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1. Introduction

In this paper we study the existence of mild solutions to the Cauchy problem
of fractional evolution equation with nonlocal initial condition{

cDα
t u(t) = Au(t) + F (t, u(t)), t ∈ [0, T ],

u(0) = H(u).
(1.1)

Here, cDα
t , 0 < α < 1, is the Caputo fractional derivative of order α, the

operator (A,D(A)) is the infinitesimal generator of a compact semigroup of
strongly continuous operators {T (t)}t≥0 on a Banach space (E, ‖ · ‖), and
H : C([0, T ]; E) → E, F : [0, T ] × E → E are given functions to be specified
later. As can be seen, H constitutes a nonlocal condition.
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The motivation for this study is that evolution equations involve
fractional derivatives in time have, in some cases, better effects in applications
than traditional evolution equations of integer order in time (see [14,16,23]
and the references therein). Recently, there have been many papers concern-
ing this topic (cf., e.g. [1,2,5–7,9,10,13,22,25,26]). It is worth mentioning that
this class of equations can provide an excellent instrument for the description
of memory and hereditary properties of various materials and processes. What
it need to emphasize is that this is the main advantage of fractional mod-
els in comparison with integer-order models, in which such effects are in fact
neglected.

In particular, stimulated by the observation that nonlocal initial con-
ditions are more realistic than usual ones in treating physical problems (see
[3,4,8] for more detailed information about the importance of nonlocal initial
conditions in applications), the study of fractional evolution equations with
nonlocal initial conditions has been investigated to a large extent. One direc-
tion of the study is the existence of mild solutions to this class of equation,
among others, we refer to, e.g., [2,9,25,26] and the references therein. Other
contributions about the nonlocal problems, please see [3,11,17–20,24,25] and
the references therein.

However, much of the previous research on mild solutions was done under
the restriction that the nonlocal item is compact or Lipschitz continuous. This
condition turns out to be quite restrictive and is not satisfied usually in practi-
cal applications. Thus, there naturally arises a question: “whether there exists
a mild solution when the nonlocal item loses the compactness and Lipschitz
continuity”.

In this paper, among others, we will give an affirmative answer to this
question. New criterions, ensuring the existence and uniqueness of mild solu-
tions to (1.1), are established. More precisely, with the help of the compactness
of the semigroup generated by A, we will first prove an existence result of mild
solution to (1.1), which allows us to relax the compactness and Lipschitz con-
tinuity on the nonlocal item H. In fact, in the proof of the result we only need
to suppose the continuity and the growth condition on the nonlocal item and
do not impose any other conditions. Then, under a hypothesis on the nonlocal
item H which is more general than those in many previous publications, an
existence and uniqueness result of mild solutions to (1.1) is also established.

The rest of this paper is organized as follows. In Sect. 2, we present some
preliminaries. Section 3 is devoted to main results and their proofs. Finally,
in Sect. 4, two examples are given to illustrate the feasibility of our abstract
results.

2. Preliminaries

Throughout this paper, we denote by L(E) the Banach space of all lin-
ear and bounded operators on E, by C([0, T ]; E) the Banach space of all
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continuous functions from [0, T ] into E with the uniform norm topology
‖u‖∞ = sup{‖u(t)‖, t ∈ [0, T ]}. The linear operator (A,D(A)) is the infini-
tesimal generator of a compact and uniformly bounded semigroup of strongly
continuous operators {T (t)}t≥0 on E. Let M be a constant such that

M = sup{‖T (t)‖L(E), t ∈ [0,∞)}.

For the sake of convenience, we write

Ωr = {u ∈ C([0, T ]; E); ‖u(t)‖ ≤ r, ∀t ∈ [0, T ]},

where r is any positive constant.
In the following we recall some definitions of fractional calculus (see, e.g.,

[15,22,23] for more details).

Definition 2.1. The Riemann–Liouville fractional integral operator of order
α > 0 of function f is defined as

Iαf(t) =
1

Γ(α)

t∫
0

(t − s)α−1f(s)ds,

provided the right-hand side is pointwise defined on [0,∞), where Γ(·) is the
gamma function.

Definition 2.2. The Caputo fractional derivative of order α > 0,m − 1 < α <
m,m ∈ N, is defined as

cDαf(t) = Im−αDm
t f(t) =

1
Γ(m − α)

t∫
0

(t − s)m−α−1Dm
s f(s)ds,

where Dm
t := dm

dtm and f is an abstract function with value in E. If 0 < α < 1,
then

cDαf(t) =
1

Γ(1 − α)

t∫
0

f ′(s)
(t − s)α

ds.

Throughout this paper, we let 0 < α < 1. Define two families {Sα(t)}t≥0

and {Pα(t)}t≥0 of linear operators by

Sα(t)x =

∞∫
0

Ψα(s)T (stα)xds, Pα(t)x =

∞∫
0

αsΨα(s)T (stα)xds, x ∈ E,

where

Ψα(s) =
1

πα

∞∑
n=1

(−s)n−1 Γ(1 + αn)
n!

sin(nπα), s ∈ (0,∞)
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is the function of Wright type defined on (0,∞) which satisfies

Ψα(s) ≥ 0, s ∈ (0,∞),

∞∫
0

Ψα(s)ds = 1, and

∞∫
0

sγΨα(s)ds =
Γ(1 + γ)
Γ(1 + αγ)

, γ ∈ [0, 1]. (2.1)

Then, from [25, Lemma 3.2, Lemma 3.3] it follows that for all t ≥ 0,Sα(t) and
Pα(t) are linear and bounded operators on E, for every x ∈ E, t → Sα(t)x, t →
Pα(t)x are continuous functions from [0,∞) into E, and Sα(t) and Pα(t) are
compact operators for t > 0.

In fact, we also have the following result.

Lemma 2.1. For t > 0,Sα(t) and Pα(t) are continuous in the uniform operator
topology.

Proof. First note that

‖Sα(t)‖L(E) ≤ M, ‖Pα(t)‖L(E) ≤ αM

Γ(1 + α)
for 0 ≤ t < ∞. Given ε > 0, it follows from (2.1) that there exist δ1, δ2 > 0
with δ1 < δ2 such that for x ∈ E,

1
2M

δ1∫
0

Ψα(s)‖x‖ds ≤ ε

3
‖x‖,

1
2M

∞∫
δ2

Ψα(s)‖x‖ds ≤ ε

3
‖x‖. (2.2)

On the other hand, for t1, t2 > 0, since the compactness of T (t) for t > 0
implies the continuity in the uniform operator topology, there exists a δ0 > 0
such that

‖T (stα1 ) − T (stα2 )‖L(E) ≤ ε

3
, s ∈ [δ1, δ2]

when |t1 − t2| ≤ δ0. This together with (2.2) yields that if |t1 − t2| ≤ δ0, then
for x ∈ E,

‖Sα(t1)x − Sα(t2)x‖ ≤ 1
2M

δ1∫
0

Ψα(s)ds +
1

2M

∞∫
δ2

Ψα(s)ds

+

δ2∫
δ1

Ψα(s)‖(T (stα1 )x − T (stα2 )x)‖ds

≤ ε‖x‖,

which implies that for t > 0,Sα(t) is continuous in the uniform operator topol-
ogy. A similar argument enables us to give the characterization of continuity
on Pα(t). This completes the proof. �
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Based on the work in [25, Lemma 3.1 and Definition 3.1], in this paper
we adopt the following definition of mild solution to (1.1).

Definition 2.3. By a mild solution of (1.1), we mean a function u ∈ C([0, T ]; E)
satisfying

u(t) = Sα(t)H(u) +

t∫
0

(t − s)α−1Pα(t−s)F (s, u(s))ds, t ∈ [0, T ].

3. Main Results

Let m ≥ 1 be fixed. First consider the nonlocal Cauchy problem in the form{
cDα

t u(t) = Au(t) + F (t, u(t)), t ∈ [0, T ],

u(0) = T
(

1
m

)
H(u).

(3.1)

We can prove the following result.

Lemma 3.1. Let the following hypotheses hold.
(H1) F : [0, T ] × E → E is a Carathéodory function, and there exists a con-

stant β ∈ [0, α) and a function fr(·) ∈ L1/β(0, T ; R+) such that for a.e.
t ∈ [0, T ] and all u ∈ E satisfying ‖u‖ ≤ r,

‖F (t, u)‖ ≤ fr(t), and lim inf
r→+∞

‖fr‖L1/β(0,T )

r
= σ < ∞.

(H2) H : C([0, T ]; E) → E is continuous, there exists a nondecreasing function
Φ : R

+ → R
+ such that for all u ∈ Ωr,

‖H(u)‖ ≤ Φ(r), and lim inf
r→+∞

Φ(r)
r

= μ < ∞.

Then for every m ≥ 1, the Cauchy problem (3.1) has at least a mild solution
um provided that

Mμ +
ασMTα−β

Γ(1 + α)

(
1 − β

α − β

)1−β

< 1. (3.2)

Proof. Let m ≥ 1 be fixed. It is clear that we will obtain the result if we show
that the mapping Jα : C([0, T ]; E) → C([0, T ]; E) defined by

(Jαu)(t) = Sα(t)T
(

1
m

)
H(u) +

t∫
0

(t − s)α−1Pα(t − s)F (s, u(s))ds

has a fixed point.
To accomplish this goal, we first see that Jα is well defined. Note also,

from (H1) and Hölder’s inequality, that
t∫

0

(t − s)α−1fρ(s)ds ≤
(

1 − β

α − β

)1−β

Tα−β‖fρ‖L
1/β

(0,T )
, t ∈ [0, T ], (3.3)
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which together with (H2) yields that for any u ∈ Ωr,

‖(Jαu)(t)‖ ≤
∥∥∥∥Sα(t)T

(
1
m

)∥∥∥∥
L(E)

‖H(u)‖

+

t∫
0

(t − s)α−1‖Pα(t − s)‖L(E)‖F (t, x)‖ds

≤ MΦ(r) +
αM

Γ(1 + α)

t∫
0

(t − s)α−1fr(s)ds

≤ MΦ(r) +
αMTα−β

Γ(1 + α)

(
1 − β

α − β

)1−β

‖fr‖L
1/β

(0,T )
.

This implies that there exists a integer r0 > 0 such that Jα maps Ωr0 into
itself. In fact, if this is not the case, then for each n > 0, there would exist
un ∈ Ωn and tn ∈ [0, T ] such that ‖(Jαun)(tn)‖ > n. Thus, we obtain

n < ‖(Jαun)(tn)‖ ≤ MΦ(n) +
αMTα−β

Γ(1 + α)

(
1 − β

α − β

)1−β

‖fn‖
L

1/β
(0,T )

.

Dividing on both sides by n and taking the lower limit as n → +∞, we get

1 ≤ Mμ +
ασMTα−β

Γ(1 + α)

(
1 − β

α − β

)1−β

,

which contradicts (3.2).
Next, we shall prove that Jα is continuous on Ωr0 . Let {un}∞

n=1 ⊂ Ωr0

be a sequence such that un → u as n → ∞ in C([0, T ]; E). Therefore, it fol-
lows from the continuity of F with respect to the second variable that for
a.e. s ∈ [0, T ], F (s, un(s)) → F (s, u(s)) as n → ∞. Hence, by (3.3) and the
continuity of operator H, the Lebesgue dominated convergence theorem gives
that for each t ∈ [0, T ],

‖(Jαun)(t) − (Jαu)(t)‖ → 0 as n → ∞,

which implies that

‖Jαun − Jαu‖∞ → 0 as n → ∞.

That is to say that Jα is continuous on Ωr0 .
Let us decompose the operator Jα as follows:

Jα = Jα
H

+ Jα
F
,



Vol. 63 (2013) On the Cauchy Problems of Fractional... 21

where

(Jα
H

u)(t) = Sα(t)T
(

1
m

)
H(u), t ∈ [0, T ],

(Jα
F

u)(t) =

t∫
0

(t − s)α−1Pα(t − s)F (s, u(s))ds, t ∈ [0, T ].

Observe that

(Jα
H

u)(t) =

{
T

(
1
m

)
H(u) if t = 0,

Sα(t)T
(

1
m

)
H(u) if 0 < t ≤ T.

Therefore, from (H2) and the compactness of T ( 1
m ) (m ≥ 1) we deduce that Jα

H

maps Ωr0 into C([0, T ]; E) is compact. Also, in view of (H1), the presentation of
operator Pα(t), and the compactness of operator T (t) for t > 0, the same idea
with that in [25, Theorem 3.1] (see also [2, Theorem 3.1]) can be used to prove
that for each t ∈ (0, T ], the set {(Jα

F
u)(t);u ∈ Ωr0} is relatively compact in E

and the set {(Jα
F

u)(·);u ∈ Ωr0} is equicontinuous on [0, T ]. Hence, applying
the Arzela–Ascoli theorem we can conclude that Jα

F
is compact on Ωr0 .

Thus, we can make use of Schauder’s fixed point theorem to deduce that
for each m ≥ 1,Γα has at least a fixed point um ∈ Ωr0 , which means that um

is a mild solution to (3.1). The proof is completed. �

We now return to the Cauchy problem (1.1). One of main results in this
paper is the following.

Theorem 3.1. Assume that the hypotheses in Lemma 3.1 are satisfied. Suppose
in addition that

(H3) There is a ς ∈ (0, T ) such that for any u,w ∈ C([0, T ]; E) satisfying
u(t) = w(t) (t ∈ [ς, T ]),H(u) = H(w).

Then the Cauchy problem (1.1) has at least one mild solution.

Remark 3.1. Note that Assumption (H3) is the case when the values of the
solution u(t) for t near zero do not affect H(u). A case in point was presented
in [8], where the operator H is given as follows:

H(u) =
p∑

i=1

Ciu(ti),

where Ci (i = 1, · · · , p) are given constants and 0 < t1 < · · · < tp−1 < tp <
+∞ (p ∈ N), which is used to describe the diffusion phenomenon of a small
amount of gas in a transparent tube.

Proof of Theorem 3.1. In view of (H1) and (H2), Lemma 3.1 implies that there
exists a r0 > 0 such that for every m ≥ 1, the Cauchy problem (3.1) has at
least a mild solution um ∈ Ωr0 , i.e., um satisfies the integral equation
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um(t) = Sα(t)H(um) +

t∫
0

(t − s)α−1Pα(t − s)F (s, um(s))ds, t ∈ [0, T ].

(3.4)

We first prove that the set {um}∞
m=1 is precompact in C([0, T ]; E). Let

ζ ∈ (0, ς) be fixed, where ς is the constant in (H3).
From the compactness of Sα(t) for t > 0 and (H2) it follows that for each

t ∈ (0, T ], the set {
Sα(t)T

(
1
m

)
H(um);m ≥ 1

}

is relatively compact on E. Also, Lemma 2.1 together with (H2) gives that for
t1, t2 ∈ [ζ, T ] with t1 ≤ t2,∥∥∥∥Sα(t2)T

(
1
m

)
H(um) − Sα(t1)T

(
1
m

)
H(um)

∥∥∥∥
=

∥∥∥∥(Sα(t2) − Sα(t1))T
(

1
m

)
H(um)

∥∥∥∥
→ 0, as t2 → t1,

uniformly for m ≥ 1. Therefore, applying Arzela-Ascoli theorem one has that
the set {

Sα(t)T
(

1
m

)
H(um);m ≥ 1

}∣∣∣∣
[ζ,T ]

is precompact in C([ζ, T ]; E).
The same idea with the proof of [25, Theorem 3.1] can be used to prove

that the set ⎧⎨
⎩

t∫
0

(t − s)α−1Pα(t − s)F (s, um(s))ds;m ≥ 1

⎫⎬
⎭

∣∣∣∣∣∣
[0,T ]

is precompact in C([0, T ]; E). Hence, we prove that the set {um;m ≥ 1} |[ζ,T ]

is precompact in C([ζ, T ]; E), which implies that, without loss of generality,
we may assume that

um → u as m → ∞ (3.5)

in C([ζ, T ]; E).
To prove that the set {um}∞

m=1 is precompact in C([0, T ]; E), it will suffice
to show that the set{

Sα(t)T
(

1
m

)
H(um);m ≥ 1

}∣∣∣∣
[0,ζ]
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is precompact in C([0, ζ]; E). Write

ũm(t) =
{

um(t) if t ∈ [ς, T ],
um(ς) if t ∈ [0, ς].

Then, by (3.5) we may assume that

ũm → u as m → ∞
in C([0, T ]; E). Thus, from the continuity of operator H and the strong conti-
nuity of T (t) we get∥∥∥∥H(u) − T

(
1
m

)
H(um)

∥∥∥∥
=

∥∥∥∥H(u) − T

(
1
m

)
H(ũm)

∥∥∥∥
≤

∥∥∥∥H(u) − T

(
1
m

)
H(u)

∥∥∥∥ +
∥∥∥∥T

(
1
m

)
(H(u) − H(ũm))

∥∥∥∥
≤

∥∥∥∥H(u) − T

(
1
m

)
H(u)

∥∥∥∥ + M‖H(u) − H(ũm)‖
→ 0 as m → ∞,

which implies that the set {T
(

1
m

)
H(um);m ≥ 1} is relatively compact in E.

This together with the strong continuity of Sα(t) concludes that for t1, t2 ∈
[0, ζ], t1 ≤ t2, ∥∥∥∥Sα(t2)T

(
1
m

)
H(um) − Sα(t1)T

(
1
m

)
H(um)

∥∥∥∥
≤ ‖ (Sα(t2) − Sα(t1)) T

(
1
m

)
H(um)‖

→ 0 as t2 → t1,

uniformly for m ≥ 1. Since for each t ∈ [0, T ], the set{
Sα(t)T

(
1
m

)
H(um);m ≥ 1

}

is relatively compact in E, again by Arzela-Ascoli theorem one has that the
set {

Sα(t)T
(

1
m

)
H(um);m ≥ 1

}∣∣∣∣
[0,ζ]

is precompact in C([0, ζ]; E). Consequently, the result that the set {um}∞
m=1

is precompact in C([0, T ]; E) follows.
Now, without loss of generality, we let

um → u, as m → ∞
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in C([0, T ]; E). Letting m → ∞ in (3.4), we find

u(t) = Sα(t)H(u) +

t∫
0

(t − s)α−1Pα(t − s)F (s, u(s))ds, t ∈ [0, T ],

which implies that u is a mild solution to the Cauchy problem (1.1). This
completes the proof. �

We start with the following theorem which assures the existence and
uniqueness of mild solution to (1.1). For the sake of convenience, we write
M0 := 23−2αα2M2Γ(2α−1)

Γ2(1+α) .

Theorem 3.2. Let 1
2 < α < 1. Assume that

(H4) F : [0, T ] × E → E is continuous in t on [0, T ] and there exists a function
L

F
such that

‖F (t, u) − F (t, v)‖ ≤ L
F
‖u − v‖

for all u, v ∈ E.
(H5) H : C([0, T ]; E) → E and there exists a nonnegative function Ψ satisfying

Ψ(τ1) ≤ Ψ(τ2), ∀τ1, τ2 ∈ C([0, T ]; [0,∞)) with τ1(t) ≤ τ2(t), and

Ψ(λτ) ≤ λΨ(τ), ∀λ > 0, τ ∈ C([0, T ]; [0,∞)), (3.6)

such that

‖H(u) − H(v)‖ ≤ Ψ(‖u − v‖),

for all u, v ∈ C([0, T ]; E).

(H6) MΨ
(√

2e(M0L2
F

+2)T
)

< 1.

Then the Cauchy problem (1.1) has a unique mild solution.

Remark 3.2. Note that the conditions (H5) on nonlocal item H here are more
general than Lipschitz continuity. In fact, if H : C([0, T ]; E) → E is Lipschitz
continuous with Lipschitz constant L, then we may take

Ψ(w) = L max
τ∈[0,T ]

w(τ).

Proof of Theorem 3.2. We assume that u1 ∈ C([0, T ]; E) is fixed and introduce
an equivalent norm ‖u‖′

∞ = sup{‖e−θtu(t)‖, t ∈ [0, T ]} in C([0, T ]; E), where
θ is a positive constant yet to be determined. Define a operator on C([0, T ]; E)
by

(Jα
0 u)(t) = Sα(t)H(u1) +

t∫
0

(t − s)α−1Pα(t − s)F (s, u(s))ds, t ∈ [0, T ].
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It is clear that Jα
0 u ∈ (C([0, T ]; E), ‖ · ‖′

∞) for all u ∈ (C([0, T ]; E), ‖ · ‖′
∞).

Furthermore, if u, v ∈ (C([0, T ]; E), ‖ · ‖′
∞), then it follows from (H4) that

e−θt‖(Jα
0 u)(t) − (Jα

0 v)(t)‖

≤ e−θt

t∫
0

(t − s)α−1‖Pα(t − s)‖L(E)‖F (s, u(s)) − F (s, v(s))‖ds

≤ MαL
F
‖u − v‖′

∞
Γ(1 + α)

t∫
0

(t − s)α−1e−θ(t−s)ds.

Letting θ > 0 be an appropriate constant such that

ν := sup
t∈[0,T ]

⎧⎨
⎩ MαL

F

Γ(1 + α)

t∫
0

(t − s)α−1e−θ(t−s)ds

⎫⎬
⎭ < 1,

it follows that

‖Jα
0 u − Jα

0 v‖′
∞ ≤ ν‖u − v‖′

∞,

which proves that Jα
0 is a contractive operator on (C([0, T ]; E), ‖ · ‖′

∞). Thus,
we infer that Jα

0 has a unique fixed point u2 ∈ C([0, T ]; E).
Now, by mathematical induction we can deduce that there exists a

sequence {un}∞
n=1 ⊂ C([0, T ]; E) such that

un(t)=Sα(t)H(un−1) +

t∫
0

(t−s)α−1Pα(t−s)F (s, un(s))ds, t ∈ [0, T ], n≥2.

(3.7)

By (H4), (H5) and Hölder’s inequality we have

‖u3(t) − u2(t)‖

≤ MΨ(‖u2 − u1‖) +
αML

F

Γ(1 + α)

t∫
0

(t − s)α−1‖u3(s) − u2(s)‖ds

≤ MΨ(‖u2 − u1‖)

+
αML

F

Γ(1 + α)

⎛
⎝ t∫

0

(t − s)2α−2e2sds

⎞
⎠

1/2 ⎛
⎝ t∫

0

‖u3(s) − u2(s)‖2e−2sds

⎞
⎠

1/2
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for t ∈ [0, T ], which together with 1
2 < α < 1 gives that

e−2t‖u3(t) − u2(t)‖2

≤ 2M2e−2tΨ2(‖u2(·) − u1(·)‖)

+
2α2M2L2

F
e−2t

Γ2(1 + α)

t∫
0

(t − s)2α−2e2sds ·
t∫

0

‖u3(s) − u2(s)‖2e−2sds

= 2M2e−2tΨ2(‖u2(·) − u1(·)‖) + M0L
2
F

t∫
0

‖u3(s) − u2(s)‖2e−2sds

for t ∈ [0, T ]. By Bellman–Gronwall’s inequality,

‖u3(t) − u2(t)‖2 ≤ 2M2e(M0L2
F

+2)tΨ2(‖u2(·) − u1(·)‖), t ∈ [0, T ].

That is to say

‖u3(t) − u2(t)‖ ≤ M
√

2e(M0L2
F

+2)tΨ(‖u2(·) − u1(·)‖), t ∈ [0, T ].

Applying (3.6) and mathematical induction, we have

‖un(t) − un−1(t)‖
≤ M

√
2e(M0L2

F
+2)t

(
MΨ

(√
2e(M0L2

F
+2)·

))n−3

Ψ(‖u2(·) − u1(·)‖)

for t ∈ [0, T ] and n ≥ 3. This together with (H6) yields that for any n > m ≥ 3,

‖un(t) − um(t)‖ ≤
n−1∑
j=m

‖uj+1(t) − uj(t)‖

≤ M
√

2e(M0L2
F

+2)T Ψ(‖u2(·) − u1(·)‖)

×
n−1∑
j=m

(
MΨ

(√
2e(M0L2

F
+2)·

))j−2

→ 0 (t ∈ [0, T ])

as m → ∞, which implies that {un}∞
n=1 is a Cauchy sequence in C([0, T ]; E).

Therefore, there exists a function u ∈ C([0, T ]; E) such that

‖un − u‖∞ → 0,

Moreover, from (3.7) we deduce that u is a mild solution to (1.1).
In the sequel, we prove the uniqueness. Let v be also a mild solution to

(1.1). Then, for t ∈ [0, T ],

‖u(t) − v(t)‖ ≤ MΨ(‖u(·) − v(·)‖) +
αML

F

Γ(1 + α)

t∫
0

(t − s)α−1‖u(s) − v(s)‖ds.
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Again applying Bellman-Gronwall’s inequality we obtain that for t ∈ [0, T ],
n ≥ 1,

‖u(t) − v(t)‖≤M

√
2e

(M0L2
F

+ 2)T

(
MΨ

(√
2e

(M0L2
F

+ 2)T

))n−1

Ψ(‖u(·) − v(·)‖).

Letting n → ∞, one has u(t) ≡ v(t) on [0, T ], which implies that u is a unique
mild solution to (1.1). This completes the proof. �

4. Examples

In this section, we present two examples, which do not aim at generality but
indicate how our theorems can be applied to concrete problems.

Throughout this section we let E = L2[0, π] and let the operators A =
∂2

∂x2 : D(A) ⊂ E �→ E be defined by

D(A)={u ∈ E;u, u′ are absolutely continuous, u′′ ∈ E, and u(0) = u(π) = 0}.

Then, A has a discrete spectrum and the eigenvalues are −n2, n ∈ N, with

the corresponding normalized eigenvectors yn(x) =
√

2
π sin(nx). Moreover, A

generates a compact, analytic semigroup {T (t)}t≥0 on E :

T (t)u =
∞∑

n=1

e−n2t(u, yn)yn, ‖T (t)‖L(E) ≤ e−t for all t ≥ 0.

(see [12]). Denote by Eα,β the generalized Mittag-Leffler special function
defined by

Eα,β(t) =
∞∑

k=0

tk

Γ(αk + β)
α, β > 0, t ∈ R

(cf., e.g., [21]). Therefore, we have that for u ∈ E,

Sα(t)u =
∞∑

n=1

Eα(−n2tα)(u, yn)yn, ‖Sα(t)‖L(E) ≤ 1 for all t ≥ 0,

Pα(t)u =
∞∑

n=1

eα(−n2tα)(u, yn)yn, ‖Pα(t)‖L(E) ≤ α

Γ(1 + α)
for all t ≥ 0,

where Eα(t) := Eα,1(t) and eα(t) := Eα,α(t).

Example 4.1. Consider the fractional partial differential equation with non-
local initial condition of form⎧⎪⎪⎨

⎪⎪⎩
c∂

1
2
t u(t, x) − ∂2u(t,x)

∂x2 = sin u(t,x)

t
1
3

, 0 ≤ t ≤ T, 0 ≤ x ≤ π,

u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ T,

u(0, x) = u0(x) +
∑p

i=1 Ciu
1
3 (ti, x), 0 ≤ x ≤ π,

(4.1)
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in E, where 0 < t1 < · · · < tp−1 < tp < T and Ci (i = 1, . . . , p) are given
constants. Define

u(t)x = u(t, x),

F (t, u(t))(x) =
sin u(t, x)

t
1
3

,

H(u)(x) = u0(x) +
p∑

i=1

Ciu
1
3 (ti, x).

Then (4.1) can be reformulated as the abstract problem (1.1) and hypotheses
(H1), (H2) and (H3) hold, where

1
3

< β <
1
2
, fr(t) = π

1
2 t−

1
3 , Φ(r) = ‖u0‖ + πr

1
3

p∑
i=1

|Ci|, σ = 0, μ = 0.

Hence, (4.1) has at least one mild solution due to Theorem 3.1.

Example 4.2. In E consider the fractional partial differential equation with
nonlocal initial condition in the form⎧⎪⎪⎨

⎪⎪⎩
c∂α

t u(t, x) − ∂2u(t,x)
∂x2 = e−t |u(t,x)|

1+|u(t,x)| , 0 ≤ t ≤ T, 0 ≤ x ≤ π,

u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ T,

u(0, x) =
∫ s2

s1
K(s)u(s, x)ds, 0 ≤ x ≤ π,

(4.2)

where 1
2 < α < 1, s1, s2 ∈ [0, T ] with s1 < s2, and K : [s1, s2] → R

+ is a
continuous function.

Define

u(t)x = u(t, x),

F (t, u(t))(x) = e−t |u(t, x)|
1 + |u(t, x)| ,

H(u)(x) =

s2∫
s1

K(s)u(s, x)ds,

and take

Ψ(w) = k0(s2 − s1)
1
2

⎛
⎝ s2∫

s1

w2(s)ds

⎞
⎠

1
2

,

where k0 = maxτ∈[s1,s2] K(τ). Then note that the assumptions (H4) and (H5)
hold with L

F
= 1. Furthermore, we obtain that when k0 is small enough such

that the assumption (H6) is satisfied, (4.2) has a unique mild solution due to
Theorem 3.2.
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