Results. Math. 63 (2013), 557–565 -c 2011 Springer Basel AG 1422-6383/13/010557-9 *published online* November 18, 2011 published online November 18, 2011
DOI 10.1007/s00025-011-0217-7 **Results in Mathematics**

On Sharing Values of Meromorphic Functions and Their Differences

Zong-Xuan Chen and Hong-Xun Yi

This research was supported by the National Natural Science Foundation of China (*No: 11171119, 11171184*)*.*

Abstract. For a meromorphic function f in the complex plane, we prove that if f is a finite order transcendental entire function which has a finite Borel exceptional value a, if $f(z + \eta) \neq f(z)$ for some $\eta \in \mathbb{C}$, and if $f(z + \eta) - f(z)$ and $f(z)$ share the value a CM, then

$$
a = 0 \quad \text{and} \quad \frac{f(z + \eta) - f(z)}{f(z)} = A,
$$

where A is a nonzero constant. We also consider problems on sharing values of meromorphic functions and their differences when their orders are not an integer or infinite.

Mathematics Subject Classfication (2010). 39A10, 30D35.

Keywords. Complex difference, meromorphic function, Borel exceptional value, sharing value.

1. Introduction and Results

Let f and g be two nonconstant meromorphic functions, and let a be a finite value in the complex plane. We say that f and q share the value a CM (IM) provided that $f-a$ and $g-a$ have the same zeros counting multiplicities (ignoring multiplicities), that f and g share the value ∞ CM (IM) provided that f and g have the same poles counting multiplicities (ignoring multiplicities). Nevanlinna's four values theorem [\[13](#page-8-0)] says that if two nonconstant meromorphic functions f and g share four values CM, then $f \equiv g$ or f is a Möbius transformation of g. The condition "f and g share four values CM " has been weakened to "f and g share two values CM and two values IM" by Gundersen [\[5,](#page-8-1)[6\]](#page-8-2), as well as by Mues [\[12](#page-8-3)]. But whether the condition can be weakened to "f and q share three values IM and another value CM " is still an open question.

In a special case, we recall a well-known conjecture by Brück $[1]$:

Conjecture *Let* f *be a nonconstant entire function such that hyper order* $\sigma_2(f) < \infty$ and $\sigma_2(f)$ is not a positive integer. If f and f' share the finite
value a CM then *value* a *CM, then*

$$
\frac{f'-a}{f-a} = c
$$

where c *is a nonzero constant.*

We use the standard notations of the Nevanlinna's value distribution theory of meromorphic functions (see [\[8,](#page-8-4)[15](#page-8-5)]). In addition, we use the notation $\lambda(f)$ for the exponent of convergence of the sequence of zeros of a meromorphic function f, and $\sigma(f)$ to denote the order growth of f. Finally, $\sigma_2(f)$ denotes hyper-order (see $[16]$) of f which is defined by

$$
\sigma_2(f) = \overline{\lim_{r \to \infty}} \frac{\log \log T(r, f)}{\log r}.
$$

The conjecture has been verified in the special cases when $a = 0$ [\[1](#page-7-0)], or f is of finite order [7] or when $\sigma_0(f) < \frac{1}{s}$ [9] when f is of finite order [\[7](#page-8-7)], or when $\sigma_2(f) < \frac{1}{2}$ [\[2\]](#page-7-1).
Recently many authors [9-11] started to cons

Recently, many authors [\[9](#page-8-8)[–11](#page-8-9)] started to consider sharing values of meromorphic functions with their shifts.

Heittokangas et al. proved the following theorems.

Theorem A. (see [\[9](#page-8-8)]) Let f be a meromorphic function with $\sigma(f) < 2$, and let $c \in \mathbb{C}$ *. If* $f(z)$ *and* $f(z+c)$ *share the values* $a \in \mathbb{C}$ *and* ∞ *CM, then*

$$
\frac{f(z+c)-a}{f(z)-a} = \tau
$$

for some constant τ *.*

In [\[9](#page-8-8)], Heittokangas et al. give the example $f(z) = e^{z^2} + 1$ which shows $\sigma(f) < 2$ cannot be relaxed to $\sigma(f) < 2$ that $\sigma(f) < 2$ cannot be relaxed to $\sigma(f) \leq 2$.

Theorem B. (see [\[10](#page-8-10)]) Let f be a meromorphic function of finite order, let $c \in \mathbb{C}$ if $f(x)$ and $f(x|a)$ above three distinct periodic functions $a_1, a_2 \in \mathbb{C}(\mathbb{C})$ that $\sigma(f) < 2$ cannot be relaxed to $\sigma(f) \leq 2$.
 Theorem B. (see [10]) Let f be a meromorphic function of finite order, let
 \mathbb{C} . If $f(z)$ and $f(z+c)$ share three distinct periodic functions $a_1, a_2, a_3 \in \widehat{S}$
 \mathbb{C} . If $f(z)$ and $f(z+c)$ share three distinct periodic functions $a_1, a_2, a_3 \in S(f)$ **Theorem B.** (see [10]) Let $f \in C$. If $f(z)$ and $f(z+c)$ share
with period c CM (where \widehat{S}
meromorphic functions while $S(f) = S(f) \cup \{\infty\}$, $S(f)$ denotes the family of all
charge small compared to f) then $f(z) = f(z+c)$ *meromorphic functions which are small compared to f), then* $f(z) = f(z + c)$ *for all* $z \in \mathbb{C}$ *.*

It is well known that $\Delta f(z) = f(z + \eta) - f(z)$ (where $\eta \in \mathbb{C}$ is a constant satisfying $f(z+\eta) - f(z) \neq 0$ is regarded as the difference counterpart of f'.
So we consider the problem that $\Delta f(z)$ and $f(z)$ share one value g CM and So, we consider the problem that $\Delta f(z)$ and $f(z)$ share one value a CM, and prove the following theorem.

Theorem 1.1. *Let* f *be a finite order transcendental entire function which has a finite Borel exceptional value a, and let* $n \in \mathbb{C}$ *be a constant such that* $f(z+n) \neq$ f(z). If $\Delta f(z) = f(z + \eta) - f(z)$ and $f(z)$ share the value a CM, then

$$
a = 0 \quad and \quad \frac{f(z+\eta) - f(z)}{f(z)} = A,
$$

where A *is a nonzero constant.*

Remark 1.1*.* Theorem [1.1](#page-1-0) shows that if f has a nonzero finite Borel exceptional value a, then for any $\eta \neq 0$, the value is not shared by $f(z + \eta) - f(z)$ and $f(z)$. For example, the function $f(z) = e^z + 1$ has the Borel exceptional value 1. Clearly, for any $\eta \neq 2k\pi i$, $k \in \mathbb{Z}$, the value 1 is not shared by $f(z + \eta) - f(z)$ (= $(e^{\eta} - 1) e^{z}$) and $f(z)$.

Remark 1.2. In Theorem [1.1,](#page-1-0) the constant A is related to η . For example, the function $f(z) = e^z$ for $\eta \neq 2k\pi i$, $k \in \mathbb{Z}$, satisfies

$$
\frac{f(z+\eta)-f(z)}{f(z)}=e^{\eta}-1=A.
$$

The other aim of this paper is to consider that what can we say if the condition " f has a finite Borel exceptional value" is omitted? We obtain the following Theorems [1.2](#page-1-1) and Corollary [1.3.](#page-2-0)

Theorem 1.2. *Let* f *be a transcendental meromorphic function such that its order of growth* $\sigma(f)$ *is not an integer or infinite, and let* $\eta \in \mathbb{C}$ *be a constant such that* $f(z + \eta) \neq f(z)$ *. If* $\Delta f(z) = f(z + \eta) - f(z)$ *and* $f(z)$ *share three distinct values* a, b, ∞ *CM, then*

$$
f(z+\eta) = 2f(z).
$$

Corollary 1.3. *Let* f *be a transcendental entire function such that its order of growth* $\sigma(f)$ *is not an integer or infinite, and let* $\eta \in \mathbb{C}$ *be a constant such that* $f(z + \eta) \neq f(z)$ *.* If $\Delta f(z) = f(z + \eta) - f(z)$ and $f(z)$ share two distinct finite *values* a, b *CM, then*

$$
f(z+\eta) = 2f(z).
$$

Example 1.1. Suppose that $f(z) = e^z D(z)$, where $D(z)$ is a periodic function with a period log 2, and its order of growth $\sigma(D)$ is not an integer or infinite. Thus, $f(z + \log 2) - f(z)$ and $f(z)$ share values 1, 2 CM, and satisfy $f(z + \log 2) = 2f(z)$. (By [\[14,](#page-8-11) Theorem 1, or 9, pp.354], we see that for any $\sigma \in [1,\infty)$ there exists a prime periodic entire function $D(z)$ of order $\sigma(D) = \sigma$).

This example shows existence of functions which satisfy the conditions of Theorem [1.2.](#page-1-1)

Example 1.2. The functions $f_1(z) = e^z$ and $f_2(z) = e^z e^{S(z)}$ where $S(z)$ is a periodic function with a period log 2, such that $\sigma(f_1) = 1$ and $\sigma(f_2) = \infty$. For

 f_j (j = 1, 2), we see that $f_j(z + \log 2) - f_j(z)$ and $f_j(z)$ share values $1, 2, \infty$ CM, and $f_i(z + \log 2) = 2f_i(z)$.

Thus, we conjecture that in Theorem [1.2,](#page-1-1) the condition "order of growth $\sigma(f)$ is not an integer or infinite" can be omitted. But now we are unable to prove it.

2. Proof of Theorem [1.1](#page-1-0)

We need the following lemmas for the proof of Theorem [1.1.](#page-1-0)

Lemma 2.1. (see [\[3\]](#page-7-2)) *Let* f *be a meromorphic function with a finite order* σ , η *be a nonzero constant. Let* $\varepsilon > 0$ *be given, then exists a subset* $E \subset (1,\infty)$ *with* finite logarithmic measure such that for all z satisfying $|z| = r \notin E$ [[0, 1] we *f* we need the following lemmas for the proof of Theorem 1.1.
 Lemma 2.1. (see [3]) Let f be a meromorphic function with a finite order σ , η be a nonzero constant. Let $\varepsilon > 0$ be given, then exists a subset $E \subset$ *have* $hat for all$

$$
\exp\{-r^{\sigma-1+\varepsilon}\} \le \left|\frac{f(z+\eta)}{f(z)}\right| \le \exp\{r^{\sigma-1+\varepsilon}\}.
$$

Lemma 2.2. (see [\[4](#page-7-3), p. 69–70 or 16, p. 79–80]) *Suppose that* $n \ge 2$ *and let* f_1, \dots, f_n *be meromorphic functions and* g_1, \dots, g_n *be entire functions such that*
(i) $\sum_{i=1}^n f_j \exp\{g_i\} \equiv 0$; f_1, \dots, f_n be meromorphic functions and g_1, \dots, g_n be entire functions such *that*

- $\sum_{i=1}^{n} f_j \exp\{g_j\} \equiv 0;$
- (ii) when $1 \leq j < k \leq n$, $g_j g_k$ *is not constant;*

(iii) *when* $1 \leq j \leq n$, $1 \leq h < k \leq n$,

 $T(r, f_i) = o\{T(r, \exp\{g_h - g_k\})\}$ $(r \to \infty, r \notin E)$,

where $E \subset (1,\infty)$ *has finite linear measure or finite logarithmic measure.*

Then $f_j \equiv 0, \quad j = 1, \cdots, n$.

2.1. Proof of Theorem [1.1](#page-1-0)

Since f has the finite Borel exceptional value a , we see that f can be written as

$$
f(z) = H(z)e^{h(z)} + a
$$
 (2.1)

where $H \not\equiv 0$ is an entire function, h is a polynomial, H and h satisfy

$$
\lambda(H) = \sigma(H) = \lambda(f - a) < \sigma(f) = \deg h. \tag{2.2}
$$

Since $\Delta f(z)$ and $f(z)$ share the value a CM, then

$$
\frac{\Delta f(z) - a}{f(z) - a} = \frac{H(z + \eta)e^{h(z + \eta)} - H(z)e^{h(z)} - a}{H(z)e^{h(z)}} = e^{P(z)},\tag{2.3}
$$

where P is a polynomial. Set

$$
h(z) = a_k z^k + a_{k-1} z^{k-1} + \dots + a_0, \quad P(z) = b_s z^s + b_{s-1} z^{s-1} + \dots + b_0 \quad (2.4)
$$

where $k = \sigma(f)$, $s = \deg P$, $a_k (\neq 0)$, $a_{k-1}, \cdots, a_0, b_s (\neq 0)$, b_{s-1}, \cdots, b_0 are constants. By (2.3) , we see that

$$
\deg P \le \deg h.
$$

First step We prove P is a constant, that is $s = 0$. To this end, we will deduce a contradiction for cases $1 \leq s < k$ and $s = k$ respectively.

Case I. Suppose that $1 \leq s \leq k$.

If $a \neq 0$, then by (2.3) , we obtain

$$
H(z+\eta)e^{h(z+\eta)-h(z)} - H(z) - H(z)e^{P(z)} = ae^{-h(z)}.
$$
\n(2.5)

Since $\deg(h(z + \eta) - h(z)) = k - 1$, $\deg h = k$, $\deg P = s < k$ and $\deg k$ we see that the order of growth of the left side of (2.5) is less than $\sigma(H) < k$, we see that the order of growth of the left side of (2.5) is less than k, and the order of growth of the right side of (2.5) is equal to k. This is a contradiction.

If $a = 0$, then by (2.3) , we obtain

$$
\frac{H(z+\eta)}{H(z)}e^{h(z+\eta)-h(z)} - 1 = e^{P(z)}.
$$
\n(2.6)

By [\(2.6\)](#page-4-1), we see that $\frac{H(z+\eta)}{H(z)}$ is a nonzero entire function. Set $\sigma(H) = \sigma_1$. Then $\sigma_1 < \sigma(f) = k$. By Lemma 2.1, we see that for any given ε $(0 < 3\varepsilon < k - \sigma_1)$, there exists a set $E \subset (1, \infty)$ of finite logarithm $\sigma_1 < \sigma(f) = k$. By Lemma [2.1,](#page-3-1) we see that for any given ε $(0 < 3\varepsilon < k - \sigma_1)$,
there exists a set $E \subset (1, \infty)$ of finite logarithmic measure, such that for all z there exists a set $E \subset (1,\infty)$ of finite logarithmic measure, such that for all z
satisfying $|z| = r \notin [0,1]$ | F. set $E \subset (1, \infty)$ of $= r \notin [0, 1] \cup E$,
exp $\{-r^{\sigma_1-1+\epsilon}\}$ $\frac{1}{1}$ stratify given c (c)

hmic measure, su
 $\leq \exp\left\{r^{\sigma_1-1+\varepsilon}\right\}$

$$
\exp\left\{-r^{\sigma_1 - 1 + \varepsilon}\right\} \le \left|\frac{H(z + \eta)}{H(z)}\right| \le \exp\left\{r^{\sigma_1 - 1 + \varepsilon}\right\}.
$$
 (2.7)

Since $\frac{H(z+\eta)}{H(z)}$ is an entire function, by [\(2.7\)](#page-4-2) we see that

$$
T\left(r, \frac{H(z+\eta)}{H(z)}\right) = m\left(r, \frac{H(z+\eta)}{H(z)}\right) \leq r^{\sigma_1 - 1 + \varepsilon},
$$

so that,

$$
\sigma\left(\frac{H(z+\eta)}{H(z)}\right) \le \sigma_1 - 1 + \varepsilon < k - 1. \tag{2.8}
$$

Since $s < k$, we see that deg $P \leq k - 1$. If deg $P < k - 1$, then by [\(2.8\)](#page-4-3) and $\deg(h(z+n) - h(z)) = k - 1$, we see that the order of growth of the left side $deg(h(z + \eta) - h(z)) = k - 1$, we see that the order of growth of the left side of [\(2.6\)](#page-4-1) is equal to $k-1$, and the order of growth of the right side of (2.6) is equal to deg P which is less than $k - 1$. This is a contradiction.

If deg $P = k-1$, then since $\frac{H(z+\eta)}{H(z)}$ is an entire function and deg($h(z+\eta)$ − $h(z) = k - 1$, by [\(2.8\)](#page-4-3), we see that the entire function $\frac{H(z+\eta)}{H(z)}e^{h(z+\eta)-h(z)}$ has a Borel exceptional value 0, thus the value 1 must be not its Borel exceptional value. Hence, the left side of (2.6) , $\frac{H(z+\eta)}{H(z)}e^{h(z+\eta)-h(z)}-1$, has infinitely many zeros, but the right side of (2.6) , e^P , has no zero. This is a contradiction.

Case II. Suppose that $1 \leq s = k$. Thus, for P and h, there are three subcases: (1) $b_k = a_k$; (2) $b_k = -a_k$; (3) $b_k \neq a_k$ and $b_k \neq -a_k$.

Subcase (1) Suppose that $b_k = a_k$. First we suppose that $a \neq 0$. Thus, [\(2.3\)](#page-3-0) is rewritten as

$$
g_{11}(z)e^{P(z)} + g_{12}(z)e^{-h(z)} + g_{13}(z)e^{h_0(z)} = 0,
$$
\n(2.9)

where $h_0(z) = 0$ and

$$
\begin{cases}\ng_{11}(z) = -H(z) \\
g_{12}(z) = -a \\
g_{13}(z) = H(z + \eta)e^{h(z + \eta) - h(z)} - H(z).\n\end{cases}
$$

Since $\deg(h(z + \eta) - h(z)) = k - 1$ and $\sigma(H) < k$, we see that

$$
\sigma(g_{1j}(z)) < k \ (j = 1, 2, 3).
$$

On the other hand, by $b_k = a_k$, we see that

$$
\deg(P - (-h)) = k, \quad \deg(P - h_0) = k, \quad \deg(-h - h_0) = k.
$$

Since $e^{P-(-h)}$, e^{P-h_0} and e^{-h-h_0} are of regular growth, and $\sigma(g_{1j}) < k$ (j = 1 -2 -3) we see that for $j = 1, 2, 3$ 1, 2, 3), we see that for $j = 1, 2, 3$ ⎨example of regular grow
 $\left(T\left(r, e^{P-(-h)}\right)\right)$
 $\left(T\left(r, e^{P-h_0}\right)\right)$

and
$$
e^{-n-n_0}
$$
 are of regular growth, and $\sigma(g_{1j}) < k$ ($j =$
or $j = 1, 2, 3$

$$
\begin{cases} T(r, g_{1j}) = o(T(r, e^{P-(-h)})); \\ T(r, g_{1j}) = o(T(r, e^{P-h_0})); \\ T(r, g_{1j}) = o(T(r, e^{-h-h_0})). \end{cases}
$$
(2.10)

Thus, applying Lemma 2.2 to (2.9) , by (2.10) , we obtain that

$$
g_{1j}(z) \equiv 0 \quad (j = 1, 2, 3).
$$

Clearly, this is a contradiction.

Now we suppose that $a = 0$. Thus, (2.3) is rewritten as

$$
H(z)e^{P(z)} = H(z+\eta)e^{h(z(z+\eta)-h(z)} - H(z).
$$
 (2.11)

Since $H \not\equiv 0$, $\sigma(H) < k$, deg $P = s = k$ and deg $(h(z + \eta) - h(z)) = k - 1$, we see that the order of growth of the left side of (2.11) is equal to k, and the order of growth of the right side of (2.11) is less than k. This is a contradiction.
Subcase (2) Suppose that $h_1 = -a$. First we suppose that $a \neq 0$

Subcase (2) Suppose that $b_k = -a_k$. First we suppose that $a \neq 0$. Thus, (2.3) is rewritten as

$$
\[a + H(z)e^{P(z) + h(z)}\]e^{-h(z)} = H(z + \eta)e^{h(z + \eta) - h(z)} - H(z). \tag{2.12}
$$

We affirm that $a+H(z)e^{P(z)+h(z)} \neq 0$. In fact, if $a+H(z)e^{P(z)+h(z)} \equiv 0$, then by (2.12) , we obtain

$$
H(z+\eta)e^{h(z+\eta)-h(z)} - H(z) \equiv 0,
$$

that is

$$
H(z+\eta)e^{h(z+\eta)} \equiv H(z)e^{h(z)},
$$

this contradicts our condition $f(z + \eta) \neq f(z)$. Hence $a + H(z)e^{P(z)+h(z)} \neq 0$. Thus, since $\deg(P + h) \leq k - 1$, $\deg(-h) = k$, $\deg(h(z + \eta) - h(z)) = k - 1$ and $\sigma(H) < k$, we see that the order of growth of the left side of (2.12) is equal to k, and the order of growth of the right side of (2.12) is less than k. This is a contradiction.

Now we suppose that $a = 0$. Thus, (2.3) is rewritten as (2.11) . Using the same method as in the proof of Subcase (1), we get a contradiction.

Subcase (3) Suppose that $b_k \neq a_k$ and $b_k \neq -a_k$. First we suppose that $a \neq 0$. Thus, [\(2.3\)](#page-3-0) is rewritten as [\(2.9\)](#page-5-0). Since $b_k \neq a_k$ and $b_k \neq -a_k$, we see that

$$
\deg(P - (-h)) = k, \quad \deg(P - h_0) = k, \quad \text{and} \quad \deg(-h - h_0) = k. \tag{2.13}
$$

Using the same method as in Subcase (1), we deduce that

$$
g_{1j} \equiv 0 \quad (j = 1, 2, 3).
$$

Clearly, this is a contradiction.

Now we suppose that $a = 0$. Thus, (2.3) is rewritten as (2.11) . Using the same method as in the proof of Subcase (1), we get a contradiction.

Thus, we have proved that P is only a constant, that is

$$
\frac{f(z+\eta) - f(z) - a}{f(z) - a} = A
$$
\n(2.14)

where A is a nonzero constant.

Second step We prove that $a = 0$. Suppose that $a \neq 0$. Thus, by (2.1) and [\(2.14\)](#page-6-0), we deduce that

$$
H(z+\eta)e^{h(z+\eta)-h(z)} - (1+A)H(z) = ae^{-h(z)}
$$
\n(2.15)

Thus, since $\deg(h(z + \eta) - h(z)) = k - 1$, $\sigma(H) < k$ and $\deg h = k$, we see that the order of growth of the left side of (2.15) is less than k, and the order of growth of the right side of (2.15) is equal to k. This is a contradiction.

Hence, $a = 0$ and Theorem [1.1](#page-1-0) is proved.

3. Proof of Theorem [1.2](#page-1-1)

Since f is a finite order meromorphic function, and $f(z + \eta) - f(z)$ and $f(z)$ share the values a and ∞ CM, then

$$
\frac{f(z+\eta) - f(z) - a}{f(z) - a} = e^{h_1(z)},
$$
\n(3.1)

where h_1 is a polynomial with deg $h_1 \leq \sigma(f)$. Since $\sigma(f)$ is not an integer, we see that

$$
\deg h_1 < \sigma(f). \tag{3.2}
$$

By (3.1) , we obtain

$$
f(z+\eta) - \left[1 + e^{h_1(z)}\right] f(z) = a - ae^{h_1(z)}.
$$
 (3.3)

Similarly, since $f(z + \eta) - f(z)$ and $f(z)$ share the values b and ∞ CM, we can obtain

$$
f(z+\eta) - \left[1 + e^{h_2(z)}\right] f(z) = b - be^{h_2(z)},\tag{3.4}
$$

where h_2 is a polynomial, and satisfies

$$
\deg h_2 < \sigma(f). \tag{3.5}
$$

By (3.3) and (3.4) , we obtain

$$
\[e^{h_2(z)} - e^{h_1(z)}\] f(z) = a - b + b e^{h_2(z)} - a e^{h_1(z)}.\tag{3.6}
$$

We affirm $e^{h_2(z)} - e^{h_1(z)} \equiv 0$. In fact, if $e^{h_2(z)} - e^{h_1(z)} \not\equiv 0$, then by [\(3.2\)](#page-6-2) and (3.5) we see that the order of growth of the left side of (3.6) is equal to $\sigma(f)$ [\(3.5\)](#page-7-6), we see that the order of growth of the left side of [\(3.6\)](#page-7-7) is equal to $\sigma(f)$, but the order of growth of the right side of (3.6) is less than $\sigma(f)$. This is a contradiction contradiction.

Hence $e^{h_2(z)} \equiv e^{h_1(z)}$, so that by [\(3.6\)](#page-7-7), we obtain

$$
(a-b)\left[1 - e^{h_2(z)}\right] = 0.\t(3.7)
$$

By (3.7) and $a \neq b$, we obtain

$$
e^{h_1(z)} = e^{h_2(z)} = 1.
$$
\n(3.8)

Hence, by (3.1) and (3.8) we deduce that

$$
f(z+\eta) \equiv 2f(z).
$$

Thus, Theorem [1.2](#page-1-1) is proved.

Acknowledgements

Authors are grateful to the referee for a number of helpful suggestions to improve the paper.

References

- [1] Brück, R.: On entire functions which share one value CM with their first derivative. Results Math. **30**, 21–24 (1996)
- [2] Chen, $Z.X.$, Shon, $K.H.$: On conjecture of R. Brück, concerning the entire function sharing one value CM with its derivative Taiwanese. J. Math. **8**(2), 235– 244 (2004)
- [3] Chiang, Y.M., Feng, S.J.: On the Nevanlinna characteristic of $f(z + \eta)$ and difference equations in the complex plane. Ramanujan J. **16**, 105–129 (2008)
- [4] Gross, F.: Factorization of Meromorhpic Functions. U.S. Government Printing Office, Washinton (1972)
- [5] Gundersen, G.: Meromorphic functions that share four values. Trans. Am. Math. Soc. **277**, 545–567 (1983)
- [6] Gundersen, G.: Correction to Meromorphic functions that share four values Trans. Am. Math. Soc. **304**, 847–850 (1987)
- [7] Gundersen, G., Yang, L.Z.: Entire functions that share one values with one or two of their derivatives. J. Math. Anal. Appl. **223**(1), 88–95 (1998)
- [8] Hayman, W.K.: Meromorphic Functions. Clarendon Press, Oxford (1964)
- [9] Heittokangas, J., Korhonen, R., Laine, I., Rieppo, J., Zhang, J.: Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity. J Math. Anal. Appl. **355**, 352–363 (2009)
- [10] Heittokangas, J., Korhonen, R., Laine, I., Rieppo, J.: Uniqueness of meromorphic functions sharing values with their shifts. Complex Var. Elliptic Equ. (2011, in press)
- [11] Liu, K.: Meromorphic functions sharing a set with applications to difference quations. J. Math. Anal. Appl. **359**, 384–393 (2009)
- [12] Mues, E.: Meromorphic functions sharing four valus. Complex Var. Elliptic Equ. **12**, 167–179 (1989)
- [13] Nevanlinna, R.: Einige Eindentigkeitssätze in der theorie der meromorphen funktionen. Acta Math. **48**, 367–391 (1926)
- [14] Ozawa, M.: On the existence of prime periodic entire functions. Kodai Math. Sem. Rep. **29**, 308–321 (1978)
- [15] Yang, L.: Value Distribution Theory. Science Press, Beijing (1993)
- [16] Yang, C.C., Yi, H.X.: Uniqueness Theory of Meromorphic Functions. Kluwer Academic Publishers Group, Dordrecht (2003)

Zong-Xuan Chen School of Mathematical Sciences South China Normal University Guangzhou 510631, People's Republic of China e-mail: chzx@vip.sina.com

Hong-Xun Yi School of Mathematical Shandong University Jinan 250100, People's Republic of China e-mail: hxyi@sdu.edu.cn

Received: June 14, 2011. Accepted: November 7, 2011.