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1. Introduction and Results

Let R and R+ be the set of all real numbers and the set of all positive real
numbers, respectively. We denote by Rn(n ≥ 2) the n-dimensional Euclidean
space. A point in Rn is denoted by P = (X,xn), X = (x1, x2, . . . , xn−1). The
Euclidean distance of two points P and Q in Rn is denoted by |P − Q|. Also
|P − O| with the origin O of Rn is simply denoted by |P |. The boundary and
the closure of a set S in Rn are denoted by ∂S and S, respectively.

We introduce a system of spherical coordinates (r,Θ), Θ = (θ1, θ2, . . . ,
θn−1), in Rn which are related to cartesian coordinates (X,xn) = (x1, x2, . . . ,
xn−1, xn) by xn = r cos θ1.

For P ∈ Rn and r > 0, let B(P, r) denote the open ball with center at
P and radius r in Rn. Sr = ∂B(O, r). The unit sphere and the upper half
unit sphere in Rn are denoted by Sn−1 and Sn−1

+ , respectively. For simplicity,
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a point (1,Θ) on Sn−1 and the set {Θ; (1,Θ) ∈ Ω} for a set Ω, Ω ⊂ Sn−1,
are often identified with Θ and Ω, respectively. For two sets Λ ⊂ R+ and
Ω ⊂ Sn−1, the set {(r,Θ) ∈ Rn; r ∈ Λ, (1,Θ) ∈ Ω} in Rn is simply denoted
by Λ × Ω. In particular, the half space R+ × Sn−1

+ = {(X,xn) ∈ Rn;xn > 0}
will be denoted by Tn.

By Cn(Ω), we denote the set R+ ×Ω in Rn with the domain Ω on Sn−1.
We call it a cone. We denote the sets I × Ω and I × ∂Ω with an interval on
R by Cn(Ω; I) and Sn(Ω; I). By Sn(Ω; r) we denote Cn(Ω) ∩ Sr. By Sn(Ω) we
denote Sn(Ω; (0,+∞)) which is ∂Cn(Ω) − {O}.

Furthermore, we denote by dσQ (resp. dSr) the (n − 1)-dimensional vol-
ume elements induced by the Euclidean metric on ∂Cn(Ω) (resp. Sr) and by
dw the elements of the Euclidean volume in Rn.

Let Ω ⊂ Sn−1, Δ be the Laplace operator in Rn and Δ∗ be a Laplace–
Beltrami (spherical part of the Laplace) on the unit sphere. It is known (see,
e.g. [9, p. 41]) that

Δ∗ϕ(Θ) + λϕ(Θ) = 0 in Ω,

ϕ(Θ) = 0 on ∂Ω,
(1.1)

has the non-decreasing sequence of positive eigenvalues of (1.1) in the domain
Ω, which is denoted by λi (i = 1, 2, 3, . . .). In this expression we write λi the
same number of times as the dimension of the corresponding eigenspace. When
the normalized eigenfunction corresponding λi is denoted by ϕi(Θ), the set of
sequential eigenfunctions corresponding to the same value of λi in the sequence
ϕi(Θ) (i = 1, 2, 3, . . .) makes an orthonormal basis for the eigenspace of the
eigenvalue λi. Hence for each Ω ⊂ Sn−1 there is a sequence {kj} of positive
integers such that k1 = 1, λkj

< λkj+1 , λkj
= λkj+1 = λkj+2 = · · · = λkj+1−1

and {ϕkj
, ϕkj+1, . . . , ϕkj+1−1} is an orthonormal basis for the eigenspace of

the eigenvalue λkj
(j = 1, 2, 3, . . .).

This paper is essentially based on some results in H. Yoshida and
I. Miyamoto (see [11,12]). Hence, in the subsequent consideration, we make
the same assumption on Ω as in it: if n ≥ 3, then Ω is a C2,α-domain
(0 < α < 1) on Sn−1 surrounded by a finite number of mutually disjoint
closed hypersurfaces (see e.g. [5, pp. 88–89] for the definition of C2,α-domain),
ϕj ∈ C2(Ω) (j = 1, 2, 3, . . .) and ∂ϕ1

∂n > 0 on ∂Ω (here and below, ∂
∂n denotes

differentiation along the interior normal).
For the sequence {kj} mentioned above, by Ikl

we denote the set of all
positive integers less than kl (l = 1, 2, 3, . . .). In spite of the fact Ik1 = ∅, the
summation over Ik1 of a function S(k) of a variable k will be used by promising∑

k∈Ik1
S(k) = 0.

We note that each function

rℵ±
i ϕi(Θ) (i = 1, 2, 3, . . .)
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is harmonic in Cn(Ω), belongs to the class C2(Cn(Ω)\{O}) and vanishes on
Sn(Ω), where

2ℵ±
i = −n + 2 ±

√
(n − 2)2 + 4λi (i = 1, 2, 3, . . .).

In the sequel, for the sake of brevity, we shall write ϕ instead of ϕ1,
ℵ± instead of ℵ±

1 and χ instead of ℵ+
1 – ℵ−

1 . We use the standard notations
u+ = max{u, 0}, u− = −min{u, 0} and [a] is the integer part of a, where a is
a positive real number.

Let GΩ(P,Q) (P = (r,Θ), Q = (t,Φ) ∈ Cn(Ω)) be the Green function of
Cn(Ω). Then the ordinary Poisson kernel relative to Cn(Ω) is defined by

PΩ(P,Q) =
1
cn

∂

∂nQ
GΩ(P,Q),

where

cn =
{

2π, if n = 2
(n − 2)wn, if n ≥ 3

Q ∈ Sn(Ω), wn is the surface area 2πn/2{Γ(n/2)}−1 of Sn−1 and ∂
∂nQ

denotes
the differentiation at Q along the inward normal into Cn(Ω).

Remark 1.1. Let Ω = Sn−1
+ . Then

GSn−1
+

(P,Q) =

{
log |P − Q∗| − log |P − Q|, n = 2

|P − Q|2−n − |P − Q∗|2−n, n ≥ 3

where Q∗ = (Y,−yn), that is, Q∗ is the mirror image of Q = (Y, yn) with
respect to ∂Tn. Hence, for the two points P = (X,xn) ∈ Tn and Q = (Y, yn) ∈
∂Tn, we have

cnPSn−1
+

(P,Q) =
∂

∂nQ
GSn−1

+
(P,Q) =

{
2|P − Q|−2xn, n = 2

2(n − 2)|P − Q|−nxn, n ≥ 3.

Let F (Θ) be a function on Ω. The integral
∫

Ω

F (Θ)ϕi(Θ)dS1,

is denoted by Ni(F ), when it exists.
For a non-negative integer m and two points P = (r,Θ) ∈ Cn(Ω), Q =

(t,Φ) ∈ Sn(Ω), we put

K̃Ω,m(P,Q) =

{
0, if 0 < t < 1

KΩ,m(P,Q), if 1 ≤ t < ∞
where

KΩ,m(P,Q) =
∑

i∈Ikm+1

2ℵ+
i +n−1Ni(PΩ((1,Θ), (2,Φ)))rℵ+

i t−ℵ+
i −n+1ϕi(Θ).
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To obtain the modified Poisson integral representation in a cone, as in
[11], we use the following modified kernel function defined by

PΩ,m(P,Q) = PΩ(P,Q) − K̃Ω,m(P,Q),

where P ∈ Cn(Ω) and Q ∈ Sn(Ω).

Remark 1.2. Suppose Ω = Sn−1
+ , P = (r,Θ) = (X,xn) ∈ Tn and Q = (t,Φ) =

(Y, 0) ∈ ∂Tn satisfying r < t. Then we have ℵ+
ki

= i (i = 1, 2, 3, . . .) and

PSn−1
+ ,m(P,Q)=

{
PSn−1

+
(P,Q), if 0<t<1

PSn−1
+

(P,Q)− 2
wn

∑m−1
i=0 xn

ri

tn+i C
n
2

i (cos η), if 1≤ t<∞
(1.2)

where C
n
2

i (·) is the Gegenbauer polynomial of degree i and η is the angle
between M = (X, 0) and N = (Y, 0) defined by

cos η =
(M,N)
|M ||N |

(see [11, Remarks 1, 2 and 3]).

Write

UΩ,u(P ) =
∫

Sn(Ω)

PΩ(P,Q)u(Q)dσQ

and

UΩ,m,u(P ) =
∫

Sn(Ω)

PΩ,m(P,Q)u(Q)dσQ,

where u(Q) is a continuous function on ∂Cn(Ω).
Firstly let us recall the Dirichlet problem in Tn

{
Δu(P ) = 0, for P ∈ Tn

u(P ) = f(P ), for a.e. P ∈ ∂Tn.
(1.3)

If the integral
∫

∂Tn
|f(Q)|(1 + |Q|)−ndσQ converges, the solutions of the

problem (1.3) can be written as (absolutely convergent) Poisson integral
∫

∂Tn

PSn−1
+

(P,Q)f(Q)dσQ. (1.4)

If the integral (1.4) diverges, a solution to the problem (1.3) can be
given as some regularization of this integral. In particular, Finkelstein and
Sheinberg (see [3]) have constructed a solution to the problem (1.3) with an
arbitrary continuous function f . This solution is the integral with a modified
Poisson kernel derived by subtracting of some special harmonic polynomials
from PSn−1

+
(P,Q). This method, ascending to the Weierstrass’ theorem about

canonical representations of entire functions, has been used by several authors
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(see e.g. [3,4,10]). Using this modified Poisson kernel, Deng (see [2]) stud-
ied the integral representations of harmonic functions of finite order (see e.g.
[6, p. 141] for the definition of the order) in a half space.

Next we define three classes of functions as follows.
For real numbers α ≥ 0, we denote Aα the class of all measurable func-

tions f(t,Φ) (Q = (Y, yn) ∈ Tn) satisfying the following inequality
∫

Tn

yn|f(Y, yn)|
1 + tn+α+2

dQ < ∞

and the class Bα, consists of all measurable functions g(t,Φ) (Q = (t,Φ) =
(Y, 0) ∈ ∂Tn) satisfying

∫

∂Tn

|g(Y, 0)|
1 + tn+α

dY < ∞.

We use Cα to denote the class of all continuous functions u(t,Φ) ((t,Φ) ∈
Tn) harmonic in Tn with u+(t,Φ) ∈ Aα((t,Φ) ∈ Tn) and u+(t,Φ) ∈ Bα((t,Φ) ∈
∂Tn).

For u ∈ Cα, Deng (see [2]) obtained the following.

Theorem 1.3. If u ∈ Cα, m is an integer such that m < α ≤ m+1 and PSn−1
+ ,m

is defined by (1.2), then the following properties hold:
(I) If α = 0, then the integral

∫

∂Tn

PSn−1
+

(P,Q)u(Q)dσQ

is absolutely convergent, it represents a harmonic function USn−1
+ ,u(P ) in

Tn and can be continuously extended to Tn such that u(P ) = USn−1
+ ,u(P )

for P = (r,Θ) = (X, 0) ∈ ∂Tn and there exists a constant b such that
u(P ) = bxn + USn−1

+ ,u(P ) for P = (r,Θ) = (X,xn) ∈ Tn.

(II) If α > 0, then the integral
∫

∂Tn

PSn−1
+ ,m(P,Q)u(Q)dσQ

is absolutely convergent, it represents a harmonic function USn−1
+ ,m,u

(P ) in Tn and can be continuously extended to Tn such that u(P ) =
USn−1

+ ,m,u(P ) for P = (r,Θ) = (X, 0) ∈ ∂Tn,

lim
R→∞

R−α−1 sup{|xn−1
n USn−1

+ ,m,u(RP )| :P =(1,Θ)=(X,xn) ∈ Tn}=0

and there exists a harmonic polynomial QSn−1
+ ,m(P ) of degree not

greater than m which vanishes on the boundary ∂Tn such that u(P ) =
USn−1

+ ,m,u(P ) + QSn−1
+ ,m(P ) for P = (r,Θ) = (X,xn) ∈ Tn.
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Motivated by G. T. Deng’s result, a natural question to ask is if we can
also obtain the integral representations for harmonic functions of infinite order
in Cn(Ω). In this paper, we give an affirmative answer to this question.

To do this, we define the function ρ(R) under consideration. Hereafter,
the function ρ(R) (≥ 1) is always supposed to be nondecreasing and continu-
ously differentiable on the interval [0,+∞). We assume further that

ε0 = lim sup
R→∞

(ℵ+
k[ρ(R)]+1

)′R ln R

ℵ+
k[ρ(R)]+1

< 1. (1.5)

For positive real numbers β, we denote AΩ,β,ρ the class of all measurable
functions f(t,Φ) (Q = (t,Φ) ∈ Cn(Ω)) satisfying the following inequality

∫

Cn(Ω)

|f(t,Φ)|ϕ
1 + t

n+ℵ+
k[ρ(t)]+1

+β−1
dw < ∞ (1.6)

and the class BΩ,β,ρ, consists of all measurable functions g(t,Φ) (Q = (t,Φ) ∈
Sn(Ω)) satisfying

∫

Sn(Ω)

|g(t,Φ)|
1 + t

n+ℵ+
k[ρ(t)]+1

+β−3

∂ϕ

∂n
dσQ < ∞. (1.7)

Similarly, we will also consider the class of all continuous functions u(t,Φ)
((t,Φ) ∈ Cn(Ω)) harmonic in Cn(Ω) with u+(t,Φ) ∈ AΩ,β,ρ ((t,Φ) ∈ Cn(Ω))
and u+(t,Φ) ∈ BΩ,β,ρ ((t,Φ) ∈ Sn(Ω)) is denoted by CΩ,β,ρ.

Now we state our results.

Theorem 1.4. If u ∈ CΩ,β,ρ, then u ∈ BΩ,β,ρ.

Theorem 1.5. If u ∈ CΩ,β,ρ, then the following properties hold:
(I) UΩ,[ρ(t)],u(P ) is a harmonic function on Cn(Ω) and can be continuously

extended to Cn(Ω) such that

UΩ,[ρ(t)],u(P ) = u(P )

for P = (r,Θ) ∈ Sn(Ω).
(II) There exists a harmonic polynomial h(P ) =

∑∞
i=1 Air

ℵ+
i ϕi(Θ) vanishing

continuously on ∂Cn(Ω) such that

u(P ) = UΩ,[ρ(t)],u(P ) + h(P )

for P = (r,Θ) ∈ Cn(Ω), where Ai (i = 1, 2, 3, . . .) is a constant.

If we put ρ(t) ≡ m and β = 1, as an application of Theorems 1.4 and 1.5,
we easily get the following Corollary 1.6.

Corollary 1.6. If u ∈ CΩ,1,m, then the following properties hold:
(I) u ∈ BΩ,1,m
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(II) The integral
∫

Sn(Ω)

PΩ,m,u(P,Q)u(Q)dσQ,

is absolutely convergent, it represents a harmonic function UΩ,m,u(P ) in
Cn(Ω) and can be continuously extended to Cn(Ω) such that UΩ,m,u(P ) =
u(P ) for P = (r,Θ) ∈ Sn(Ω).

(III) There exists a harmonic polynomial h(P ) =
∑km+1−1

i=1 Bir
ℵ+

i ϕi(Θ) van-
ishing continuously on ∂Cn(Ω) such that u(P ) = UΩ,m,u(P ) + h(P ) for
P = (r,Θ) ∈ Cn(Ω), where Bi (i = 1, 2, 3, . . . , km+1 − 1) is a constant.

Remark 1.7. (I) and (II) in Corollary 1.6 follow readily from Theorems 1.4
and 1.5(I) respectively. By following the method of Yoshida and Miyamoto
(see [11, Theorem 3]), we can show that Corollary 1.6(III) holds. So we omit
the details of the proof here.

2. Lemmas

The following Lemma generalizes the Carleman’s formula (referring to the
holomorphic functions in the half space) (see [1]) to the harmonic functions
in a cone, which is due to A. Yu. Rashkovskii and L. I. Ronkin (see [7],
[8, p. 224]).

Lemma 2.1. If u(t,Φ) is a harmonic function on a domain containing
Cn(Ω; (1, R)), then

m+(R) +
∫

Sn(Ω;(1,R))

u+

(
1

t−ℵ− − tℵ
+

Rχ

)
∂ϕ

∂n
dσQ + d1 +

d2

Rχ

= m−(R) +
∫

Sn(Ω;(1,R))

u−
(

1
t−ℵ− − tℵ

+

Rχ

)
∂ϕ

∂n
dσQ,

where

m±(R) = χ

∫

Sn(Ω;R)

u±ϕ

R1−ℵ− dSR,

d1 =
∫

Sn(Ω;1)

ℵ−uϕ − ϕ
∂u

∂n
dS1 and d2 =

∫

Sn(Ω;1)

ϕ
∂u

∂n
− ℵ+uϕdS1.

Lemma 2.2 ([11, Lemma 3]). For a non-negative integer m, we have

|PΩ(P,Q) − KΩ,m(P,Q)| ≤ M1(2r)ℵ+
km+1 t

−ℵ+
km+1

−n+1

for any P = (r,Θ) ∈ Cn(Ω) and any Q = (t,Φ) ∈ Sn(Ω) satisfying 0 < r
t < 1

2 ,
where M1 is a constant independent of P , Q and m.
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Lemma 2.3 ([11, Lemma 5]). If u is a locally integrable and upper semi-contin-
uous function on ∂Cn(Ω). For any fixed P ∈ Cn(Ω), V (P,Q) (Q ∈ ∂Cn(Ω))
is a locally integrable function on ∂Cn(Ω). Put

W (P,Q) = PΩ(P,Q) − V (P,Q) (P ∈ Cn(Ω), Q ∈ ∂Cn(Ω)).

Suppose that the following conditions (I) and (II) are satisfied:

(I) For any Q′ ∈ ∂Cn(Ω) and any ε1 > 0, there exist a neighborhood B(Q′)
of Q′ in Rn and a number R (0 < R < ∞) such that

∫

Sn(Ω;[R,∞))

|W (P,Q)||u(Q)|dσQ < ε1 (2.1)

for any P = (r,Θ) ∈ Cn(Ω) ∩ B(Q′).

(II) For any Q′ ∈ ∂Cn(Ω) and any number R (0 < R < ∞),

lim sup
P→Q′,P∈Cn(Ω)

∫

Sn(Ω;(0,R))

|V (P,Q)||u(Q)|dσQ = 0. (2.2)

Then

lim sup
P→Q′,P∈Cn(Ω)

∫

Sn(Ω)

W (P,Q)u(Q)dσQ ≤ u(Q′)

for any Q′ ∈ ∂Cn(Ω).

Lemma 2.4 ([12, Theorem 3.1]). If h(r,Θ) is a harmonic function in Cn(Ω)
vanishing continuously on ∂Cn(Ω), then

h(r,Θ) =
∞∑

i=1

Dir
ℵ+

i ϕi(Θ),

where Di (i = 1, 2, 3, . . .) is a constant satisfying Dir
ℵ+

i = Ni(h(r,Θ)) for
every r (0 < r < ∞).

3. Proof of Theorem 1.4

For any ε (0 < ε < 1 − ε0), there exists a sufficiently large positive number Rε

such that R > Rε, by (1.5) we have

ℵ+
k[ρ(R)]+1

< ℵ+
k[ρ(e)]+1

(ln R)ε0+ε. (3.1)
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Since u ∈ CΩ,β,ρ, we obtain by (1.6)

1
χ

∞∫

1

m+(R)

R
ℵ+

k[ρ(R)]+1
−ℵ++β

dR =
∫

Cn(Ω;(1,∞))

u+ϕ

t
n+ℵ+

k[ρ(t)]+1
+β−1

dw

≤ 2
∫

Cn(Ω)

u+ϕ

1 + t
n+ℵ+

k[ρ(t)]+1
+β−1

dw

< ∞. (3.2)

From (1.7), we conclude that

∞∫

1

1

R
ℵ+

k[ρ(R)]+1
−ℵ++β

∫

Sn(Ω;(1,R))

u+

(
1

t−ℵ− − tℵ
+

Rχ

)
∂ϕ

∂n
dσQdR

=
∫

Sn(Ω;(1,∞))

u+tℵ
+

∞∫

t

1

R
ℵ+

k[ρ(R)]+1
−ℵ++β

(
1
tχ

− 1
Rχ

)

dR
∂ϕ

∂n
dσQ

≤ χ

(χ + β)β

∫

Sn(Ω;(1,∞))

u+tℵ
+

t
ℵ+

k[ρ(t)]+1
−ℵ−+β−1

∂ϕ

∂n
dσQ

≤ 2χ

(χ + β)β

∫

Sn(Ω)

u+

1 + t
n+ℵ+

k[ρ(t)]+1
+β−3

∂ϕ

∂n
dσQ

< ∞. (3.3)

Combining (3.1), (3.2) and (3.3), we obtain by Lemma 2.1

∞∫

1

1

R
ℵ+

k[ρ(R)]+1
−ℵ++ β

2

∫

Sn(Ω;(1,R))

u−
(

1
t−ℵ− − tℵ

+

Rχ

)
∂ϕ

∂n
dσQdR

≤
∞∫

1

1

R
ℵ+

k[ρ(R)]+1
−ℵ++ β

2

∫

Sn(Ω;(1,R))

u+

(
1

t−ℵ− − tℵ
+

Rχ

)
∂ϕ

∂n
dσQdR

+

∞∫

1

m+(R)

R
ℵ+

k[ρ(R)]+1
−ℵ++ β

2

dR +

∞∫

1

1

R
ℵ+

k[ρ(R)]+1
−ℵ++ β

2

(

d1 +
d2

Rχ

)

dR

< ∞.

Set

H(β) = lim
t→∞

1

t
−ℵ+

k[ρ(t)]+1
+ℵ−−β+1

∞∫

t

1

R
ℵ+

k[ρ(R)]+1
−ℵ++ β

2

(
1
tχ

− 1
Rχ

)

dR.
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By the L’Hospital’s rule and (3.1), we have

H(β) = χ lim
t→∞

t
ℵ+

k[ρ(t)]+1
−ℵ++β−1

ℵ+
k[ρ(t)]+1

∫∞
t

1

R
ℵ+

k[ρ(R)]+1
−ℵ++ β

2
dR

(ℵ+
k[ρ(t)]+1

)′t ln t

ℵ+
k[ρ(t)]+1

+ β−ℵ−−1

ℵ+
k[ρ(t)]+1

+ 1

>
χ

ε0 + 1
lim

t→∞
t
ℵ+

k[ρ(t)]+1
−ℵ++β−1

ℵ+
k[ρ(t)]+1

∞∫

t

1

R
ℵ+

k[ρ(R)]+1
−ℵ++ β

2

dR

=
χ

ε0 + 1
lim

t→∞

t
β
2

(ℵ+
k[ρ(t)]+1

)2

(ℵ+
k[ρ(t)]+1

)′t ln t

ℵ+
k[ρ(t)]+1

(1 − 1
ℵ+

k[ρ(t)]+1
ln t

) + β−ℵ+−1

ℵ+
k[ρ(t)]+1

+ 1

>
χ

(ε0 + 1)2
lim

t→∞
t

β
2

(ℵ+
k[ρ(t)]+1

)2

>
χβ

4(ε0 + 1)2(ε0 + ε)(ℵ+
k[ρ(e)]+1

)2
lim

t→∞
t

β
2

(ln t)2(ε0+ε)−1

=

⎧
⎨

⎩

+∞, if 2(ε0 + ε) ≤ 1
χβ2 lim

t→∞ t
β
2 (ln t)2−2(ε0+ε)

8(ε0+1)2(ε0+ε)(ℵ+
k[ρ(e)]+1

)2(2(ε0+ε)−1)
, if 2(ε0 + ε) > 1

= +∞,

which yields that there exists a positive constant M2 such that for any t ≥ 1

∞∫

t

tℵ
+

R
ℵ+

k[ρ(R)]+1
−ℵ++ β

2

(
1
tχ

− 1
Rχ

)

dR ≥ M2

t
n+ℵ+

k[ρ(t)]+1
+β−3

.

i.e.,

M2

∫

Sn(Ω;(1,∞))

u−

t
n+ℵ+

k[ρ(t)]+1
+β−3

∂ϕ

∂n
dσQ

≤
∫

Sn(Ω;(1,∞))

u−tℵ
+

∞∫

t

1

R
ℵ+

k[ρ(R)]+1
−ℵ++ β

2

(
1
tχ

− 1
Rχ

)

dR
∂ϕ

∂n
dσQ

< ∞.

Then Theorem 1.4 is proved from |u| = u+ + u−.
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4. Proof of Theorem 1.5

Let l1 be any positive number such that l1 ≥ 2β. For any fixed P = (r,Θ) ∈
Cn(Ω), take a number σ satisfying σ > σr = max{[2r] + 1, ϑr}, where ϑr =

exp
(

l1
β ℵ+

k[ρ(e)]+1
21+ε0+ε ln 2r

) 1
1−ε0−ε

.
By (3.1), we remark that there exists a constant M(r) dependent only

on r such that M(r) ≥ (2r)
ℵ+

k[ρ(i+1)]+1 i−
β
l1 from σ ≥ ϑr.

By Lemma 2.2 and Theorem 1.4, we have
∫

Sn(Ω;(σ,∞))

|PΩ,[ρ(t)](P,Q)||u(Q)|dσQ

≤ M1

∞∑

i=σr

∫

Sn(Ω;[i,i+1))

(2r)
ℵ+

k[ρ(t)]+1

t
ℵ+

k[ρ(t)]+1
+n−1

|u(t,Φ)|dσQ

≤ M1

∞∑

i=σr

(2r)
ℵ+

k[ρ(i+1)]+1

i
β
l1

∫

Sn(Ω;[i,i+1))

|u(t,Φ)|
t
n+ℵ+

k[ρ(t)]+1
+ β

l1
−2

dσQ

≤ M1M(r)
∫

Sn(Ω;[σr,∞))

|u(t,Φ)|
1 + t

n+ℵ+
k[ρ(t)]+1

+ β
l1

−2
dσQ

< ∞.

Hence UΩ,[ρ(t)],u(P ) is absolutely convergent and finite for any P ∈
Cn(Ω). Thus UΩ,[ρ(t)],u(P ) is harmonic on Cn(Ω).

Next we prove that limP∈Cn(Ω),P→Q′ UΩ,[ρ(t)],u(P ) = u(Q′) for any Q′ =
(t′,Φ′) ∈ ∂Cn(Ω). Setting V (P,Q) = K̃Ω,[ρ(t)](P,Q), which is locally integra-
ble on ∂Cn(Ω) for any fixed P ∈ Cn(Ω). Then we apply Lemma 2.3 to u(Q)
and −u(Q).

For any ε > 0 and a positive number δ, by the above inequality we can
choose a number σ, σ > max{[2(t′ +δ)]+1, ϑt′+δ} such that (2.1) holds, where
P ∈ Cn(Ω) ∩ B(Q′, δ).

Since limΘ→Φ′ ϕi(Θ) = 0 (i = 1, 2, 3 . . .) as P = (r,Θ) → Q′ =
(t′,Φ′) ∈ Sn(Ω), limP∈Cn(Ω),P→Q′ K̃Ω,[ρ(t)](P,Q) = 0, where Q ∈ Sn(Ω) and
Q′ ∈ ∂Cn(Ω). Then (2.2) holds.

So (I) is proved. Finally (I) and Lemma 2.4 give the conclusion of (II).
Then we complete the proof of Theorem 1.5.
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