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Abstract. The aspire of this article is to bring in a new approximate
method, that is to say the Laplace Padé decomposition method which
is a mixture of Laplace decomposition and Padé approximation to offer
an analytical approximate way out to magnetohydrodynamics flow over
a nonlinear porous stretching sheet. This new iteration approach pro-
vides us with a convenient way to approximate solution. A closed agree-
ment between the obtained solution and some well-known results has
been established. The proposed procedure can be applied to handle other
nonlinear problems.
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1. Introduction

Nonlinear phenomenon come into view in a various areas of scientific field
such as plasma physics, solid state physics, fluid dynamics and chemical kinet-
ics. For the reason that of the increased interest in nonlinear physical model,
an extensive variety of analytical and numerical methods have been used in
the investigation of these scientific models. Mathematical modeling of numer-
ous physical systems leads to nonlinear ordinary and partial differential equa-
tions in a variety of fields of physics and engineering. An efficient scheme
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is essential to analyze the mathematical model that provides solutions con-
forming to physical reality. Normal analytic procedures linearize the system
or assume that nonlinearity are relatively not important. Such assumptions
occasionally strongly influence the solution with respect to the actual phys-
ics of the phenomenon such as perturbation. Thus looking for exact solutions
of nonlinear ordinary or partial differential equation is of great significance.
A variety of powerful mathematical techniques such as Adomian decomposi-
tion method [1,6–9], homotopy perturbation method [3,11–13,25], variational
methods [26–30] and homotopy analysis method [14–16,22,23] have been pro-
jected for obtaining exact and approximate analytical solutions. Some of these
methods use precise transformations in order to trim down the equations into
simpler ones or system of equations and others give the solution in a series
form that converges to the exact solution.

The Laplace decomposition method (LDM) was first proposed, by Khuri
[17] and is used to furnish approximate solutions of the nonlinear initial value
problems. The LDM is valuable to attain exact and approximate solutions of
linear and nonlinear differential equations. Recently Majid et al. [10,18–21]
introduced various modifications in Laplace decomposition technique to deal
with nonlinear behavior of the physical models. It is worth mentioning that
the proposed scheme is an elegant recipe of LDM and Padé approximation [2].
The advantage of proposed idea is its capability of combining two powerful
techniques for obtaining fast convergent series for nonlinear equations.

2. Description of Laplace Decomposition Method

Consider equation F (u(x)) = g(x), where F represents a general nonlinear
ordinary or partial differential operator together with both linear and nonlin-
ear terms. The nonlinear term can be split as L + R, where L is the highest
order linear operator and R is the remaining of the linear operator. Conse-
quently, the equation can be written as

Lu + Ru + Nu = g(x), (2.1)

where Nu, indicates the nonlinear terms. By applying Laplace transform on
both sides of Eq. (2.1), we get

£[Lu + Ru + Nu = g(x)]. (2.2)

Using the differential property of Laplace transform, we have

sn£[u] −
n∑

k=1

sk−1u(n−k)(0) + £[Ru] + £[Nu] = £[g(x)]. (2.3)

Operating inverse Laplace transform on both sides of Eq. (2.3), we get

u = G(x) − £−1

[
1
sn

[£[Nu] + £[Ru]]
]

. (2.4)
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The LDM assumes the solution u can be expanded into infinite series as

u =
∞∑

m=0

um. (2.5)

Also the nonlinear term Nu can be written as

Nu =
∞∑

m=0

Am, (2.6)

where Am are the Adomian polynomials [9]. By substituting Eqs. (2.5) and
(2.6) in Eq. (2.4), the solution can be written as

∞∑

m=0

um(x) = G(x) − £−1

[
1
sn

[
£

[ ∞∑

m=0

Am

]
+ £

[
R

∞∑

m=0

um

]]]
. (2.7)

In Eq. (2.7), the Adomian polynomials can be generated by several means.
Here we used the following recursive formulation:

Am =
1
m!

dm

dλm

[
N

( ∞∑

i=0

λiui

)]

λ=0

, m = 0, 1, 2, . . . (2.8)

In general, the recursive relation is given by

u0(x) = G(x), (2.9)

um+1(x) = −£−1

[
1
sn

[
£

[ ∞∑

m=0

Am

]
+ £

[
R

∞∑

m=0

um

]]]
, m ≥ 0, (2.10)

where G(x) represents the term arising from source term and prescribe initial
conditions. The proposed method does not resort to linearization, assump-
tions of weak nonlinearity and it is more realistic compared to the method of
simplifying the physical problems.

3. Padé Approximates

A Padé approximate is the ratio of two polynomials constructed from the
coefficients of the Taylor series expansion of a function u(x). The [L/M ] Padé
approximates to a function u(x) are given by [2]

[
L

M

]
=

PL(x)
QM (x)

, (3.1)

where PL(x) is a polynomial of degree at most L and QM (x) is a degree of at
most M . The power series in terms of x is given below

u(x) =
∞∑

i=0

aix
i, (3.2)

u(x) =
PL(x)
QM (x)

+ O(xL+M+1). (3.3)
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Determine the coefficients of PL(x) and QM (x) by Eq. (3.3). We can multiply
the numerator and denominator by a constant and leave [L/M ] unchanged,
we imposed the normalization condition

Q0(x) = q0 = 1. (3.4)

Expanding polynomials PL(x) and QM (x) in power series in terms of x of
order L and M which is given below :

PL(x) = p0 + p1x + p2x
2 + · · · + pLxL,

QM (x) = 1 + q1x + q2x
2 + · · · + qMxM .

(3.5)

Using Eq. (3.5) in Eq. (3.3), we can write Eq. (3.3) in the notation of formal
power series

∞∑

i=0

aix
i =

p0 + p1x + p2x
2 + · · · + pLxL

1 + q1x + q2x2 + · · · + qMxM
+ O(xL+M+1). (3.6)

By cross-multiplication of Eq. (3.6), we get

(p0 + p1x + · · · + pLxL)(a0 + a1x + a1x
2 · · · )

= 1 + q1x + · · · + qMxM + O(xL+M+1). (3.7)

From Eq. (3.7) we obtain the set of linear equations
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a0 = p0,
a1 + a0q1 = p1,

a2 + a1q1 + a0q2 = p2,
...

aL + aL−1q1 + a0qL = pL,

(3.8)

and ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

aL+1 + aLq1 + · · · + aL−M+1qM = 0,
aL+2 + aL+1q1 + · · · + aL−M+2qM = 0,

...
aL+M + aL+M−1q1 + aLqM = 0.

(3.9)

From Eq. (3.9), we can obtain qi, 1 ≤ i ≤ M . Once the values of q1, q2, . . . , qM

are all known Eq. (3.8) gives an explicit formula for the unknown quanti-
ties p1, p2, . . . , pL. We calculate diagonal approximates like [2/2], [3/3],[4/4],or
[5/5] which are more accurate than nondiagonal approximates and can be
calculated easily by built-in utilities of Mathematica 7 and Maple 14.

4. Mathematical Formulation of the Problem

Let us consider the magnetohydrodynamics (MHD) flow of an incompressible
viscous fluid over a nonlinear porous stretching sheet at y = 0. The fluid is
electrically conducting under the influence of an applied magnetic field B(x)
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normal to the stretching sheet. The induced magnetic field is neglected. The
resulting boundary-layer equations are

∂u

∂x
+

∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σ

B2
0(x)
ρ

u, (4.2)

where u and v are the velocity components in the x-and y-directions, respec-
tively, ν is the kinematic viscosity, ρ is the density and σ is the electrical
conductivity of the fluid. In Eq. (4.2), the external electric field and polariza-
tion effects are negligible, therefore our required magnetic field is given as

B(x) = B0x
n−1

2 . (4.3)

The boundary conditions corresponding to the nonlinear porous stretching
sheet are given below

u(x, 0) = cxn, v(x, 0) = −V0,

u(x, y) → 0 as y → ∞,
(4.4)

where c is the stretching parameter and V0 is the porosity of the plate (where
V0 > 0 corresponds to suction velocity and V0 < 0 holds for injection velocity).
Upon making use of the following similarity transformation

η =

√
c(n + 1)

2ν
x

n−1
2 y, u = cxnf

′
(η),

v = −
√

cν(n + 1)
2

x
n−1

2

[
f(η) +

n − 1
n + 1

ηf ′(η)
]

.

(4.5)

The resulting nonlinear differential equation and boundary conditions are of
the following form

f ′′′ + ff ′′ − βf ′2 − Mf ′ = 0, (4.6)
f(0) = K, f ′(0) = 1, f ′(∞) = 0, (4.7)

where

β =
2n

n + 1
, M =

2σB2
0

ρc(1 + n)
, K =

V0√
c(n+1)

2ν x
n−1

2

. (4.8)

Applying Laplace transform algorithm we get

s3£[f ] − s2f(0) − sf ′(0) − f ′′(0) = £
[
βf ′2 − ff ′′ + Mf ′

]
. (4.9)

Using given boundary condition Eqs. (4.9) becomes

s3£[f ] − s2K − s − ζ = £
[
βf ′2 − ff ′′ + Mf ′

]
, (4.10)

£[f ] =
s2K + s + ζ

s3
+

1
s3

£
[
βf ′2 − ff ′′ + Mf ′

]
. (4.11)
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Applying inverse Laplace transform to Eq. (4.11), we get

f(η) = K + η +
ζη2

2
+ £−1

[
1
s3

£[βf ′2 − ff ′′ + Mf ′]
]

. (4.12)

The LDM assumes a series solution of the function f(η) is given by

f(η) =
∞∑

m=0

fm(η), (4.13)

Using Eq. (4.13) into Eq. (4.12) we get

∞∑

m=0

fm(η)=K + η +
ζη2

2
+£−1

[
1
s3

£

[
β

∞∑

m=0

Am(η)−
∞∑

m=0

Bm(η)+Mf ′
m

]]
.

(4.14)

In Eq. (4.14), Am(η) and Bm(η) are Adomian polynomials [6] that represents
nonlinear terms. Therefore, Adomian polynomials are given below

∞∑

m=0

Am(η) = f ′2(η), (4.15)

∞∑

m=0

Bm(η) = f(η)f ′′(η). (4.16)

The few components of the Adomian polynomials are given as follow:

A0(η) = f ′2
0 (η),

A1(η) = 2f ′
0(η)f ′

1(η),
A2(η) = f ′2

1 (η) + 2f ′
0(η)f ′

2(η), (4.17)
...

Am(η) =
m∑

i=0

f ′
i(η)f ′

m−i(η).

B0(η) = f0(η)f ′′
0 (η),

B1(η) = f0(η)f ′′
1 (η) + f1(η)f ′′

0 (η),
B2(η) = f0(η)f ′′

2 (η) + f1(η)f ′′
1 (η) + f2(η)f ′′

0 (η) (4.18)
...

Bm(η) =
m∑

i=0

fi(η)f ′′
m−i(η).
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From Eqs. (4.17–4.18), our required recursive relation is given as follows:

f0(η) = K + η +
ζη2

2
, (4.19)

fm+1(η) = £−1

[
1
s3

£

[
β

∞∑

m=0

Am(η) −
∞∑

m=0

Bm(η) + Mf ′
m

]]
, m ≥ 0.

(4.20)

The first few components of fm(η) given as follows

f0(η) = K + η +
ζη2

2
, (4.21)

f1(η) =
Mη3

6
− Kη3ζ

6
− η4ζ

24
+

Mη4ζ

24
− η5ζ2

120

+
η3β

6
+

η4ζβ

12
+

η5ζ2β

60
, (4.22)

f2(η) = −KMη4

24
− Mη5

60
+

M2η5

120
+

K2η4ζ

24
+

Kη5ζ

40
− KMη5ζ

60

+
η6ζ

240
− Mη6ζ

90
+

M2η6ζ

720
+

Kη6ζ2

144
+

11η7ζ

5040
− Mη7ζ2

630

+
11η8ζ3

40320
− Kη4β

24
− η5β

60
+

Mη5β

40
− Kη5βζ

30
− η6βζ

60

+
Mη6βζ

72
− Kη6βζ2

90
− 2η7βζ2

315
+

Mη7βζ2

504
− η8βζ3

1260

+
η5β2

60
+

η6β2ζ

72
+

η7β2ζ2

252
+

η8β2ζ3

504
, (4.23)

Accordingly, the solution of Eq. (4.6) in a series form is given by

f(η) = K + η +
ζη2

2
+

Mη3

6
− Kη3ζ

6
− η4ζ

24
+

Mη4ζ

24
− η5ζ2

120

+
η3β

6
+

η4ζβ

12
+

η5ζ2β

60
+ −KMη4

24
− Mη5

60
+

M2η5

120

+
K2η4ζ

24
+

Kη5ζ

40
+ −KMη5ζ

60
+

η6ζ

240
− Mη6ζ

90
+

M2η6ζ

720

+
Kη6ζ2

144
+ +

11η7ζ

5040
− Mη7ζ2

630
+

11η8ζ3

40320
− Kη4β

24
− η5β

60

+
Mη5β

40
− Kη5βζ

30
− η6βζ

60
+

Mη6βζ

72
− Kη6βζ2

90
− 2η7βζ2

315

+
Mη7βζ2

504
− η8βζ3

1260
+

η5β2

60
+

η6β2ζ

72
+

η7β2ζ2

252

+
η8β2ζ3

504
+ · · · (4.24)
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Our plan in this section is principally concerned with the mathematical
behavior of the solution f(η) in order to establish the value of free param-
eter ζ = f ′′(0). It was properly shown by Baker [2] that this objective can
effortlessly achieved by forming the Padé approximates which have the advan-
tage of manipulating the polynomial approximation into a rational function
to obtain the more information about f(η). In reality, Padé approximates will
converges on the entire real axis if f(η) is free of singularities on the entire real
axis. Additionally, the diagonal approximates are most correct approximates,
for that reason we will construct only diagonal approximates. By means of the
boundary condition f ′(∞) = 0, the diagonal approximates [M/M ] vanish if the
coefficients of η with the highest power in the numerator vanishes. Choosing
the coefficients of the maximum power of η equal to zero, we get a polyno-
mial equations in ζ which can be solved very straightforwardly by means of
the built in utilities in the most manipulation languages such as Maple and
Mathematica.

Tables 1, 2, 3 and 4, obviously elucidates that present solution technique
that is Laplace Padé decomposition method (LPDM) shows an excellent agree-
ment with the solutions previously available in literature. This study shows
that LPDM suits for MHD flow problems (Fig. 1).

Table 1. Comparison of the values of ζ = f ′′(0) obtained by
Laplace Padé decomposition method and exact solution

β K M [11/11] [12/12] [13/13] [14/14] [15/15] Exact
solution [24]

1 0 0.0 −0.99999 −1.000000 −1.00000 −1.00000 −1.00000 −1.00000
1.0 −1.41425 −1.41423 −1.41422 −1.41421 −1.41421 −1.41421
5.0 −2.44949 −2.44949 −2.44949 −2.44949 −2.44949 −2.44948

10.0 −3.31662 −3.31662 −3.31662 −3.31662 −3.31662 −3.31662
50.0 −7.14144 −7.14142 −7.14142 −7.14142 −7.14142 −7.14142

100.0 −10.04989 −10.04987 −10.04987 −10.04987 −10.04987 −10.04987

Table 2. Comparison of the values of ζ = f ′′(0) obtained by
shooting method and Laplace Padé decomposition method

β K M Shooting Present
method [4] method (LPDM)

5.0 0.0 0.0 −1.9025 −1.9031
1.0 −2.1529 −2.1529
5.0 −2.9414 −2.9414

10.0 −3.6956 −3.6956
50.0 −7.3256 −7.3256

100.0 −10.1816 −10.1816
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Table 3. Comparison of the values of ζ = f ′′(0) obtained by
Crocco transform and Laplace Padé decomposition method

β K M Crocco Present
transform [4] method (LPDM)

5.0 0.0 0.0 −1.9025 −1.9031
1.0 −2.1529 −2.1529
5.0 −2.9414 −2.9414

10.0 −3.6956 −3.6956
50.0 −7.3256 −7.3256

100.0 −10.1816 −10.1816

Table 4. Comparison of the values of ζ = f ′′(0) obtained by
Homotopy analysis and Laplace Padé decomposition methods

β K M HAM [5] Present method
(LPDM)

1.0 0.0 1.0 −1.40992 −1.41421
5.0 −2.44892 −2.44949

10.0 −3.31285 −3.31662
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Figure 1. Comparison of solution obtained by LPDM and
exact solution [24] for β = 1 and K = 0

In order to observe the variations of M,β and K on f ′, we plot Figs. 2, 3
and 4. It is noted from Fig. 2 that f ′ decreases when M is increases. Further
Fig. 3 and 4 show that f ′ decreases by increasing β and K, respectively.
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Figure 2. Magnetic effects on velocity profile
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5. Concluding Remarks

The objective now is to offer series solution of a MHD flow over a nonlinear
porous stretching sheet equation via LPDM. Such a investigation is even not
presented so far in literature. Series solution is obtained by means of LPDM.
The convergence of LPDM is also shown in Tables 1, 2, 3 and 4. The results of
LPDM are compared with shooting method, Crocco transform and homotopy
analysis method. The results of these methods have closed agreement with
each other. The analysis given here shows more confidence on LPDM. For
that reason, this method can be applied to other difficult nonlinear equations
in boundary layer theory and does not involve linearization, discretization, per-
turbation and occupy less memory space in executions of a recursive relation.
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[2] Baker, G.A.: Essentials of Padé Approximants. Academic Press, London (1975)

[3] Chun, C., Jafari, H., Kim, Y.: Numerical method for the wave and nonlinear
diffusion equations with the homotopy perturbation method. Comput. Math.
Appl. 57, 1226–1231 (2009)

[4] Chaim, T.C.: Hydromagnetic flow over a surface stretching with a power law
velocity. Int. J. Eng. Sci. 33, 429–435 (1995)

[5] Ghotbi, A.R.: Homotopy analysis method for solving the MHD flow over a
non-linear stretching sheet. Commun. Nonlinear Sci. Numer. Simul. 14, 2653–
2663 (2009)

[6] Hosseini, M.M.: Adomian decomposition method with Chebyshev polynomials.
Appl. Math. Comput. 175, 1685–1693 (2006)

[7] Hosseini, M.M.: Numerical solution of ordinary differential equations with
impulse solution. Appl. Math. Comput. 163, 373–381 (2005)

[8] Hosseini, M.M.: Adomian decomposition method for solution of differential-alge-
braic equations. J. Comput. Appl. Math. 197, 373–381 (2006)

[9] Hosseini, M.M.: Adomian decomposition method for solution of nonlinear dif-
ferential algebraic equations. Appl. Math. Comput. 181, 1737–1744 (2006)

[10] Hussain, M., Khan, M.: Modified Laplace decomposition method. Appl. Math.
Sci. 4, 1769–1783 (2010)

[11] Jafari, H., Zabihi, M., Saidy, M.: Application of homotopy-perturbation method
for solving gas dynamics equation. Appl. Math. Sci. 2, 2393–2396 (2008)

[12] Jafari, H., Momani, S.: Solving fractional diffusion and wave equations by mod-
ified homotopy perturbation method. Phys. Lett. A. 370, 388–396 (2007)

[13] Jafari, H., Sadeghi, J., Zabihi, M., Amani A., R.: Application of homotopy per-
turbation method for two coupled scalar fields. J. Comput. Math. 1, 56–66 (2008)

[14] Jafari, H., Golbabai, A., Seifi, S., Sayevand, K.: Homotopy analysis method for
solving multi-term linear and nonlinear diffusion wave equations of fractional
order. Comput. Math. Appl. 59, 1337–1344 (2010)



300 M. A. Gondal et al. Results. Math.

[15] Jafari, H., Saeidy, M., Vahidi, J.: The homotopy analysis method for solving
fuzzy system of linear equations. Int. J. Fuzzy Syst. 11, 308–313 (2009)

[16] Jafari, H., Firozjaee, M.A.: Application of homotopy analysis method for non-
linear Sturm-Liouville problems. J. Adv. Res. Differ. Equ. 1, 11–20 (2009)

[17] Khuri, S.A.: A Laplace decomposition algorithm applied to class of nonlinear
differential equations. J. Appl. Math. 4, 141–155 (2001)

[18] Khan, M., Hussain, M.: Application of Laplace decomposition method on semi
infinite domain. Numer. Algorithms 56, 211–218 (2011)

[19] Khan, M., Gondal, M.A.: New modified Laplace decomposition algorithm for
Blasius flow equation. J. Adv. Res. Sci. Comput. 2, 35–43 (2010)

[20] Khan, M., Gondal, M.A.: A new analytical solution of foam drainage equation
by Laplace decomposition method. J. Adv. Res. Differ. Equ. 2, 53–64 (2010)

[21] Khan, M., Gondal, M.A.: Application of Laplace decomposition method to solve
systems of nonlinear coupled partial differential equations. J. Adv. Res. Sci.
Comput. 2, 1–14 (2010)

[22] Nadeem, S., Hussain, A., Khan, M.: HAM solutions for boundary layer flow in
the region of the stagnation point towards a stretching sheet. Commun. Nonlin-
ear Sci. Numer. Simul. 15, 475–481 (2010)

[23] Nadeem, S., Hussain, A., Khan, M.: Stagnation flow of a Jeffrey fluid over a
shrinking sheet. Zeit. Fur. Nat. A. 65a, 1–9 (2010)

[24] Pavlov, K.B.: Magnetohydrodynamic flow of an incompressible viscous fluid
caused by deformation of a surface. Magni. Gidrodi. 4, 146–147 (1995)
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