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Optimal Lehmer Mean Bounds
for the Toader Mean

Yu-Ming Chu and Miao-Kun Wang

Abstract. We find the greatest value p and least value q such that the
double inequality Lp(a, b) < T (a, b) < Lq(a, b) holds for all a, b > 0
with a �= b, and give a new upper bound for the complete elliptic inte-

gral of the second kind. Here T (a, b) = 2
π

∫ π/2

0

√
a2cos2 θ + b2sin2 θdθ and

Lp(a, b) = (ap+1 + bp+1)/(ap + bp) denote the Toader and p-th Lehmer
means of two positive numbers a and b, respectively.
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1. Introduction

For p ∈ R and a, b > 0 the p-th Lehmer mean Lp(a, b) and the power mean
Mp(a, b) are defined by

Lp(a, b) =
ap+1 + bp+1

ap + bp
(1.1)

and

Mp(a, b) =

{
(ap+bp

2 )1/p, p �= 0,
√

ab, p = 0,

respectively.
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It is well known that Lp(a, b) and Mp(a, b) are continuous and strictly
increasing with respect to p ∈ R for fixed a, b > 0 with a �= b. Many means are
special case of these means, for example,

L0(a, b) = M1(a, b) = (a + b)/2 = A(a, b) is the arithmetic mean,

L−1/2(a, b) = M0(a, b) =
√

ab = G(a, b) is the geometric mean,
L−1(a, b) = M−1(a, b) = 2ab/(a + b) = H(a, b) is the harmonic mean.

Recently, the Lehmer mean has been the subject of intensive research. In
particular, many remarkable inequalities for the Lehmer mean can be found
in the literature [1,2,5,6,8,10,12].

In [9], Toader introduced the Toader mean T (a, b) of two positive numbers
a and b as follows:

T (a, b) =
2
π

π/2∫

0

√
a2cos2 θ + b2sin2 θdθ

=

⎧
⎪⎪⎨

⎪⎪⎩

2aE(√
1 − (b/a)2

)
/π, a > b,

2bE(√
1 − (a/b)2

)
/π, a < b,

a, a = b.

(1.2)

Here E(r) =
∫ π/2

0
(1 − r2 sin2 t)1/2dt, r ∈ [0, 1], is the complete elliptic integral

of the second kind.
The classical arithmetic-geometric mean AG(a, b) of two positive num-

bers a and b is defined as the common limit of sequences {an} and {bn}, which
are given by

a0 = a, b0 = b,

an+1 = (an + bn)/2 = A(an, bn), bn+1 =
√

anbn = G(an, bn).

The Gauss identity [4] shows that

AG(1, r)K(
√

1 − r2) =
π

2
(1.3)

for r ∈ (0, 1), where K(r) =
∫ π/2

0
(1−r2 sin2 t)−1/2dt, r ∈ [0, 1), is the complete

elliptic integral of the first kind.
Vuorinen [11] conjectured that

M3/2(a, b) < T (a, b) (1.4)

for all a, b > 0 with a �= b. This conjecture was proved by Qiu and Shen [7].
In [3], Alzer and Qiu presented a best possible upper power mean bound

for the Toader mean as follows:

T (a, b) < Mlog 2/log (π/2)(a, b) (1.5)

for all a, b > 0 with a �= b.
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The main purpose of this paper is to find the greatest value p and least
value q such that the double inequality Lp(a, b) < T (a, b) < Lq(a, b) holds for
all a, b > 0 with a �= b, and give a new upper bound for the complete elliptic
integral of the second kind.

2. Lemmas

In order to establish our main result, we need several Lemmas, which we pres-
ent in this section.

Lemma 2.1. Let f1(r) = 2(1 + r)2 − (1 +
√

r)4 + 8(1 + r)r1/2 and f2(r) =
(1 +

√
r)2 + 4[(1 + r)/2]1/2r1/4, then

f1(r)
f2(r)

<
1 + r5/4

1 + r1/4
(2.1)

for all r ∈ (0, 1).

Proof. For r ∈ (0, 1), let t = r1/4. Then t ∈ (0, 1) and it is easy to see that
inequality (2.1) is equivalent to

t(1 + t)(t6 + t5 + 3t4 − 6t3 + 3t2 + t + 1) < 4t(1 + t5)
(

1 + t4

2

)1/2

. (2.2)

Let f(t) = {4t(1+ t5)[(1+ t4)/2]1/2}2 − [t(1+ t)(t6 + t5 +3t4 −6t3 +3t2 +
t + 1)]2, then simple computations lead to

f(t) = t2(1 + t)2(1 − t)4

× (7t8 + 10t7 + 15t6 + 2t5 − 4t4 + 2t3 + 15t2 + 10t + 7) > 0 (2.3)

for t ∈ (0, 1). Therefore, inequality (2.2) follows from (2.3). �

Lemma 2.2. (see [[4], p. 58, 3.22]). Let a0 = 1, b0 = r ∈ (0, 1), d0 = 2, an+1 =
(an +bn)/2, bn+1 =

√
anbn and dn+1 = dn −2n(an

2 −bn
2), n = 0, 1, 2, . . ., then

lim
n→∞ dn =

2E(
√

1 − r2)
K(

√
1 − r2)

.

Lemma 2.3. Let the sequences {an}, {bn} and {dn} be defined as in Lemma 2.2,
then
(1) dn < 2n+1an(an + bn) for n = 0, 1, 2, . . .;
(2) The sequence {dn/an} is positive for n = 0, 1, 2, . . ., strictly decreasing

and

lim
n→∞

dn

an
=

4
π

E(
√

1 − r2). (2.4)
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Proof. (1) Let cn = 2n+1an(an + bn), we use mathematical induction to prove
dn < cn. We clearly see that d0 = 2 < 2(1 + r) = c0 and d1 = 1 + r2 <
(1 + r)(1 +

√
r)2 = c1. If we assume that dn < cn for n = 0, 1, 2, . . . , k (k ≥ 1)

hold, then

ck+1 − dk+1

= 2k+2ak+1(ak+1 + bk+1) − dk + 2k(ak
2 − bk

2)

= 2k+2ak+1

(
ak + bk

2
+

√
akbk

)

− dk + 2k+2ak+1

(
ak − bk

2

)

= ck − dk + 2k+2ak+1

√
akbk > 0.

(2) We clearly see that

dn − dn+1 = 2n(an
2 − bn

2) > 0. (2.5)

Inequality (2.5) implies that the sequence {dn} is strictly decreasing, then
from Lemma 2.2 we know that dn > 0. Therefore, dn/an > 0.

From Lemma 2.3(1), we have
dn+1

an+1
− dn

an

=
andn+1 − an+1dn

anan+1

=
2an[dn − 2n(an

2 − bn
2)] − (an + bn)dn

2anan+1

=
(an − bn)[dn − 2n+1an(an + bn)]

2anan+1
< 0. (2.6)

It follows from (2.6) that {dn/an} is strictly decreasing. Equation (2.4)
follows from (1.3) and Lemma 2.2. �

Lemma 2.4. Let f1(r) and f2(r) be defined as in Lemma 2.1, then

f1(r)
f2(r)

>
2
π

E(
√

1 − r2)

for all r ∈ (0, 1).

Proof. Let the sequences {an}, {bn} and {dn} be defined as in Lemma 2.2,
then simple computations lead to

d3 =
1
4
f1(r) (2.7)

and

a3 =
1
8
f2(r). (2.8)

Therefore, Lemma 2.4 follows from (2.7) and (2.8) together with (2.4)
and the monotonicity of the sequence {dn/an}. �
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3. Main Results

Theorem 3.1. Inequality L0(a, b) < T (a, b) < L1/4(a, b) holds for all a, b > 0
with a �= b, and L0(a, b) and L1/4(a, b) are the best possible lower and upper
Lehmer mean bounds for the Toader mean T (a, b).

Proof. From (1.4), we clearly see that T (a, b) > M3/2(a, b) > M1(a, b) =
L0(a, b) for all a, b > 0 with a �= b.

Next we prove that

T (a, b) < L1/4(a, b) (3.1)

for all a, b > 0 with a �= b. Since the Toader mean T (a, b) and Lehmer mean
Lp(a, b) are symmetric and homogeneous of degree 1, without loss of general-
ity, we assume that a = 1 and b = r ∈ (0, 1). Then from (1.1) and (1.2) we
get

T (a, b) − L1/4(a, b)

=
2E(

√
1 − r2)
π

− r5/4 + 1
r1/4 + 1

=
[
2E(

√
1 − r2)
π

− f1(r)
f2(r)

]

+
[
f1(r)
f2(r)

− r5/4 + 1
r1/4 + 1

]

, (3.2)

where f1(r) and f2(r) are defined as in Lemma 2.1
Therefore, inequality ((3.1)) follows from Lemma 2.1 and ((2.4)) together

with ((3.2)).
At last, we prove that L0(a, b) and L1/4(a, b) are the best possible lower

and upper Lehmer mean bounds for the Toader mean T (a, b).
For any ε > 0 and 0 < x < 1, from (1.1) and (1.2) we get

T (1, 1 − x) − L1/4−ε(1, 1 − x)

=
2
π

π/2∫

0

[1 − (2x − x2) sin2 t]1/2dt − 1 + (1 − x)5/4−ε

1 + (1 − x)1/4−ε
(3.3)

and

lim
x→0

T (1, x)
Lε(1, x)

= lim
x→0

[
2
π

E(
√

1 − x2)
1 + xε

1 + x1+ε

]

=
2
π

< 1. (3.4)

Let x → 0, making use of the Taylor expansion one has

2
π

π/2∫

0

[1 − (2x − x2) sin2 t]1/2dt − 1 + (1 − x)5/4−ε

1 + (1 − x)1/4−ε

= 1 − 1
2
x +

1
16

x2 + o(x2) −
[

1 − 1
2
x +

(
1
16

− ε

4

)

x2 + o(x2)
]

=
ε

4
x2 + o(x2). (3.5)
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Table 1. Comparison of E(r) with H(r) for some r ∈ (0, 1)

r E(r) H(r)
0.05 1.569814118. . . 1.569814119. . .
0.1 1.56686194202. . . 1.56686194203. . .
0.2 1.554968546. . . 1.554968547. . .
0.3 1.534833465. . . 1.534833495. . .
0.4 1.505941612. . . 1.505941951. . .
0.5 1.467462209. . . 1.467464652. . .
0.6 1.418083394. . . 1.418096972. . .
0.7 1.355661136. . . 1.355727424. . .

For any ε > 0, Eqs. (3.3) and (3.5) imply that there exists δ1 = δ1(ε) ∈
(0, 1) such that T (1, 1 − x) > L1/4−ε(1, 1 − x) for x ∈ (0, δ1), and Eq. (3.4)
implies that there exists δ2 = δ2(ε) ∈ (0, 1) such that T (1, x) < Lε(1, x) for
x ∈ (0, δ2). �

From Theorem 3.1, we get a upper bound for the complete elliptic integral
E(r) of the second kind as follows.

Corollary 3.2. E(r) < π[(1 − r2)5/8 + 1]/{2[(1 − r2)1/8 + 1]} for all r ∈ (0, 1).

Remark 3.3. Computational and numerical experiments show that the upper
bound π[(1− r2)5/8 +1]/{2[(1− r2)1/8 +1]} for E(r) is very accurate for some
r ∈ (0, 1). In fact, if we let H(r) = π[(1 − r2)5/8 + 1]/{2[(1 − r2)1/8 + 1]}, then
we have Table 1 via elementary computation.

Remark 3.4. We clearly see that the best possible lower power bound
M3/2(a, b) in (1.4) is better than the lower Lehmer mean bound L0(a, b) =
M1(a, b) in Theorem 3.1. However, we find that the best possible upper power
mean bound Mlog 2/ log(π/2)(a, b) in (1.5) and the best possible upper Lehmer
mean bound L1/4(a, b) in Theorem 3.1 are not comparable. In fact, from (1.1)
and (1.2) we get

lim
x→+∞

L1/4(1, x)
Mlog 2/ log(π/2)(1, x)

= 2log(π/2)/ log 2 =
π

2
> 1

and

Mlog 2/ log(π/2)(1, 1 + x) − L1/4(1, 1 + x)

= 1 +
1
2
x +

1
8

[
log 2

log(π/2)
− 1

]

x2 + o(x2) −
[

1 +
1
2
x +

1
16

x2 + o(x2)
]

=
1
16

[
2 log 2

log(π/2)
− 3

]

x2 + o(x2)

= 0.00436 . . . × x2 + o(x2) (x → 0).
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