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Abstract. For a meromorphic function f in the complex plane, we prove
that if f is a finite order transcendental entire function which has a finite
Borel exceptional value a, if f(z + η) �≡ f(z) for some η ∈ C, and if
f(z + η) − f(z) and f(z) share the value a CM, then

a = 0 and
f(z + η) − f(z)

f(z)
= A,

where A is a nonzero constant. We also consider problems on sharing
values of meromorphic functions and their differences when their orders
are not an integer or infinite.
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1. Introduction and Results

Let f and g be two nonconstant meromorphic functions, and let a be a finite
value in the complex plane. We say that f and g share the value a CM (IM)
provided that f−a and g−a have the same zeros counting multiplicities (ignor-
ing multiplicities), that f and g share the value ∞ CM (IM) provided that
f and g have the same poles counting multiplicities (ignoring multiplicities).
Nevanlinna’s four values theorem [13] says that if two nonconstant meromor-
phic functions f and g share four values CM, then f ≡ g or f is a Möbius
transformation of g. The condition “f and g share four values CM” has been



558 Z.-X. Chen and H.-X. Yi Results. Math.

weakened to “f and g share two values CM and two values IM” by Gundersen
[5,6], as well as by Mues [12]. But whether the condition can be weakened
to “f and g share three values IM and another value CM” is still an open
question.

In a special case, we recall a well-known conjecture by Brück [1]:

Conjecture Let f be a nonconstant entire function such that hyper order
σ2(f) < ∞ and σ2(f) is not a positive integer. If f and f ′ share the finite
value a CM, then

f ′ − a

f − a
= c

where c is a nonzero constant.
We use the standard notations of the Nevanlinna’s value distribution

theory of meromorphic functions (see [8,15]). In addition, we use the notation
λ(f) for the exponent of convergence of the sequence of zeros of a meromorphic
function f , and σ(f) to denote the order growth of f. Finally, σ2(f) denotes
hyper-order (see [16]) of f which is defined by

σ2(f) = lim
r→∞

log log T (r, f)
log r

.

The conjecture has been verified in the special cases when a = 0 [1], or
when f is of finite order [7], or when σ2(f) < 1

2 [2].
Recently, many authors [9–11] started to consider sharing values of mer-

omorphic functions with their shifts.
Heittokangas et al. proved the following theorems.

Theorem A. (see [9]) Let f be a meromorphic function with σ(f) < 2, and let
c ∈ C. If f(z) and f(z + c) share the values a ∈ C and ∞ CM, then

f(z + c) − a

f(z) − a
= τ

for some constant τ .

In [9], Heittokangas et al. give the example f(z) = ez2
+ 1 which shows

that σ(f) < 2 cannot be relaxed to σ(f) ≤ 2.

Theorem B. (see [10]) Let f be a meromorphic function of finite order, let c ∈
C. If f(z) and f(z+c) share three distinct periodic functions a1, a2, a3 ∈ ̂S(f)
with period c CM (where ̂S(f) = S(f)

⋃{∞}, S(f) denotes the family of all
meromorphic functions which are small compared to f), then f(z) = f(z + c)
for all z ∈ C.

It is well known that Δf(z) = f(z + η)− f(z) (where η ∈ C is a constant
satisfying f(z + η) − f(z) �≡ 0) is regarded as the difference counterpart of f ′.
So, we consider the problem that Δf(z) and f(z) share one value a CM, and
prove the following theorem.
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Theorem 1.1. Let f be a finite order transcendental entire function which has a
finite Borel exceptional value a, and let η ∈ C be a constant such that f(z+η) �≡
f(z). If Δf(z) = f(z + η) − f(z) and f(z) share the value a CM, then

a = 0 and
f(z + η) − f(z)

f(z)
= A,

where A is a nonzero constant.

Remark 1.1. Theorem 1.1 shows that if f has a nonzero finite Borel excep-
tional value a, then for any η �= 0, the valuea is not shared by f(z + η) − f(z)
and f(z). For example, the function f(z) = ez + 1 has the Borel exceptional
value 1. Clearly, for any η �= 2kπi, k ∈ Z, the value 1 is not shared by
f(z + η) − f(z) (= (eη − 1) ez) and f(z).

Remark 1.2. In Theorem 1.1, the constant A is related to η. For example, the
function f(z) = ez for η �= 2kπi, k ∈ Z, satisfies

f(z + η) − f(z)
f(z)

= eη − 1 = A.

The other aim of this paper is to consider that what can we say if the
condition “f has a finite Borel exceptional value” is omitted? We obtain the
following Theorems 1.2 and Corollary 1.3.

Theorem 1.2. Let f be a transcendental meromorphic function such that its
order of growth σ(f) is not an integer or infinite, and let η ∈ C be a constant
such that f(z + η) �≡ f(z). If Δf(z) = f(z + η) − f(z) and f(z) share three
distinct values a, b, ∞ CM, then

f(z + η) = 2f(z).

Corollary 1.3. Let f be a transcendental entire function such that its order of
growth σ(f) is not an integer or infinite, and let η ∈ C be a constant such that
f(z + η) �≡ f(z). If Δf(z) = f(z + η) − f(z) and f(z) share two distinct finite
values a, b CM, then

f(z + η) = 2f(z).

Example 1.1. Suppose that f(z) = ezD(z), where D(z) is a periodic func-
tion with a period log 2, and its order of growth σ(D) is not an integer or
infinite. Thus, f(z + log 2) − f(z) and f(z) share values 1, 2 CM, and sat-
isfy f(z + log 2) = 2f(z). (By [14, Theorem 1, or 9, pp.354], we see that for
any σ ∈ [1,∞) there exists a prime periodic entire function D(z) of order
σ(D) = σ).

This example shows existence of functions which satisfy the conditions of
Theorem 1.2.

Example 1.2. The functions f1(z) = ez and f2(z) = ezeS(z) where S(z) is a
periodic function with a period log 2, such that σ(f1) = 1 and σ(f2) = ∞. For
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fj (j = 1, 2), we see that fj(z + log 2) − fj(z) and fj(z) share values 1, 2,∞
CM, and fj(z + log 2) = 2fj(z).

Thus, we conjecture that in Theorem 1.2, the condition “order of growth
σ(f) is not an integer or infinite” can be omitted. But now we are unable to
prove it.

2. Proof of Theorem 1.1

We need the following lemmas for the proof of Theorem 1.1.

Lemma 2.1. (see [3]) Let f be a meromorphic function with a finite order σ, η
be a nonzero constant. Let ε > 0 be given, then exists a subset E ⊂ (1,∞) with
finite logarithmic measure such that for all z satisfying |z| = r �∈ E

⋃

[0, 1], we
have

exp{−rσ−1+ε} ≤
∣

∣

∣

∣

f(z + η)
f(z)

∣

∣

∣

∣

≤ exp{rσ−1+ε}.

Lemma 2.2. (see [4, p. 69–70 or 16, p. 79–80]) Suppose that n ≥ 2 and let
f1, · · · , fn be meromorphic functions and g1, . . . , gn be entire functions such
that
(i)

∑n
j=1 fj exp{gj} ≡ 0;

(ii) when 1 ≤ j < k ≤ n, gj − gk is not constant;
(iii) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T (r, fj) = o{T (r, exp{gh − gk})} (r → ∞, r �∈ E),

where E ⊂ (1,∞) has finite linear measure or finite logarithmic measure.

Then fj ≡ 0, j = 1, · · · , n.

2.1. Proof of Theorem 1.1

Since f has the finite Borel exceptional value a, we see that f can be written
as

f(z) = H(z)eh(z) + a (2.1)

where H �≡ 0 is an entire function, h is a polynomial, H and h satisfy

λ(H) = σ(H) = λ(f − a) < σ(f) = deg h. (2.2)

Since Δf(z) and f(z) share the value a CM, then

Δf(z) − a

f(z) − a
=

H(z + η)eh(z+η) − H(z)eh(z) − a

H(z)eh(z)
= eP (z), (2.3)

where P is a polynomial. Set

h(z)=akzk + ak−1z
k−1 + · · · + a0, P (z)=bsz

s + bs−1z
s−1 + · · · + b0 (2.4)
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where k = σ(f), s = deg P , ak(�= 0), ak−1, · · · , a0, bs(�= 0), bs−1, · · · , b0 are
constants. By (2.3), we see that

deg P ≤ deg h.

First step We prove P is a constant, that is s = 0. To this end, we will
deduce a contradiction for cases 1 ≤ s < k and s = k respectively.

Case I. Suppose that 1 ≤ s < k.

If a �= 0, then by (2.3), we obtain

H(z + η)eh(z+η)−h(z) − H(z) − H(z)eP (z) = ae−h(z). (2.5)

Since deg(h(z + η) − h(z)) = k − 1, deg h = k, deg P = s < k and
σ(H) < k, we see that the order of growth of the left side of (2.5) is less than
k, and the order of growth of the right side of (2.5) is equal to k. This is a
contradiction.

If a = 0, then by (2.3), we obtain

H(z + η)
H(z)

eh(z+η)−h(z) − 1 = eP (z). (2.6)

By (2.6), we see that H(z+η)
H(z) is a nonzero entire function. Set σ(H) = σ1. Then

σ1 < σ(f) = k. By Lemma 2.1, we see that for any given ε (0 < 3ε < k − σ1),
there exists a set E ⊂ (1,∞) of finite logarithmic measure, such that for all z
satisfying |z| = r �∈ [0, 1]

⋃

E,

exp
{−rσ1−1+ε

} ≤
∣

∣

∣

∣

H(z + η)
H(z)

∣

∣

∣

∣

≤ exp
{

rσ1−1+ε
}

. (2.7)

Since H(z+η)
H(z) is an entire function, by (2.7) we see that

T

(

r,
H(z + η)

H(z)

)

= m

(

r,
H(z + η)

H(z)

)

≤ rσ1−1+ε,

so that,

σ

(

H(z + η)
H(z)

)

≤ σ1 − 1 + ε < k − 1. (2.8)

Since s < k, we see that deg P ≤ k − 1. If deg P < k − 1, then by (2.8) and
deg(h(z + η) − h(z)) = k − 1, we see that the order of growth of the left side
of (2.6) is equal to k − 1, and the order of growth of the right side of (2.6) is
equal to deg P which is less than k − 1. This is a contradiction.

If deg P = k−1, then since H(z+η)
H(z) is an entire function and deg(h(z+η)−

h(z)) = k − 1, by (2.8), we see that the entire function H(z+η)
H(z) eh(z+η)−h(z) has

a Borel exceptional value 0, thus the value 1 must be not its Borel exceptional
value. Hence, the left side of (2.6), H(z+η)

H(z) eh(z+η)−h(z) − 1, has infinitely many
zeros, but the right side of (2.6), eP , has no zero. This is a contradiction.
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Case II. Suppose that 1 ≤ s = k. Thus, for P and h, there are three subcases:
(1) bk = ak; (2) bk = −ak; (3) bk �= ak and bk �= −ak.

Subcase (1) Suppose that bk = ak. First we suppose that a �= 0. Thus,
(2.3) is rewritten as

g11(z)eP (z) + g12(z)e−h(z) + g13(z)eh0(z) = 0, (2.9)

where h0(z) = 0 and
⎧

⎨

⎩

g11(z) = −H(z)
g12(z) = −a
g13(z) = H(z + η)eh(z+η)−h(z) − H(z).

Since deg(h(z + η) − h(z)) = k − 1 and σ(H) < k, we see that

σ(g1j(z)) < k (j = 1, 2, 3).

On the other hand, by bk = ak, we see that

deg(P − (−h)) = k, deg(P − h0) = k, deg(−h − h0) = k.

Since eP−(−h), eP−h0 and e−h−h0 are of regular growth, and σ(g1j) < k (j =
1, 2, 3), we see that for j = 1, 2, 3

⎧

⎨

⎩

T (r, g1j) = o
(

T
(

r, eP−(−h)
))

;
T (r, g1j) = o

(

T
(

r, eP−h0
))

;
T (r, g1j) = o

(

T
(

r, e−h−h0
))

.
(2.10)

Thus, applying Lemma 2.2 to (2.9), by (2.10), we obtain that

g1j(z) ≡ 0 (j = 1, 2, 3).

Clearly, this is a contradiction.
Now we suppose that a = 0. Thus, (2.3) is rewritten as

H(z)eP (z) = H(z + η)eh(z(z+η)−h(z) − H(z). (2.11)

Since H �≡ 0, σ(H) < k, deg P = s = k and deg(h(z + η) − h(z)) = k − 1,
we see that the order of growth of the left side of (2.11) is equal to k, and the
order of growth of the right side of (2.11) is less than k. This is a contradiction.

Subcase (2) Suppose that bk = −ak. First we suppose that a �= 0.
Thus, (2.3) is rewritten as

[

a + H(z)eP (z)+h(z)
]

e−h(z) = H(z + η)eh(z+η)−h(z) − H(z). (2.12)

We affirm that a+H(z)eP (z)+h(z) �≡ 0. In fact, if a+H(z)eP (z)+h(z) ≡ 0, then
by (2.12), we obtain

H(z + η)eh(z+η)−h(z) − H(z) ≡ 0,

that is

H(z + η)eh(z+η) ≡ H(z)eh(z),
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this contradicts our condition f(z + η) �≡ f(z). Hence a + H(z)eP (z)+h(z) �≡ 0.
Thus, since deg(P + h) ≤ k − 1, deg(−h) = k, deg(h(z + η) − h(z)) = k − 1
and σ(H) < k, we see that the order of growth of the left side of (2.12) is equal
to k, and the order of growth of the right side of (2.12) is less than k. This is
a contradiction.

Now we suppose that a = 0. Thus, (2.3) is rewritten as (2.11). Using the
same method as in the proof of Subcase (1), we get a contradiction.

Subcase (3) Suppose that bk �= ak and bk �= −ak. First we suppose that
a �= 0. Thus, (2.3) is rewritten as (2.9). Since bk �= ak and bk �= −ak, we see
that

deg(P − (−h)) = k, deg(P − h0) = k, and deg(−h − h0) = k. (2.13)

Using the same method as in Subcase (1), we deduce that

g1j ≡ 0 (j = 1, 2, 3).

Clearly, this is a contradiction.
Now we suppose that a = 0. Thus, (2.3) is rewritten as (2.11). Using the

same method as in the proof of Subcase (1), we get a contradiction.
Thus, we have proved that P is only a constant, that is

f(z + η) − f(z) − a

f(z) − a
= A (2.14)

where A is a nonzero constant.
Second step We prove that a = 0. Suppose that a �= 0. Thus, by (2.1)

and (2.14), we deduce that

H(z + η)eh(z+η)−h(z) − (1 + A)H(z) = ae−h(z) (2.15)

Thus, since deg(h(z + η) − h(z)) = k − 1, σ(H) < k and deg h = k, we see
that the order of growth of the left side of (2.15) is less than k, and the order
of growth of the right side of (2.15) is equal to k. This is a contradiction.

Hence, a = 0 and Theorem 1.1 is proved.

3. Proof of Theorem 1.2

Since f is a finite order meromorphic function, and f(z + η) − f(z) and f(z)
share the values a and ∞ CM, then

f(z + η) − f(z) − a

f(z) − a
= eh1(z), (3.1)

where h1 is a polynomial with deg h1 ≤ σ(f). Since σ(f) is not an integer, we
see that

deg h1 < σ(f). (3.2)
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By (3.1), we obtain

f(z + η) −
[

1 + eh1(z)
]

f(z) = a − aeh1(z). (3.3)

Similarly, since f(z +η)−f(z) and f(z) share the values b and ∞ CM, we can
obtain

f(z + η) −
[

1 + eh2(z)
]

f(z) = b − beh2(z), (3.4)

where h2 is a polynomial, and satisfies

deg h2 < σ(f). (3.5)

By (3.3) and (3.4), we obtain
[

eh2(z) − eh1(z)
]

f(z) = a − b + beh2(z) − aeh1(z). (3.6)

We affirm eh2(z) − eh1(z) ≡ 0. In fact, if eh2(z) − eh1(z) �≡ 0, then by (3.2) and
(3.5), we see that the order of growth of the left side of (3.6) is equal to σ(f),
but the order of growth of the right side of (3.6) is less than σ(f). This is a
contradiction.

Hence eh2(z) ≡ eh1(z), so that by (3.6), we obtain

(a − b)
[

1 − eh2(z)
]

= 0. (3.7)

By (3.7) and a �= b, we obtain

eh1(z) = eh2(z) = 1. (3.8)

Hence, by (3.1) and (3.8) we deduce that

f(z + η) ≡ 2f(z).

Thus, Theorem 1.2 is proved.
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