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Abstract—We have developed a least-squares minimization approach to depth determination from

magnetic data. By defining the anomaly value T ð0Þ at the origin and the anomaly value T ðNÞ at any other

distance ðNÞ on the profile, the problem of depth determination from magnetic data has been transformed

into finding a solution to a nonlinear equation of the form f ðzÞ ¼ 0. Formulas have been derived for a

sphere, horizontal cylinder, dike, and for a geologic contact. Procedures are also formulated to estimate the

effective magnetization intensity and the effective magnetization inclination. A scheme for analyzing the

magnetic data has been formulated for determining the model parameters of the causative sources. The

method is applied to synthetic data with and without random errors. Finally, the method is applied to two

field examples from Canada and Arizona. In all cases examined, the estimated depths are found to be in

good agreement with actual values.
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1. Introduction

The aim of magnetic surveys is to locate rocks or minerals with unusual magnetic

properties, which reveal themselves as anomalies in the intensity of the earth’s

magnetic field. Magnetic anomalies are often used in a qualitative way to assist

regional geologic interpretations. However, sometimes an individual magnetic

anomaly is found which stands out so clearly that it can be separated from the

regional background and the neighboring interferences (LI and OLDENBURG, 1998)

and from remnant magnetization effects (ROEST and PILKINGTON, 1993) and which is

so simple in appearance that it can be considered as caused by a single magnetized

body. In this case, quantitative methods of interpretation can be used to determine

the parameters of the magnetized body by assuming a model with simple geometry.

The model is considered realistic if the form and magnitude of the calculated

magnetic effects are closed to the observed residual magnetic anomalies.

Estimation of the depth of a buried structure from the residual magnetic anomaly

has drawn considerable attention. An excellent review was given by HINZE (1990). It
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is evident that magnetic data contain measurement errors which are compounded

when source depths are estimated.

Most of the geologic structures in mineral and petroleum exploration can be

classified into four categories: spheres, cylinders, dikes, and geologic contacts. These

four simple geometric forms are convenient approximations to common geologic

structures often encountered in the interpretation of magnetic data. Several graphical

methods have been developed for interpreting residual magnetic anomalies due to

simple models (GAY, 1963, 1965; PAUL, 1964; STANLEY, 1977; ATCHUTA RAO and

RAM BABU, 1980; PRAKASA RAO et al., 1986; PRAKASA RAO and SUBRAHMANYAN,

1988). However, the drawback with these techniques is that they are highly subjective

and therefore, can lead to major errors. Also, none of the above articles discuss in

sufficient detail the precision and validity of these models when dealing with noise

inherent in measurements.

On the other hand, a very convenient method for finding best-fitting model

parameters without involving the interpreter’s subjective judgment is the application

of least-squares methods because all observations can be taken into consideration.

MCGRATH and HOOD (1970) described an essentially trial-and-error method in which

each of the model parameters is varied by an arbitrary amount until a set of best-fit

parameters is found. RAO et al. (1973) described a method of differential correction

to improve initially assumed model parameters. Similar works include those of MOO

(1965), MCGRATH and HOOD (1973), LINES and TREITEL (1984), and SILVA (1989).

However, most of these approaches to nonlinear least-squares inverse problems rely

on good initial estimates of the model parameters.

We address the problem confronted in nonlinear least-squares inversion of

magnetic data when no good initial guess of the model parameters is available. To

make the problem computationally tractable, a simple mathematical model is

presented to determine the depth of a buried structure from residual magnetic

anomaly. Using previously published formulas for the magnetic anomalies produced

by these models, the depth determination problem has been parameterized and

transformed into a problem of finding a solution for a nonlinear equation of the form

f ðzÞ ¼ 0. The solution to this nonlinear equation is obtained by minimizing a

function in the least-squares sense. A procedure is developed for semi-automated

interpretation of magnetic anomalies attributable to simple geometrical causative

sources. The method has been applied to synthetic data with and without random

errors, and is tested on two field examples from Canada and Arizona.

Theory

Following GAY (1963), PRAKASA RAO et al. (1986), and PRAKASA RAO and

SUBRAHMANYAN (1988), the magnetic anomaly produced by most geologic structures

with the centre located at Xi ¼ 0 can be represented by the following function
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T ðXi; Z; hÞ ¼ K
aZ2r þ bX 2

i

� �
ðsin hÞmðcos hÞn þ cXiZpðsin hÞnðcos hÞm

X 2
i þ Z2ð Þq

;

i ¼ 1; 2; 3; . . . ; L : ð1Þ

The geometries are shown in Figure 1. In equation (1), Z is the depth, K is the

amplitude coefficient (effective magnetization intensity), h is the index parameter

(effective magnetization inclination), Xi is the horizontal coordinate position, and q is
the shape factor. Values for a, b, c, m, n, r, p, and q, are given in Table 1.

Figure 1

Diagrams for various simple geometrical structures.
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At the origin ðXi ¼ 0Þ, equation (1) gives the following relationship:

K ¼ T ð0ÞZ2q�2r

aðsin hÞmðcos hÞn ; ð2Þ

where T ð0Þ is the anomaly value at the origin (Fig. 2).

Table 1

Definition of a, b, c, m, n, p, r, and q values shown in equation (1). F.H.D. and S.H.D. are the first and the

second horizontal derivatives of the magnetic anomaly, respectively

Model Magnetization a b c m n p r q

Sphere Vertical 2 )1 )3 1 0 1 1 2.5

Sphere Horizontal )1 2 )3 0 1 1 1 2.5

Horizontal cylinder

Dike (F.H.D.)

Total, vertical,

horizontal

1 )1 2 0 1 1 1 2

Geologic contact

(S.H.D.) Dike

Total, vertical,

horizontal

1 0 )1 0 1 0 0.5 1

Figure 2

A typical magnetic anomaly profile over a thin dike. The anomaly value at the origin T ð0Þ and the anomaly

value T ðNÞ where N is taken to be 1 arbitrary unit in this case, the position of the maximum value (M), and

the minimum value (m) are illustrated.
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Using equation (2), equation (1) can be rewritten as

T ðXi; Z; hÞ ¼
T ð0ÞZ2q�2r

a
ðaZ2r þ bX 2

i Þ þ cXiZpðtan hÞn�m

ðX 2
i þ Z2Þq

� �
: ð3Þ

For all shapes (function of q), equation (3) gives the following relationship at Xi ¼ N

ðtan hÞn�m ¼ aT ðNÞðN 2 þ Z2Þq � T ð0ÞZ2q�2rðaZ2r þ bN2Þ
cNZpT ð0ÞZ2q�2r

; ð4Þ

where T ðNÞ is the anomaly value at some arbitrary specified position Xi ¼ N (Fig. 2).

Substituting equation (4) into equation (3), we obtain the following nonlinear

equation in Z

T ðXi;ZÞ¼
NT ð0ÞZ2q�2rðaZ2rþbX 2

i ÞþaXiT ðNÞðN2þZ2Þq�XiT ð0ÞZ2q�2rðaZ2rþbN 2Þ
aNðX 2

i þZ2Þq
:

ð5Þ

The unknown depth Z in equation (5) can be obtained by minimizing

wðZÞ ¼
XN
i

LðXiÞ � T ðXi; ZÞ½ �2 ; ð6Þ

where LðXiÞ denotes the observed magnetic anomaly at Xi.

Minimization of wðZÞ in the least-squares sense, i.e., ðd=dZÞwðZÞ ¼ 0 leads to the

following equation:

f ðZÞ ¼
XN
i

LðXiÞ � T ðXi;ZÞ½ �T �ðXi; ZÞ ¼ 0 ; ð7Þ

where

T �ðXi; ZÞ ¼
d
dz

� �
T ðXi; ZÞ :

Equation (7) can be solved for Z using the standard methods for solving nonlinear

equations such as Newton’s method, steepest descent method, simple iteration

method, and Muller’s iterative method (PRESS et al., 1986). Here, it is solved by a

simple iteration method. The iteration form of equation (7) is given as

Zf ¼ f ðZjÞ ; ð8Þ

where Zj is the initial depth and Zf is the revised depth. Zf will be used as the Zj for
the next iteration. The iteration stops when jZf � Zjj 
 e; where e is a small

predetermined real number close to zero.

The source body depth is determined by solving one nonlinear equation in Z. Any

initial guess for Z works well because there is only one minimum. Experience with
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minimization techniques for two or more unknowns shows that they produce good

results for synthetic data with or without random noise. In the case of field data,

good results may only be obtained when using very good initial estimates for the

model parameters. The optimization problem for the depth parameter is highly

nonlinear. Increasing the number of parameters to be solved simultaneously also

increases the dimensionality and complexity of the error surface, thereby greatly

increasing the probability of the optimization stalling in a local minimum. Thus

common sense dictates that the nonlinear optimization should be restricted to as few

Figure 3

Generalized scheme for semi-automated depth, index parameter, and amplitude coefficient estimation.
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parameters as is consistent with obtaining useful results. This is why we propose a

solution for only one unknown, Z.
Once Z is known, the effective magnetization inclination h can be determined

from equation (4). Finally, knowing h, the effective magnetization intensity, K, can
be determined from equation (2).

Then we measure the goodness of fit between the observed and the computed

magnetic data for each N value. The simplest way to compare two magnetic profiles

is to compute the root-mean-square (rms) of the differences between the observed

and the fitted anomalies. The model parameters which give the least root-mean-

square error are the best.

To this point we have assumed knowledge of the axes of the magnetic profile so

that T ð0Þ can be found. T ð0Þ is determined using methods described by STANLEY

(1977). As illustrated in Figure 2, the line M � m intersects the anomaly profile at

Xi ¼ 0. The base line of the anomaly profile lies a distance M � T ð0Þ above the

minimum.

Figure 4

Error response in model parameters estimates. Abscissa: model depth. Ordinate: percent error in model

parameters.
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A semi-automated interpretation scheme based on the above equations for

analyzing field data is illustrated in Figure 3.

Synthetic Examples

Effect of Random Noise

Synthetic examples of spheres and horizontal cylinders buried at different depths

(profile length ¼ 40 units, K ¼ 100 units, h ¼ 60 degrees, sampling interval = 1 unit)

were interpreted using the present method [equations (7), (4), and (2)] to determine,

respectively, depth, index parameter, and amplitude coefficient. In each case, the

starting depth was 5 units. In all cases examined, the exact values of Z; h, and K were

obtained. However, in studying the error response of the least-squares method,

synthetic examples contaminated with 5% random errors were considered. Follow-

ing the interpretation scheme, values of the most appropriate model parameters

(Z; h;K) were computed and percentage of error in model parameters was plotted

against the model depth for comparison (Fig. 4).

We verified numerically that the depth obtained is within 3% for horizontal

cylinders and 4% for spheres. The index parameter obtained is within 5.5% whereas

the amplitude coefficient is within 8% (Fig. 3). Good results are obtained by using

the present algorithm, particularly for depth estimation, which is a primary concern

in magnetic prospecting and other geophysical work.

Figure 5

Error response in model parameters estimates. Abscissa: percent error in T ð0Þ. Ordinate: percent error in

model parameters.
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Effect of Using a Wrong Origin

This procedure begins with selecting the origin using STANLEY’s method (1977) and

may lead to errors in the solution formodel parameters when interpreting real data.We

introduced errors of � 0:1, � 0:2,� 0:3; . . . ;� 1 units to the horizontal coordinate ðXiÞ
in equation (1) of a thin dike model (profile length = 40 units, Z ¼ 10 units, h ¼ 60

degrees, andK ¼ 100 units). Themagnetic anomaly is also corrupted with 5% random

noise. In each case we estimated T ð0Þ and T ðNÞ from the noisy magnetic anomaly

profile thus obtained. In all cases examined, the initial estimate for depth was 5 units.

Following the same interpretation method, the results are shown in Figure 5.

Figure 6

Total magnetic anomaly (above) over an outcropping diabase dike (below), Pishabo Lake, Ontario,

Canada (MCGRATH and HOOD, 1970). The base line and zero crossing shown are determined using

STANLEY’s method (1977).
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Figure 5 shows that the percentage of error in model parameters increases with

increasing the percentage of error in T ð0Þ. In all cases examined, the maximum error

in Z, h, and K is � 8%, � 10%, � 8%, respectively, which is still less than the

maximum error in T ð0Þ (Fig. 5). This demonstrates that the present method will give

reliable model parameters even when the origin is determined approximately using

STANLEY’s method (1977).

Field Examples

To examine the applicability of the present method, the following two field examples

are presented.

Pishabo Anomaly

Figure 6 shows a total magnetic anomaly above an olivine diabase dike, Pishabo

Lake, Ontario (MCGRATH and HOOD, 1970). The geological cross section of the dike

is shown beneath the anomaly. The depth to the outcropping dike (sensor height) is

304 m (Fig. 6). The anomaly profile was digitized at an interval of 100 m. Equations

(7), (4), and (2) were used to determine depth, index parameter, and amplitude

coefficient, respectively, using all possible cases on N values. The starting depth used

in this field example was 50 m. Then we computed the root-mean-square of the

differences between the observed and the fitted anomalies. The best fit model

parameters are: Z ¼ 306 m, h ¼ �38 degrees, and K ¼ 1422 nT � Z (Table 2).

MCGRATH and HOOD (1970) applied a computer curve-matching method to the

same magnetic data employing a least-squares method and obtained a depth of

Table 2

Numerical results of the Pishabo field example

N

(m)

Depth, Z

(m)

Index

parameter,

h (deg.)

Amplitude

coefficient,

KðnT � ZÞ

Root-mean-square

error

ðnT Þ

)200 305 )37.9 1411.7 16.4

)100 290 )42.1 1435.9 21.9

100 306 )37.9 1422.8 16.5

200 314 )37.5 1443.5 16.6

300 321 )36.7 1460.1 17.6

400 311 )37.6 1434.5 16.5

500 310 )37.7 1429.3 16.4

600 306 )38.3 1422.7 16.3

700 299 )39.8 1425.4 17.5

800 297 )41.3 1447.6 20.1

900 298 )43.0 1491.1 24.6

1000 302 )43.9 1533.8 27.9

1100 307 )44.5 1570.6 30.1
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301 m. Moreover, Figure 6 shows that there is a lack of ‘‘thinness’’ because the

thickness of the dike is only slightly less than the depth. However, because many of

the characteristics of the thick dike anomalies are similar to those for thin dike (GAY,

1963), our method can be applied not only to magnetic anomalies due to thin dikes

but also to those due to thick dikes to obtain reliable depth estimates.

Pima Copper Mine Anomaly

Figure 7 presents a vertical anomaly profile from the Pima copper mine, Arizona

(GAY, Fig. 10, p. 198), which represents the anomaly due to a thin dike. Drilling

information established that the mineralized zone to be 11 m thick, which is much

less than the actual depth to the top of the body (64 m). This profile of 750 m length

was digitized at an interval of 25 m. The initial guess for Z used in this field example

was 50 m. The model parameters determined by our method are: Z ¼ 68 m,

h ¼ �52 degrees, and K ¼ 1611 nT � Z (Table 3). The depth agrees very well with the

depth of 64 m obtained from drilling.

Figure 7

Vertical magnetic anomaly over the Pima copper deposit in Arizona. The base line and the zero crossing

shown are determined using STANLEY’s method (1977).
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Finally, these two field examples underscore one of the principle advantages of

the least-squares methods: a reliable depth can be obtained in spite of irregularities in

the anomaly curves (Figs. 6 and 7), that would more seriously affect methods of

depth estimation based on only a few points and distances of the curves.

Conclusions

The problem of determining the depth of a buried structure from the magnetic

anomaly has been transformed into the problem of solving a nonlinear equation. The

method presented is very simple to execute. The advantages of the present method

over previous techniques, which use only a few points, distances, standardized

curves, and nomograms are: (1) all observed values can be used, (2) the method is

semi-automatic, and (3) the method is not sensitive to errors in the magnetic

anomaly. Lastly, the advantage of the proposed method over previous least-squares

techniques is that any initial estimate for the depth parameter works well.
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