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1. Introduction

Stochastic differential equation has attracted great interest due to its applica-
tions in characterizing many problems in physics, biology, mechanics and so on.
Qualitative properties such as existence, uniqueness, controllability and sta-
bility for various stochastic differential systems have been extensively studied
by many researchers, see for instance [9,15,19,21–23,27–32,34] and the refer-
ences therein. On the other hand, the existence of almost periodic solutions for
deterministic differential equations have been considerably investigated in lots
of publications because of its significance and applications in physics, mechan-
ics and mathematical biology, see for example [1,2,13,14,16,18,25,35] and the
references therein.

Recently, the concept of quadratic mean almost periodicity was intro-
duced by Bezandry and Diagana [4]. In [4], such a concept was subsequently



436 Y.-K. Chang, R. Ma and Z.-H. Zhao Results. Math.

applied to proving the existence and uniqueness of a quadratic mean almost
periodic solution to the following stochastic differential equations

dx(t) = Ax(t)dt + F (t, x(t)) dt + G (t, x(t)) dw(t), t ∈ R,

where A : D(A) ⊂ L2(Ω; H) → L2(Ω; H) for t ∈ R is a densely defined closed
linear operators, F : R × L2(Ω; H) → L2(Ω; H) and G : R × L2(Ω; H) →
L2(Ω;L0

2) are jointly continuous satisfying some additional conditions, and
w(t) is a Wiener process.

Bezandry and Diagana [5] have studied the existence and uniqueness of
a quadratic mean almost periodic solution to a non-autonomous semi-linear
stochastic differential equations such as

dx(t) = A(t)x(t)dt + F (t, x(t)) dt + G(t, x(t))dw(t), t ∈ R,

where A(t) for t ∈ R is a family of densely defined closed linear operators sat-
isfying the so-called Acquistapace-Terreni condition in [3], F : R×L2(Ω; H) →
L2(Ω; H) and G : R × L2(Ω; H) → L2(Ω;L0

2) are jointly continuous satisfying
some additional conditions, and w(t) is a Wiener process. And Bezandry in [6]
has considered the existence of quadratic mean almost periodic solutions to a
semi-linear functional stochastic integro-differential equations in the form

x′(t) = Ax(t) +

t∫

−∞
C(t − u)G(u, x(u))dw(u)

+

t∫

−∞
B(t − u)F2(u, x(u))du + F1(t, x(t)),

where t ∈ R, A : D(A) ⊂ L2(Ω; H) → L2(Ω; H) is a densely defined closed
(possibly unbounded) linear operator; B and C are convolution-type kernels
in L1(0,∞) and L2(0,∞), respectively, satisfying Assumptions 3.2 in [21];
F1, F2 : R × L2(Ω; H) → L2(Ω; H) and G : R × L2(Ω; H) → L2(Ω;L0

2) are
jointly continuous functions. For more results on this topic, we refer the reader
to the papers [7,8,12,33] and the references therein.

Motivated by the above mentioned works [4–6], the main purpose of this
paper is to deal with the existence and uniqueness of quadratic mean almost
periodic solutions to a class of neutral stochastic functional differential equa-
tions in the abstract form

d[x(t) − g(t, x(t))] = Ax(t)dt + G(t, x(t))dw(t), t ∈ R, (1.1)

where A : D(A) ⊂ L2(Ω; H) → L2(Ω; H) is the infinitesimal generator of
an analytic semigroup of linear operators {T (t)}t≥0 on L2(Ω; H), g : R ×
L2(Ω; H) → L2(Ω; Hα) and G : R × L2(Ω; H) → L2(Ω;L0

2) are jointly con-
tinuous functions, w(t) is a Brownian motion. The main technique is based
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upon an appropriate composition theorem combined with the Banach con-
traction mapping principle and an analytic semigroup of linear operators. The
obtained result can be seen as a contribution to this emerging field.

The rest of this paper is organized as follows: In Sect. 2 we recall some
basic definitions, lemmas and preliminary facts which will be need in the
sequel. Our main result and its proofs are arranged in Sect. 3. In the last
section, an example is given to illustrate our main result.

2. Preliminaries

This section is mainly concerned with some notations, definitions, lemmas
and preliminary facts which are used in what follows. For more details on this
section, we refer the reader to [4,5,10,11]

Throughout the paper, (H, ‖ · ‖) and (K, ‖ · ‖K) denote two real Hilbert
spaces. Let (Ω,F , P ) be a complete probability space. We let L2(K, H) denote
the space of all Hilbert–Schmidt operators Φ : K → H, equipped with the
Hilbert–Schmidt norm ‖ · ‖2.

For a symmetric nonnegative operator Q ∈ L2(K, H) with finite trace we
suppose that {w(t) : t ∈ R} is a Q-Wiener process defined on (Ω,F , P ) and
with values in K. So, actually, w can be obtained as follows: let wi(t), t ∈ R,
i = 1, 2, be independent K-valued Q-Wiener processes, then

w(t) =
{

w1(t) if t ≥ 0,
w2(−t) if t ≤ 0

is Q-Wiener process with R as time parameter. We then let Ft = σ{w(s) :
s ≤ t} is the σ-algebra generated by w.

The collection of all strongly measurable, square integrable, H-valued
random variable, denoted by L2(Ω; H), is a Banach space equipped with norm
‖x‖L2(Ω;H) =(E‖X‖2)

1
2 , where the expectation E is defined E[x]=

∫
Ω

x(w)dP (w).

Let K0 = Q
1
2 K and L0

2 = L2(K0, H) with respect to the norm

‖Φ‖2
L0

2
= ‖ΦQ

1
2 ‖2

2 = Tr(ΦQΦ∗).

Let 0 ∈ ρ(A) where ρ(A) is the resolvent of A. Then for 0 < α ≤ 1, it
is possible to define the fractional power (−A)α , as a closed linear operator
on its domain D((−A)α). Furthermore, the subspace D((−A)α) is dense in
L2(Ω; H) and the expression

‖x‖α = ‖(−A)αx‖L2(Ω;H), x ∈ D((−A)α),

defines a norm on D((−A)α). Hereafter we denote by L2(Ω; Hα) the Banach
space D((−A)α) with norm ‖x‖α.

The following properties hold by [26].
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Lemma 2.1. Let 0 < γ ≤ μ ≤ 1. Then the following properties hold:

(i) L2(Ω; Hμ) is a Banach space and L2(Ω; Hμ) ↪→ L2(Ω; Hγ) is continuous.
(ii) The function s → (−A)μT (s) is continuous in the uniform operator

topology on (0,∞) and there exists Mμ > 0 such that ‖(−A)μT (t)‖ ≤
Mμe−δtt−μ for each t > 0.

(iii) For each x ∈ D((−A)μ) and t ≥ 0, (−A)μT (t)x = T (t)(−A)μx.
(iv) (−A)−μ is a bounded linear operator in L2(Ω; H) with D((−A)μ) =

Im((−A)−μ).

In the following results and definitions, we let (X, ‖ · ‖X), (Y, ‖ · ‖Y) and
(Z, ‖ · ‖Z) be Banach spaces and let L2(Ω; X) , L2(Ω; Y) and L2(Ω; Z) be their
corresponding L2-spaces, respectively.

Definition 2.1. [4] A stochastic process x : R → L2(Ω; X) is said to be contin-
uous whenever

lim
t→s

E‖x(t) − x(s)‖2
X

= 0.

Definition 2.2. [4] A continuous stochastic process x : R → L2(Ω; X) is said to
be quadratic mean almost periodic if for each ε > 0 there exists l(ε) > 0 such
that any interval of length l(ε) contains at least a number τ for which

sup
t∈R

E‖x(t + τ) − x(t)‖2
X

< ε.

The collection of all stochastic processes x : R → L2(Ω; X) which are
quadratic mean almost periodic is then denoted by AP

(
R;L2(Ω; X)

)
.

Lemma 2.2. [4] If x belongs to AP
(
R;L2(Ω; X)

)
, then the following hold true:

(i) the mapping t → E‖x(t)‖2
X

is uniformly continuous,
(ii) there exists a constant N > 0, such that E‖x(t)‖2

X
≤ N , for each t ∈ R,

(iii) x is stochastically bounded.

Let C(R, L2(Ω; H)) denote the space of all continuous stochastic processes
x : R → L2(Ω; H). The notation CUB(R;L2(Ω; X)) stands for the collection
of all stochastic processes x : R → L2(Ω; X), which are continuous and uni-
formly bounded. It is known from [4] that CUB(R;L2(Ω; X)) is a Banach space
endowed with the norm:

‖x‖∞ = sup
t∈R

(E‖x(t)‖2
X
)

1
2 .

Lemma 2.3. [4] AP (R;L2(Ω; X)) ⊂ CUB(R;L2(Ω; X)) is a closed subspace.

Lemma 2.4. [4] (AP (R;L2(Ω; X)), ‖·‖AP (R;L2(Ω;X))) is a Banach space endowed
with the norm:

‖x‖AP (R;L2(Ω;X)) = sup
t∈R

(E‖x(t)‖2
X
)

1
2 .
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Definition 2.3. [4] A function F : R × L2(Ω; Y) → L2(Ω; Z), (t, y) → F (t, y),
which is jointly continuous, is said to be quadratic mean almost periodic in
t ∈ R uniformly in y ∈ B where B ⊂ L2(Ω; Y) is compact if for any ε > 0,
there exists l(ε, B) > 0 such that any interval of length l(ε, B) contains at least
a number τ for which

sup
t∈R

E‖F (t + τ, y) − F (t, y)‖2
Z

< ε

for each stochastic process y : R → B.

Lemma 2.5. [4] Let F : R×L2(Ω; Y) → L2(Ω; Z), (t, y) → F (t, y) be a quadratic
mean almost periodic process in t ∈ R uniformly in y ∈ B, where B ⊂ L2(Ω; Y)
is compact. Suppose that F is Lipschitz in the following sense:

E‖F (t, x) − F (t, y)‖2
Z

≤ M̃E‖x − y‖2
Y

for all x, y ∈ L2(Ω; Y) and for each t ∈ R, where M̃ > 0. Then for any qua-
dratic mean almost periodic process Ψ : R → L2(Ω; Y), the stochastic process
t → F (t,Ψ(t)) is quadratic mean almost periodic.

Definition 2.4. A Ft-progressively process {x(t)}t∈R is called a mild solution
of the problem (1.1) on R if the function s → AT (t − s)g(s, x(s)) is integrable
on (−∞, t) for each t ∈ R, and x(t) satisfies

x(t) = T (t − a)[x(a) − g(a, x(a))] + g(t, x(t)) +

t∫

a

AT (t − s)g(s, x(s))ds

+

t∫

a

T (t − s)G(s, x(s))dw(s)

for all t ≥ a and for each a ∈ R.

Let us list the following assumptions:

(H1) The operator A : D(A) ⊂ L2(Ω; H) → L2(Ω; H) is the infinitesimal
generator of an analytic semigroup of linear operators {T (t)}t≥0 on
L2(Ω; H) and M, δ are positive numbers such that ‖T (t)‖ ≤ Me−δt for
t ≥ 0.

(H2) There exists a positive number α ∈ (0, 1) such that g : R ×L2(Ω; H) →
L2(Ω; Hα) is quadratic mean almost periodic in t ∈ R uniformly in
x ∈ B1 where B1 ⊂ L2(Ω; H) being a compact subspace. Moreover, g is
Lipschitz in the sense that: there exists Lg > 0 such that

E‖(−A)αg(t, x) − (−A)αg(t, y)‖2 ≤ LgE‖x − y‖2,

for all t ∈ R and for each stochastic processes x, y ∈ L2(Ω; H).
(H3) The function G : R × L2(Ω; H) → L2(Ω;L0

2) is quadratic mean almost
periodic in t ∈ R uniformly in x ∈ B2 where B2 ⊂ L2(Ω; H) being a
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compact subspace. Moreover, G is Lipschitz in the sense that: there
exists LG > 0 such that

E‖G(t, x) − G(t, y)‖2
L0

2
≤ LGE‖x − y‖2,

for all t ∈ R and for each stochastic processes x, y ∈ L2(Ω; H).

3. Main Results

In this section, we present and prove our main theorem.

Theorem 3.1. Assume the conditions (H1)–(H3) are satisfied, then the prob-
lem (1.1) admits a unique quadratic mean almost periodic mild solution on R

provide that

L0 =
[
3Lg‖(−A)−α‖2 + 3M2

1−αLgδ
−2α[Γ(α)]2 +

3TrQM2LG

2δ

]
< 1, (3.1)

where Γ(·) is the gamma function.

Proof. Let Λ : AP (R;L2(Ω; H)) → C(R, L2(Ω; H)) be the operator defined by

Λx(t) = g(t, x(t)) +

t∫

−∞
AT (t − s)g(s, x(s))ds

+

t∫

−∞
T (t − s)G(s, x(s))dw(s), t ∈ R.

First we prove that Λx is well defined. From Lemma 2.5, we infer that
s → g(s, x(s)) is in AP (R;L2(Ω; Hα)). Thus using Lemma 2.2 (ii) it follows
that there exists a constant Ng > 0 such that E‖(−A)αg(t, x(t))‖2 ≤ Ng, for
all t ∈ R. Moreover, from the continuity of s → AT (t − s) and s → T (t − s) in
the uniform operator topology on (−∞, t) for each t ∈ R and the estimate

E

∥∥∥∥∥∥
t∫

−∞
AT (t − s)g(s, x(s))ds

∥∥∥∥∥∥

2

= E

∥∥∥∥∥∥
t∫

−∞
(−A)1−αT (t − s)(−A)αg(s, x(s))ds

∥∥∥∥∥∥

2

≤ M2
1−αE

⎛
⎝

t∫

−∞
e−δ(t−s)(t − s)α−1‖(−A)αg(s, x(s))‖ds

⎞
⎠
2

≤ M2
1−α

⎛
⎝

t∫

−∞
e−δ(t−s)(t − s)α−1ds

⎞
⎠
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×
⎛
⎝

t∫

−∞
e−δ(t−s)(t − s)α−1E‖(−A)αg(s, x(s))‖2ds

⎞
⎠

≤ NgM
2
1−α

⎛
⎝

t∫

−∞
e−δ(t−s)(t − s)α−1ds

⎞
⎠
2

= NgM
2
1−αδ−2α[Γ(α)]2,

it follows that s → AT (t−s)g(s, x(s)) and s → T (t−s)G(s, x(s)) are integrable
on (−∞, t) for every t ∈ R, therefore Λx is well defined and continuous.

Next, we show that Λx(t) ∈ AP (R;L2(Ω; H)). We define

Λ1x(t) =

t∫

−∞
AT (t − s)g(s, x(s))ds

and

Λ2x(t) =

t∫

−∞
T (t − s)G(s, x(s))dw(s).

Let us show that Λ1x(t) is quadratic mean almost periodic. Now since g(·, x(·))
∈ AP (R;L2(Ω; Hα)), by Definition 2.2, it follows that for any ε > 0, there
exists l(ε) > 0 such that every interval of length l(ε) contains at least a num-
ber τ with the property that

E‖(−A)αg(t + τ, x(t + τ)) − (−A)αg(t, x(t))‖2 <
ε

M2
1−αδ−2α[Γ(α)]2

,

for each t ∈ R.
Now, using Cauchy–Schwarz inequality, we obtain that

E ‖Λ1x(t + τ) − Λ1x(t)‖2

= E

∥∥∥∥∥∥
t∫

−∞
AT (t − s)[g(s + τ, x(s + τ)) − g(s, x(s))]ds

∥∥∥∥∥∥

2

= E

∥∥∥∥∥∥
t∫

−∞
(−A)1−αT (t − s)[(−A)αg(s + τ, x(s + τ))−(−A)αg(s, x(s))]ds

∥∥∥∥∥∥

2

≤ M2
1−αE

⎛
⎝

t∫

−∞
e−δ(t−s)(t − s)α−1
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×‖(−A)αg(s + τ, x(s + τ)) − (−A)αg(s, x(s))‖ds

⎞
⎠
2

≤ M2
1−αE

⎡
⎣

⎛
⎝

t∫

−∞
e−δ(t−s)(t − s)α−1ds

⎞
⎠

×
⎛
⎝

t∫

−∞
e−δ(t−s)(t − s)α−1‖(−A)αg(s + τ, x(s + τ))

−(−A)αg(s, x(s))‖2ds

⎞
⎠

⎤
⎦ ≤ M2

1−α

⎛
⎝

t∫

−∞
e−δ(t−s)(t − s)α−1ds

⎞
⎠

×
⎛
⎝

t∫

−∞
e−δ(t−s)(t − s)α−1E‖(−A)αg(s + τ, x(s + τ))

−(−A)αg(s, x(s))‖2ds

⎞
⎠ ≤ M2

1−α

⎛
⎝

t∫

−∞
e−δ(t−s)(t − s)α−1ds

⎞
⎠
2

× sup
t∈R

E‖(−A)αg(t + τ, x(t + τ)) − (−A)αg(t, x(t))‖2

≤ ε

δ−2α[Γ(α)]2

⎛
⎝

t∫

−∞
e−δ(t−s)(t − s)α−1ds

⎞
⎠
2

= ε.

Hence, Λ1x(·) is quadratic mean almost periodic.
Similarly, by using Lemma 2.5, one can easily see that s → G(s, x(s))

is quadratic mean almost periodic. Therefore, it follows from Definition 2.2
that for any ε > 0, there exists l(ε) > 0 such that every interval of length l(ε)
contains at least a number τ with the property that

E‖G(t + τ, x(t + τ)) − G(t, x(t))‖2
L0

2
<

2δε

TrQM2
,

for each t ∈ R. Now, let us prove that Λ2x(t) is quadratic mean almost peri-
odic. We adopt the techniques developed in [4]. Let w̃(t) := w(t + τ) − w(τ)
for each t ∈ R, note that w̃ is also a Brownian motion and has the same
distribution as w.



Vol. 63 (2013) Almost Periodic Solutions to a Stochastic Differential Equation 443

Now, we consider

E‖Λ2x(t + τ) − Λ2x(t)‖2

= E

∥∥∥∥∥∥
t+τ∫

−∞
T (t + τ − s)G(s, x(s))dw(s) −

t∫

−∞
T (t − s)G(s, x(s))dw(s)

∥∥∥∥∥∥

2

= E

∥∥∥∥∥∥
t∫

−∞
T (t − s)[G(s + τ, x(s + τ)) − G(s, x(s))]dw̃(s)

∥∥∥∥∥∥

2

.

Thus using an estimate on Ito integral established in Ichikawa [20], we obtain
that

E‖Λ2x(t + τ) − Λ2x(t)‖2

= E

∥∥∥∥∥∥
t∫

−∞
T (t − s)[G(s + τ, x(s + τ)) − G(s, x(s))]dw̃(s)

∥∥∥∥∥∥

2

≤ TrQE

⎡
⎣

t∫

−∞
‖T (t − s)[G (s + τ, x(s + τ)) − G (s, x(s))]‖2ds

⎤
⎦

≤ TrQE

⎡
⎣

t∫

−∞
‖T (t − s)‖2‖G (s + τ, x(s + τ)) − G (s, x(s))]‖2

L0
2
ds

⎤
⎦

≤ TrQM2

t∫

−∞
e−2δ(t−s)E ‖G (s + τ, x(s + τ)) − G (s, x(s))]‖2

L0
2
ds

≤ TrQM2

⎛
⎝

t∫

−∞
e−2δ(t−s)ds

⎞
⎠ sup

t∈R

E‖G (t + τ, x(t + τ)) − G (t, x(t))]‖2
L0

2

< 2δε

t∫

−∞
e−2δ(t−s)ds = ε.

Thus, Λ2x(·) is quadratic mean almost periodic. And in view of the above, it
is clear that Λ maps AP (R;L2(Ω; H)) into itself.

Now the remaining task is to prove that Λ is a strict contraction on
AP (R;L2(Ω; H)). Indeed, for each t ∈ R, x, y ∈ AP (R;L2(Ω; H)), we have

E‖Λx(t) − Λy(t)‖2 ≤ 3E‖g(t, x(t)) − g(t, y(t))‖2
α

+3E

⎛
⎝

∥∥∥∥∥∥
t∫

−∞
AT (t − s)[g(s, x(s)) − g(s, y(s))]ds

∥∥∥∥∥∥

⎞
⎠
2
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+3E

⎛
⎝

∥∥∥∥∥∥
t∫

−∞
T (t − s)[G(s, x(s)) − G(s, y(s))]dw(s)

∥∥∥∥∥∥

⎞
⎠
2

≤ 3‖(−A)−α‖2E‖(−A)αg(t, x(t)) − (−A)αg (t, y(t)) ‖2

+3E

⎛
⎝

∥∥∥∥∥∥
t∫

−∞
(−A)1−αT (t − s)[(−A)αg(s, x(s)) − (−A)αg(s, y(s))]ds

∥∥∥∥∥∥

⎞
⎠
2

+3TrQE

⎛
⎝

t∫

−∞
‖T (t − s)[G(s, x(s)) − G(s, y(s))]‖2ds

⎞
⎠

≤ 3‖(−A)−α‖2 sup
t∈R

E‖(−A)αg(t, x(t)) − (−A)αg(t, y(t))‖2

+3M2
1−αE

⎛
⎝

t∫

−∞
e−δ(t−s)(t − s)α−1‖(−A)αg(s, x(s))−(−A)αg(s, y(s))‖ds

⎞
⎠
2

+3TrQE

⎛
⎝

t∫

−∞
‖T (t − s)‖2‖G (s, x(s)) − G(s, y(s))‖2

L0
2
ds

⎞
⎠

≤ 3Lg‖(−A)−α‖2 sup
t∈R

E‖x(t) − y(t)‖2 + 3M2
1−α

E

⎡
⎣

⎛
⎝

t∫

−∞
e−δ(t−s)(t − s)α−1ds

⎞
⎠

×
⎛
⎝

t∫

−∞
e−δ(t−s)(t − s)α−1‖(−A)αg(s, x(s)) − (−A)αg(s, y(s))‖2ds

⎞
⎠

⎤
⎦

+3TrQM2

t∫

−∞
e−2δ(t−s)E‖G (s, x(s)) − G(s, y(s))‖2

L0
2
ds

≤ 3Lg‖(−A)−α‖2 sup
t∈R

E‖x(t) − y(t)‖2 + 3M2
1−α

⎛
⎝

t∫

−∞
e−δ(t−s)(t − s)α−1ds

⎞
⎠

×
⎛
⎝

t∫

−∞
e−δ(t−s)(t − s)α−1E‖(−A)αg(s, x(s)) − (−A)αg(s, y(s))‖2ds

⎞
⎠

+3TrQM2LG

⎛
⎝

t∫

−∞
e−2δ(t−s)ds

⎞
⎠ sup

t∈R

E‖x(t) − y(t)‖2
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≤ 3Lg‖(−A)−α‖2 sup
t∈R

E‖x(t) − y(t)‖2

+3M2
1−αLg

⎛
⎝

t∫

−∞
e−δ(t−s)(t − s)α−1ds

⎞
⎠
2

sup
t∈R

E‖x(t) − y(t)‖2

+3TrQM2LG
1
2δ

sup
t∈R

E‖x(t) − y(t)‖2

≤ 3Lg‖(−A)−α‖2 sup
t∈R

E‖x(t) − y(t)‖2 + 3M2
1−αLgδ

−2α[Γ(α)]2

× sup
t∈R

E‖x(t) − y(t)‖2 +
3TrQM2LG

2δ
sup
t∈R

E‖x(t) − y(t)‖2

=
[
3Lg‖(−A)−α‖2 + 3M2

1−αLgδ
−2α[Γ(α)]2 +

3TrQM2LG

2δ

]

× sup
t∈R

E‖x(t) − y(t)‖2,

by using the arithmetic geometic inequality, Cauchy–Schwarz inequality and
Ito isometry identity.

Note that

sup
t∈R

E‖x(t) − y(t)‖2 ≤
[
sup
t∈R

(E‖x(t) − y(t)‖2)
1
2

]2

.

Thus, it follows that, for each t ∈ R,

(E‖Λx(t) − Λy(t)‖2)
1
2 ≤

√
L0‖x − y‖AP (R;L2(Ω;H)).

Hence

‖Λx − Λy‖AP (R;L2(Ω;H)) = sup
t∈R

(
E‖Λx(t) − Λy(t)‖2

) 1
2

≤
√

L0‖x − y‖AP (R;L2(Ω;H)),

which implies that Λ is a contraction by (3.1). So by the contraction princi-
ple, we conclude that there exists a unique fixed point x(·) for Λ in AP (R;L2

(Ω; H)), such that Λx = x, that is

x(t) = g(t, x(t)) +

t∫

−∞
AT (t − s)g(s, x(s))ds +

t∫

−∞
T (t − s)G(s, x(s))dw(s)

for all t ∈ R. If we let x(a) = g(a, x(a))+
a∫

−∞
AT (a−s)g(s, x(s))ds+

a∫
−∞

T (a−s)

G(s, x(s))dw(s), then
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T (t − a)x(a) = T (t − a)g(a, x(a)) +

a∫

−∞
AT (t − s)g(s, x(s))ds

+

a∫

−∞
T (t − s)G(s, x(s))dw(s).

But for t ≥ a,

t∫

a

T (t − s)G(s, x(s))dw(s) =

t∫

−∞
T (t − s)G(s, x(s))dw(s)

−
a∫

−∞
T (t − s)G(s, x(s))dw(s) = x(t) − g(t, x(t))

−
t∫

−∞
AT (t − s)g(s, x(s))ds − T (t − a)[x(a) − g(a, x(a))]

+

a∫

−∞
AT (t − s)g(s, x(s))ds = x(t) − g (t, x(t))

−
t∫

a

AT (t − s)g(s, x(s))ds − T (t − a)[x(a) − g(a, x(a))].

In conclusion, x(t) = T (t−a)[x(a)−g(a, x(a))]+g(t, x(t))+
t∫

a

AT (t−s)g(s, x(s))

ds +
t∫

a

T (t − s)G(s, x(s))dw(s) is a mild solution of the problem (1.1) and

x(·) ∈ AP (R;L2(Ω; H)). The proof is finished. �

4. An Example

In this section we consider a simple example to illustrate our main theorem.
We examine the existence and uniqueness of quadratic mean almost periodic
solutions for the following stochastic partial differential equation

∂

∂t
[x(t, ξ) − g(t, x(t, ξ))] =

∂2

∂ξ2
x(t, ξ) + G(t, x(t, ξ))dw(t), t ∈ R, ξ ∈ D,

(4.1)

where D ⊂ R
n(n ≥ 1) is a bounded subset with C2 boundary ∂D.



Vol. 63 (2013) Almost Periodic Solutions to a Stochastic Differential Equation 447

Let H := L2(D) be equipped with its natural topology and define an
operator A on L2(R;H) by

Ax(t, ·) =
∂2

∂ξ2
x(t, ·), x ∈ H2(D ∩ H1

0 (D).

It is well known that (for example, see [17,24,26]) A is the infinitesimal genera-
tor of an analytic semigroup {T (t)}t≥0 on L2(R;H) satisfying (H1). Therefore,
under assumptions (H2)–(H3), if we assume that (3.1) holds, an application
of Theorem 3.1 yields that (4.1) has a unique quadratic mean almost periodic
mild solution.
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