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Abstract. In this paper, we prove the existence of solutions of a nonlocal
boundary value problem for nonlinear integro-differential equations of
fractional order given by

cDqx(t) = f(t, x(t), (φx)(t), (ψx)(t)), 0 < t < 1,

x(0) = βx(η), x′(0) = 0, x′′(0) = 0, . . . , x(m−2)(0) = 0, x(1) = αx(η),

where q ∈ (m − 1,m],m ∈ N,m ≥ 2, 0 < η < 1, and φx and ψx are
integral operators. The existence results are established by means of the
contraction mapping principle and Krasnoselskii’s fixed point theorem.
An illustrative example is also presented.
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1. Introduction

Multi-point nonlinear boundary value problems, which refer to a different fam-
ily of boundary conditions in the study of disconjugacy theory [1] and take into
account the boundary data at intermediate points of the interval under consid-
eration, have been addressed by many authors, for example, see [2–9] and the
references therein. Multi-point boundary conditions are important in various
physical problems of applied science when the controllers at the end points
of the interval (under consideration) dissipate or add energy according to the
censors located at intermediate points.
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Fractional differential equations appear naturally in various fields of sci-
ence and engineering such as physics, polymer rheology, regular variation in
thermodynamics, biophysics, blood flow phenomena, aerodynamics, electro-
dynamics of complex medium, viscoelasticity, electrical circuits, electron-ana-
lytical chemistry, biology, control theory, fitting of experimental data, etc.
In consequence, differential equations of fractional order have been addressed
by several researchers with the sphere of study ranging from the theoretical
aspects of existence and uniqueness of solutions to the analytic and numer-
ical methods for finding solutions. For some recent work on this branch of
differential equations, see [10–30] and the references therein. Recently, Ahmad
and Nieto [10] studied a nonlocal boundary value problem for higher order
nonlinear differential equations of fractional order.

In this paper, motivated by [10], we discuss the existence of solutions of
a nonlocal boundary value problem for nonlinear integro-differential equations
of fractional order q:
⎧
⎪⎨

⎪⎩

cDqx(t)=f(t, x(t), (φx)(t), (ψx)(t)), q∈(m−1,m],m∈N,m≥2, 0<t<1,

x(0) = βx(η), x′(0) = 0, x′′(0) = 0, . . . , x(m−2)(0) = 0, x(1) = αx(η),
0 < η < 1, (α− β)ηm−1 �= 1 − β, β, α ∈ R,

(1.1)

where cD is the Caputo fractional derivative, f : [0, 1] ×X ×X ×X → X is
continuous, and for γ, δ : [0, 1] × [0, 1] → [0,∞),

(φx)(t) =

t∫

0

γ(t, s)x(s) ds, (ψx)(t) =

t∫

0

δ(t, s)x(s) ds.

Here, (X, ‖.‖) is a Banach space and C = C([0, 1],X) denotes the Banach
space of all continuous functions from [0, 1] → X endowed with a topology of
uniform convergence with the norm denoted by ‖.‖.

By a solution of (1.1), we mean a function x ∈ C of class Cm[0, 1] which
satisfies the nonlocal fractional boundary value problem (1.1).

2. Preliminaries

Let us recall some basic definitions [11,12,14] on fractional calculus.

Definition 2.1. For a continuous function g : [0,∞) → R, the Caputo derivative
of fractional order q is defined as

cDqg(t) =
1

Γ(n− q)

t∫

0

(t− s)n−q−1g(n)(s) ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.
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Definition 2.2. The Riemann–Liouville fractional integral of order q is defined
as

Iqg(t) =
1

Γ(q)

t∫

0

g(s)
(t− s)1−q ds, q > 0,

provided the integral exists.

Definition 2.3. The Riemann–Liouville fractional derivative of order q for a
continuous function g(t) is defined by

Dqg(t) =
1

Γ(n− q)

( d

dt

)n
t∫

0

g(s)
(t− s)q−n+1

ds, n = [q] + 1,

provided the right hand side is pointwise defined on (0,∞).

To study the nonlinear problem (1.1), we first consider the associated
linear problem and obtain its solution.

Lemma 2.4. For a given σ ∈ C[0, 1], the unique solution of the boundary value
problem

⎧
⎨

⎩

cDqx(t) = σ(t), 0 < t < 1, q ∈ (m− 1,m], m ∈ N, m ≥ 2,
x(0)=βx(η), x′(0) = 0, x′′(0) = 0, . . . , x(m−2)(0)=0, x(1)=αx(η),
0 < η < 1, (α− β)ηm−1 �= 1 − β, β, α ∈ R,

(2.1)

is given by

x(t) =

t∫

0

(t− s)q−1

Γ(q)
σ(s) ds+

(βηm−1 + (1 − β)tm−1

β − 1 + (α− β)ηm−1

) 1∫

0

(1 − s)q−1

Γ(q)
σ(s) ds

−
( β + (α− β)tm−1

β − 1 + (α− β)ηm−1

)
η∫

0

(η − s)q−1

Γ(q)
σ(s) ds. (2.2)

Proof. As argued in [10], the general solution of (2.1) can be written as

x(t) =

t∫

0

(t− s)q−1

Γ(q)
σ(s) ds− c0 − c1t− c2t

2 − · · · − cm−1t
m−1, (2.3)
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where c0, c1, c2, . . . , cm−1 ∈ R are arbitrary constants. In view of the relations
cDqIqx(t) = x(t) and IqIpx(t) = Iq+px(t) for q, p > 0, x ∈ L(0, 1), we obtain

x′(t) =

t∫

0

(t− s)q−2

Γ(q − 1)
σ(s) ds− c1 − 2c2t− · · · − (m− 1)cm−1t

m−2,

x′′(t) =

t∫

0

(t− s)q−3

Γ(q − 2)
σ(s) ds− 2c2 − · · · − (m− 1)(m− 2)cm−1t

m−3, . . .

Applying the boundary conditions for (2.1), we find that

c0 =
( β

β − 1 + (α− β)ηm−1

)
η∫

0

(η − s)q−1

Γ(q)
σ(s) ds

−
( βηm−1

β − 1 + (α− β)
ηm−1

) 1∫

0

(1 − s)q−1

Γ(q)
σ(s) ds,

c1 = 0, . . . , cm−2 = 0, and

cm−1 =
( α− β

β − 1 + (α− β)ηm−1

)
η∫

0

(η − s)q−1

Γ(q)
σ(s) ds

+
( β − 1
β − 1 + (α− β)ηm−1

) 1∫

0

(1 − s)q−1

Γ(q)
σ(s) ds,

Substituting the values of c0, c1, . . . , cm−1 in (2.3), we obtain (2.2). This com-
pletes the proof. �

3. Main Results

To prove the main results, we need the following assumptions:
(A1) There exist positive functions L1(t), L2(t), L3(t) such that

‖f(t, x(t), (φx)(t), (ψx)(t)) − f(t, y(t), (φy)(t), (ψy)(t))‖
≤ L1(t)‖x− y‖ + L2(t)‖φx− φy‖ + L3(t)‖ψx− ψy‖,

∀t ∈ [0, 1], x, y ∈ X.

We set

γ0 = sup
t∈[0,1]

∣
∣
∣

t∫

0

γ(t, s) ds
∣
∣
∣, δ0 = sup

t∈[0,1]

∣
∣
∣

t∫

0

δ(t, s) ds
∣
∣
∣,

IqL = sup
t∈[0,1]

{|IqL1(t)|, |IqL2(t)|, |IqL3(t)|},

IqL(1) = max{|IqL1(1)|, |IqL2(1)|, |IqL3(1)|},
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and

IqL(η) = max{|IqL1(η)|, |IqL2(η)|, |IqL3(η)|}.
(A2) There exists a number κ such that Λ ≤ κ < 1, where

Λ = (1 + γ0 + δ0)
{
IqL +

(|βηm−1| + |1 − β|)IqL(1) + (|β| + |α− β|)IqL(η)
|β − 1 + (α− β)ηm−1|

}
.

(A3) ‖f(t, x(t), (φx)(t), (ψx)(t))‖ ≤ μ(t),∀(t, x, φx, ψx) ∈ [0, 1] × X × X ×
X,μ ∈ L1([0, 1], R+).

Theorem 3.1. Assume that (A1) and (A2) hold. Then the boundary value prob-
lem (1.1) has a unique solution.

Proof. Define G : C → C by

(Gx)(t) =

t∫

0

(t− s)q−1

Γ(q)
f(s, x(s), (φx)(s), (ψx)(s)) ds

+
(βηm−1 + (1 − β)tm−1

β − 1 + (α− β)ηm−1

) 1∫

0

(1 − s)q−1

Γ(q)
f(s, x(s), (φx)(s), (ψx)(s)) ds

−
( β + (α− β)tm−1

β − 1 + (α− β)ηm−1

)
η∫

0

(η − s)q−1

Γ(q)
f(s, x(s), (φx)(s), (ψx)(s)) ds,

t ∈ [0, 1]. Let us set supt∈[0,1] |f(t, 0, 0, 0)| = M , and choose

r ≥ M

(1 − λ)Γ(q + 1)

{
1 +

(|βηm−1| + |1 − β|) + (|β| + |α− β|ηq)
|β − 1 + (α− β)ηm−1|

}
,

where λ is such that Λ ≤ λ < 1. Now we show that GBr ⊂ Br, where Br =
{x ∈ C : ‖x‖ ≤ r}. For x ∈ Br, we have

‖(Gx)(t)‖ ≤
t∫

0

(t− s)q−1

Γ(q)
‖f(s, x(s), (φx)(s), (ψx)(s)) ds‖

+
∣
∣
∣
βηm−1 + (1 − β)tm−1

β − 1 + (α− β)ηm−1

∣
∣
∣

1∫

0

(1 − s)q−1

Γ(q)
‖f(s, x(s), (φx)(s), (ψx)(s))‖ds

+
∣
∣
∣

β + (α− β)tm−1

β − 1 + (α− β)ηm−1

∣
∣
∣

η∫

0

(η − s)q−1

Γ(q)
‖f(s, x(s), (φx)(s), (ψx)(s))‖ds

≤
t∫

0

(t−s)q−1

Γ(q)
(‖f(s, x(s), (φx)(s), (ψx)(s))−f(s, 0, 0, 0)‖+‖f(s, 0, 0, 0)‖) ds
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+
∣
∣
∣
βηm−1 + (1 − β)tm−1

β − 1 + (α− β)ηm−1

∣
∣
∣

1∫

0

(1 − s)q−1

Γ(q)
(‖f(s, x(s), (φx)(s), (ψx)(s))

−f(s, 0, 0, 0)‖ + ‖f(s, 0, 0, 0)‖) ds

+
∣
∣
∣

β + (α− β)tm−1

β − 1 + (α− β)ηm−1

∣
∣
∣

η∫

0

(η − s)q−1

Γ(q)
(‖f(s, x(s), (φx)(s), (ψx)(s))

−f(s, 0, 0, 0)‖ + ‖f(s, 0, 0, 0)‖) ds

≤
t∫

0

(t− s)q−1

Γ(q)
(L1(s)‖x(s)‖ + L2(s)‖(φx)(s)‖ + L3(s)‖(ψx)(s)‖ +M) ds

+
∣
∣
∣
βηm−1 + (1 − β)tm−1

β − 1 + (α− β)ηm−1

∣
∣
∣

1∫

0

(1 − s)q−1

Γ(q)
(L1(s)‖x(s)‖

+L2(s)‖(φx)(s)‖ + L3(s)‖(ψx)(s)‖ +M) ds

+
∣
∣
∣

β + (α− β)tm−1

β − 1 + (α− β)ηm−1

∣
∣
∣

η∫

0

(η − s)q−1

Γ(q)
(L1(s)‖x(s)‖ + L2(s)‖(φx)(s)‖

+L3(s)‖(ψx)(s)‖ +M) ds

≤
t∫

0

(t− s)q−1

Γ(q)
(L1(s)‖x(s)‖+γ0L2(s)‖x(s)‖+δ0L3(s)‖x(s)‖+M) ds

+
∣
∣
∣
βηm−1 + (1 − β)tm−1

β − 1 + (α− β)ηm−1

∣
∣
∣

1∫

0

(1 − s)q−1

Γ(q)
(L1(s)‖x(s)‖ + γ0L2(s)‖x(s)‖

+δ0L3(s)‖x(s)‖ +M) ds

+
∣
∣
∣

β + (α− β)tm−1

β − 1 + (α− β)ηm−1

∣
∣
∣

η∫

0

(η − s)q−1

Γ(q)
(L1(s)‖x(s)‖ + γ0L2(s)‖x(s)‖

+δ0L3(s)‖x(s)‖ +M) ds

≤ (IqL1(t) + γ0I
qL2(t) + δ0I

qL3(t))r +
Mtq

Γ(q + 1)

+
∣
∣
∣
βηm−1 + (1 − β)tm−1

β − 1 + (α− β)ηm−1

∣
∣
∣

(
(IqL1(1)+γ0I

qL2(1)+δ0IqL3(1))r+
M

Γ(q + 1)

)

+
∣
∣
∣

β + (α− β)tm−1

β − 1 + (α− β)ηm−1

∣
∣
∣

(
(IqL1(η)+γ0I

qL2(η)+δ0IqL3(η))r +
Mηq

Γ(q + 1)

)

≤ IqL{1 + γ0 + δ0}r +
M

Γ(q + 1)
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+
(|βηm−1| + |1 − β|)

|β − 1 + (α− β)ηm−1|
(
(IqL(1){1 + γ0 + δ0}r +

M

Γ(q + 1)

)

+
(|β| + |α− β|)

|β − 1 + (α− β)ηm−1|
(
(IqL(η){1 + γ0 + δ0}r +

Mηq

Γ(q + 1)

)

= (1 + γ0 + δ0)
{
IqL +

(|βηm−1| + |1 − β|)
|β − 1 + (α− β)ηm−1|I

qL(1)

+
(|β| + |α− β|)

|β − 1 + (α− β)ηm−1|I
qL(η)

}
r

+
M

Γ(q + 1)

{
1 +

(|βηm−1| + |1 − β|)
|β − 1 + (α− β)ηm−1| +

(|β| + |α− β|)ηq
|β − 1 + (α− β)ηm−1|

}

≤ (Λ + 1 − λ)r ≤ r.

Now, for x, y ∈ C and for each t ∈ [0, 1], we obtain

‖(Gx)(t) − (Gy)(t)‖

≤
t∫

0

(t− s)q−1

Γ(q)
‖f(s, x(s), (φx)(s), (ψx)(s) − f(s, y(s), (φy)(s), (ψy)(s))‖ ds

+
∣
∣
∣
βηm−1 + (1 − β)tm−1

β − 1 + (α− β)ηm−1

∣
∣
∣

1∫

0

(1 − s)q−1

Γ(q)
‖f(s, x(s), (φx)(s), (ψx)(s)

−f(s, y(s), (φy)(s), (ψy)(s))‖ ds

+
∣
∣
∣

β + (α− β)tm−1

β − 1 + (α− β)ηm−1

∣
∣
∣

η∫

0

(η − s)q−1

Γ(q)
‖f(s, x(s), (φx)(s), (ψx)(s)

−f(s, y(s), (φy)(s), (ψy)(s))‖ ds

≤
t∫

0

(t− s)q−1

Γ(q)

(
L1(s)‖x− y‖ + L2(s)‖φx− φy‖ + L3(s)‖ψx− ψy‖

)
ds

+
∣
∣
∣
βηm−1 + (1 − β)tm−1

β − 1 + (α− β)ηm−1

∣
∣
∣

1∫

0

(1 − s)q−1

Γ(q)

(
L1(s)‖x− y‖ + L2(s)‖φx− φy‖

+L3(s)‖ψx− ψy‖
)
ds

+
∣
∣
∣

β + (α− β)tm−1

β − 1 + (α− β)ηm−1

∣
∣
∣

η∫

0

(η − s)q−1

Γ(q)

(
L1(s)‖x− y‖ + L2(s)‖φx− φy‖|

+L3(s)‖ψx− ψy‖
)
ds

≤
(
IqL1(t) + γ0I

qL2(t) + δ0I
qL3(t)

)
‖x− y‖
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+
∣
∣
∣
βηm−1 + (1 − β)tm−1

β − 1 + (α− β)ηm−1

∣
∣
∣

(
IqL1(1) + γ0I

qL2(1) + δ0I
qL3(1)

)
‖x− y‖

+
∣
∣
∣

β + (α− β)tm−1

β − 1 + (α− β)ηm−1

∣
∣
∣

(
IqL1(η) + γ0I

qL2(η) + δ0I
qL3(η)

)
‖x− y‖

≤ (1 + γ0 + δ0)
{
IqL +

(|βηm−1| + |1 − β|)IqL(1) + (|β| + |α− β|)IqL(η)
|β − 1 + (α− β)ηm−1|

}

×‖x− y‖
≤ ‖x− y‖,

where we have used the assumption (A2) in the last inequality. Clearly G is a
contraction. Thus, by the contraction mapping principle, we obtain the con-
clusion of the theorem. This completes the proof. �

Now, we state Krasnoselskii’s fixed point theorem [31] which is needed to
prove our next existence result.

Theorem 3.2. Let M be a closed convex and nonempty subset of a Banach space
X. Let A,B be operators such that (i) Ax+By ∈ M whenever x, y ∈ M ; (ii)
A is compact and continuous; (iii) B is a contraction mapping. Then there
exists z ∈ M such that z = Az +Bz.

Theorem 3.3. Suppose that f : [0, 1] ×X ×X ×X → X is jointly continuous
and maps bounded subsets of [0, 1]×X×X×X into relatively compact subsets
of X and the assumptions (A1) and (A3) hold with

Λ1 = (1 + γ0 + δ0)
{ (|βηm−1| + |1 − β|)IqL(1) + (|β| + |α− β|)IqL(η)

|β − 1 + (α− β)ηm−1|
}
< 1.

Then there exists at least one solution of the boundary value problem (1.1) on
[0, 1].

Proof. Let us fix

r ≥ ‖μ‖L1

Γ(q)

{
1 +

(|βηm−1| + |1 − β|) + (|β| + |α− β|)ηq−1)
|β − 1 + (α− β)ηm−1|

}
,

and consider Br = {x ∈ C : ‖x‖ ≤ r}. We define the operators Θ1 and Θ2 on
Br by

(Θ1x)(t) =

t∫

0

(t− s)q−1

Γ(q)
f(s, x(s), (φx)(s), (ψx)(s)) ds,

(Θ2x)(t) =
(βηm−1+(1−β)tm−1

β−1+(α−β)ηm−1

) 1∫

0

(1 − s)q−1

Γ(q)
f(s, x(s), (φx)(s), (ψx)(s)) ds

−
( β+(α−β)tm−1

β − 1+(α−β)ηm−1

)
η∫

0

(η−s)q−1

Γ(q)
f(s, x(s), (φx)(s), (ψx)(s)) ds.
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For x, y ∈ Br, we find that

‖Θ1x+ Θ2y‖ ≤ ‖μ‖L1

Γ(q)

{
1 +

(|βηm−1| + |1 − β|) + (|β| + |α− β|ηq−1)
|β − 1 + (α− β)ηm−1|

}
≤ r.

Thus, Θ1x+ Θ2y ∈ Br. It follows from the assumption (A1) that Θ2 is a
contraction mapping for Λ1 < 1. Continuity of f implies that the operator Θ1

is continuous. Also, Θ1 is uniformly bounded on Br as

‖Θ1x‖ ≤ ‖μ‖L1

Γ(q)
.

To show that the operator Θ1 is compact, we use the classical Arzela–Ascoli’s
Theorem. Let A be a bounded subset of C. We have to show that Φ(A) is
equicontinuous and for each t, the set Φ(A)(t) is relatively compact in X. In
view of (A1), (A3), we define sup(t,x,φx,ψx)∈[0,1]×Br×Br×Br

‖f(t, x, φx, ψx)‖ =
fmax < ∞, and consequently we have

‖(Θ1x)(t1) − (Θ1x)(t2)‖

=
∥
∥
∥

1
Γ(q)

t1∫

0

(
(t2 − s)q−1 − (t1 − s)q−1

)
f(s, x(s), φx(s), ψx(s)) ds

+

t2∫

t1

(t2 − s)q−1f(s, x(s), φx(s), ψx(s)) ds
∥
∥
∥

≤ fmax

Γ(q + 1)
|2(t2 − t1)q + tq1 − tq2|,

which is independent of x. Thus, Θ1 is equicontinuous. Using the fact that f
maps bounded subsets into relatively compact subsets, we have that Θ1(A)(t)
is relatively compact in X for every t. Therefore, Θ1 is relatively compact on
Br. Hence, by the Arzela–Ascoli’s Theorem, Θ1 is compact on Br. Thus all the
assumptions of Theorem 3.2 are satisfied and so the boundary value problem
(1.1) has at least one solution on [0, 1]. �

Example. Consider the following boundary value problem
{
cD

5
2x(t) = t

2
|x|

1+|x| + 1
5

∫ t
0
e−(s−t)

5 x(s) ds+ 1
5

∫ t
0
e−(s−t)/2

5 x(s) ds, t ∈ [0, 1],

x(0) = 1
2x(

1
3 ), x′(0) = 0, x(1) = x( 1

3 ).
(3.1)

Here, m = 3, q = 5
2 , γ(t, s) = e−(s−t)

5 , δ = e−(s−t)/2

5 β = 1
2 , α = 1, η = 1

3 . With
γ0 = e−1

5 , δ0 = 2(
√
e−1)
5 , we find that

Λ =
12(e+ 2(

√
e+ 1))

125
√
π

< 1.
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Thus, by Theorem 3.1, the boundary value problem (3.1) has a unique solution
on [0, 1].

4. Conclusions

It is worth-mentioning that the nonlocal problem (1.1) is a generalized form
of the problem considered in [10] in the sense that it contains a nonlinearity
of the form f(t, x(t), (φx)(t), (ψx)(t)) in contrast to f(t, x(t)) and involves the
boundary condition x(0) = βx(η) instead of x(0) = 0.

Our main results are based on a generalized variant of a Lipschitz condi-
tion, that is, there exist positive functions L1(t), L2(t), L3(t) such that

‖f(t, x(t), (φx)(t), (ψx)(t)) − f(t, y(t), (φy)(t), (ψy)(t))‖
≤ L1(t)‖x− y‖ + L2(t)‖φx− φy‖ + L3(t)‖ψx− ψy‖, ∀t ∈ [0, 1], x, y ∈ X.

On the other hand, the results of [10] are proved by requiring a Lipschitz con-
dition. In case L1(t), L2(t), and L3(t) are constant functions, that is L1(t) =
L1, L2(t) = L2, and L3(t) = L3 (L1, L2, L3 are positive real numbers), then
the assumption (A1) reduces to a Lipschitz condition and Λ given by (A2)
takes the form

Λ =
(L1 + γ0L2 + δ0L3)

Γ(q + 1)

{
1 +

(|βηm−1| + |1 − β|) + (|β| + |α− β|ηq)
|β − 1 + (α− β)ηm−1|

}
.

Furthermore, the solution for an m− th order linear nonlocal boundary
value problem [32] can be obtained by fixing q = m in (2.2). Thus, our results
are new and generalize some earlier ones.

Acknowledgements

The author thanks the reviewer for his/her useful suggestions.

References

[1] Coppel, W.: Disconjugacy. Lecture Notes in Mathematics, vol. 220. Springer,
Berlin (1971)

[2] Zhang, Z., Wang, J.: Positive solutions to a second order three-point boundary
value problem. J. Math. Anal. Appl. 285, 237–249 (2003)

[3] Eloe, P.W., Ahmad, B.: Positive solutions of a nonlinear nth order boundary
value problem with nonlocal conditions. Appl. Math. Lett. 18, 521–527 (2005)

[4] Webb, J.R.L., Infante, G.: Positive solutions of nonlocal boundary value
problems: a unified approach. J. Lond. Math. Soc. 74, 673–693 (2006)

[5] Infante, G., Webb, J.R.L.: Nonlinear nonlocal boundary value problems and
perturbed Hammerstein integral equations. Proc. Edinb. Math. Soc. 49, 637–
656 (2006)



Vol. 63 (2013) On Nonlocal Boundary Value Problems 193

[6] Du, Z., Lin, X., Ge, W.: Nonlocal boundary value problem of higher order ordi-
nary differential equations at resonance. Rocky Mt. J. Math. 36, 1471–1486
(2006)

[7] Graef, J.R., Yang, B.: Positive solutions of a third order nonlocal boundary value
problem. Discret. Contin. Dyn. Syst. 1, 89–97 (2008)

[8] Webb, J.R.L.: Nonlocal conjugate type boundary value problems of higher order.
Nonlinear Anal. 71, 1933–1940 (2009)

[9] Webb, J.R.L., Infante, G.: Nonlocal boundary value problems of arbitrary order.
J. Lond. Math. Soc. 79, 238–258 (2009)

[10] Ahmad, B., Nieto, J.J.: Existence of solutions for nonlocal boundary value prob-
lems of higher order nonlinear fractional differential equations. Abstr. Appl.
Anal. Art. ID 494720, 9 (2009)

[11] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives,
Theory and Applications. Gordon and Breach, New Jersey (1993)

[12] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego
(1999)

[13] Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific,
Singapore (2000)

[14] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Frac-
tional Differential Equations. North-Holland Mathematics Studies 204, Elsevier
(2006)

[15] Daftardar-Gejji, V., Bhalekar, S.: Boundary value problems for multi-term frac-
tional differential equations. J. Math. Anal. Appl. 345, 754–765 (2008)

[16] Gafiychuk, V., Datsko, B., Meleshko, V.: Mathematical modeling of time frac-
tional reaction-diffusion systems. J. Comput. Appl. Math. 220, 215–225 (2008)

[17] Rida, S.Z., El-Sherbiny, H.M., Arafa, A.A.M.: On the solution of the fractional
nonlinear Schrödinger equation. Phys. Lett. A 372, 553–558 (2008)

[18] Agarwal, R.P., Benchohra, M., Slimani, B.A.: Existence results for differential
equations with fractional order and impulses. Mem. Differ. Equ. Math. Phys. 44,
1–21 (2008)

[19] N’Guerekata, G.M.: A Cauchy problem for some fractional abstract differential
equation with non local conditions. Nonlinear Anal. 70, 1873–1876 (2009)

[20] Ahmad, B., Sivasundaram, S.: Existence and uniqueness results for nonlinear
boundary value problems of fractional differential equations with separated
boundary conditions. Commun. Appl. Anal. 13, 121–228 (2009)

[21] Ahmad, B., Nieto, J.J.: Existence results for nonlinear boundary value prob-
lems of fractional integrodifferential equations with integral boundary condi-
tions. Bound. Value Probl. Art. ID 708576, 11 (2009)

[22] Lakshmikantham, V., Leela, S., Vasundhara Devi, J.: Theory of Fractional
Dynamic Systems. Cambridge Academic Publishers, Cambridge (2009)

[23] Ahmad, B., Nieto, J.J.: Existence results for a coupled system of nonlinear
fractional differential equations with three-point boundary conditions. Comput.
Math. Appl. 58, 1838–1843 (2009)



194 B. Ahmad Results. Math.

[24] Ahmad, B., Graef, J.R.: Coupled systems of nonlinear fractional differential
equations with nonlocal boundary conditions. Panamer. Math. J. 19, 29–39
(2009)

[25] Ahmad, B., Sivasundaram, S.: Existence results for nonlinear impulsive hybrid
boundary value problems involving fractional differential equations. Nonlinear
Anal. Hybrid Syst. 3, 251–258 (2009)

[26] Ahmad, B., Otero-Espinar, V.: Existence of solutions for fractional differential
inclusions with anti-periodic boundary conditions. Bound. Value Probl. Art.
ID 625347, 11 (2009)

[27] Mophou, G.M.: Existence and uniqueness of mild solutions to impulsive frac-
tional differential equations. Nonlinear Anal. 72, 1604–1615 (2010)

[28] Ahmad, B., Nieto, J.J.: Existence of solutions for anti-periodic boundary value
problems involving fractional differential equations via Leray-Schauder degree
theory. Topol. Methods Nonlinear Anal. 35, 295–304 (2010)

[29] Ahmad, B.: Existence of solutions for fractional differential equations of order
q ∈ (2, 3] with anti-periodic boundary conditions. J. Appl. Math. Comput. 34,
385–391 (2010)

[30] Agarwal, R.P., Lakshmikantham, V., Nieto, J.J.: On the concept of solution
for fractional differential equations with uncertainty. Nonlinear Anal. 72, 2859–
2862 (2010)

[31] Smart, D.R.: Fixed Point Theorems. Cambridge University Press (1980)

[32] Ji, Y., Guo, Y.: The existence of countably many positive solutions for nonlin-
ear nth-order three-point boundary value problems. Bound. Value Probl. Art.
ID 572512, 18 (2009)

Bashir Ahmad
Department of Mathematics
Faculty of Science
King Abdulaziz University
P. O. Box 80203
Jeddah 21589
Saudi Arabia
e-mail: bashir qau@yahoo.com

Received: January 14, 2010.

Revised: August 2, 2010.

Accepted: August 25, 2010.


	On Nonlocal Boundary Value Problems for Nonlinear Integro-differential Equations of Arbitrary Fractional Order
	Abstract
	1. Introduction
	2. Preliminaries
	3. Main Results
	4. Conclusions
	Acknowledgements
	References


