b2

0e
(−kx+2k3y− 29k5

9 t)+b0 + e(kx−2k3y+ 29k5
9 t)

(47)

where a0, b0 and k are real numbers.
Soliton solution of Eq. (25), when a0 = 1, b0 = −1 and k = 1, is (Fig. 4)

u (x, y, t) =
7
4 cosh

(
x − 2y + 29t

9

)
+ 17

4 sinh
(
x − 2y + 29t

9

)
+ 1

5
4 cosh

(
x − 2y + 29t

9

)
+ 3

4 sinh
(
x − 2y + 29t

9

) − 1
(48)

Case 4. Solution of (38) will yield

a−1 = 0, a1 =
8kb0 + a0

b0
, b−1 = 0, l = −2k3, w =

29k5

9
(49)



Vol. 63 (2013) (1+1) and (2+1)-Dimensional Kaup–Kupershmidt Equations 683

Figure 4. Soliton solution of Eq. (25) for t = 0. (Case 3)

Figure 5. Soliton solution of Eq. (25) for t = 0. (Case 4)
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We obtain the following generalized solitary solution u(x, y, t) of Eq. (25)

u (x, y, t) =
a0 +

(
8kb0+a0

b0

)
e

(
kx−2k3y+ 29k5

9 t
)

b0 + e

(
kx−2k3y+ 29k5

9 t
) (50)

where a0, b0 and k are real numbers.
Soliton solution of Eq. (25), when a0 = 1, b0 = −1 and k = 1, is

(Fig. 5)

u (x, y, t) =
7 cosh

(
x − 2y + 29t

9

)
+ 7 sinh

(
x − 2y + 29t

9

)
+ 1

cosh
(
x − 2y + 29t

9

)
+ sinh

(
x − 2y + 29t

9

) − 1
(51)

5. Conclusion

In this paper, we applied the exp-function method to present soliton solitons
of (1+1)-dimensional and (2+1)-dimensional Kaup–Kupershmidt (KK) equa-
tions. The solution procedure is very simple and efficient. These results also
show that it is possible to construct directly exact solutions for NLEEs.
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