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Representation and Analysis of the Earthquake Size Distribution:
A Historical Review and Some New Approaches

TOKUJI UTSU1

Abstract—The size distribution of earthquakes has been investigated since the early 20th century.
In 1932 WADATI assumed a power-law distribution n(E)=kE−w for earthquake energy E and estimated
the w value to be 1.7�2.1. Since the introduction of the magnitude-frequency relation by GUTENBERG

and RICHTER in 1944 in the form of log n(M)=a−bM, the spatial or temporal variation (or stability)
of b value has been a frequently discussed subject in seismicity studies. The log n(M) versus M plots for
some data sets exhibit considerable deviation from a straight line. Many modifications of the G-R
relation have been proposed to represent such character. The modified equations include the truncated
G-R equation, two-range G-R equation, equations with various additional terms to the original G-R
equation. The gamma distribution of seismic moments is equivalent to one of these equations.

In this paper we examine which equation is the most suitable to magnitude data from Japan and
the world using AIC. In some cases, the original G-R equation is the most suitable, however in some
cases other equations fit far better. The AIC is also a powerful tool to test the significance of the
difference in parameter values between two sets of magnitude data under the assumption that the
magnitudes are distributed according to a specified equation. Even if there is no significant difference in
b value between two data sets (the G-R relation is assumed), we may find a significant difference between
the same data sets under the assumption of another relation. To represent a character of the size
distribution, there are indexes other than parameters in the magnitude-frequency distribution. The h

value is one of such numbers. Although it is certain that these indexes vary among different data sets
and are usable to represent a certain feature of seismicity, the usefulness of these indexes in some
practical problems such as foreshock discrimination has not yet been established.
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1. Historical Re6iew

1.1. Early Studies in Japan

It has been recognized since the early years of seismology that smaller earth-
quakes are considerably more frequent than larger ones. OMORI (1902) illustrated
a table of the frequency distribution of maximum amplitudes recorded by a
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seismometer in Tokyo. If his data were plotted in a double-logarithmic diagram,
they fit a straight line indicating a power-law distribution. However, the power-law
relation for the distribution of amplitudes

n(A)=kA−m (1)

was first reported in a paper by ISHIMOTO and IIDA (1939) as a result of the
observation with a newly designed seismograph.

ENYA (1908a) applied a lognormal distribution to the frequency of maximum
velocities recorded at Tokyo station. ENYA (1908b) also tried to represent the
distribution of earthquakes with respect to the radius R of the felt region. Before
the introduction of the earthquake magnitude, R (or area S) of the felt region was
only a measure of earthquake size routinely reported in the Bulletins of the Central
Meteorological Observatory, Tokyo since 1885. However, the formula proposed by
ENYA (1908b) for the distribution of R was too complicated to be of practical use.
OMORI (1908) also discussed the frequency distribution of earthquakes with respect
to the felt area S, although no specific distribution functions were suggested.

1.2. Power-law Distribution of Earthquake Energies

WADATI (1932) published a paper titled ‘‘On the Frequency Distribution of
Earthquakes.’’ This paper received slight attention because of its vague title and the
language used. In his paper he assumed that the earthquake energy E has a
distribution in the form

n(E)=kE−w (2)

(k and w are constants) and tried to estimate the w value from the observed
frequency distribution of S−P times recorded at the Tokyo station. The distribu-
tion of S−P is controlled by the spatial distribution of earthquakes around the
station, the attenuation of seismic waves, and the frequency distribution of earth-
quakes with respect to energy. He obtained w=1.7 and w=2.1 under the assump-
tion that the hypocenters were distributed uniformly on a horizontal line and a
horizontal surface, respectively. Only geometrical spreading was assumed for atten-
uation, however he noted that the w value might become smaller if the effect of
absorption was included. It should be noted that Wadati’s estimates of w are close
to 5/3, now generally accepted for the index of the power-law distribution of
seismic energies or moments. w=5/3 corresponds to b=1 in Equation (4), since
w=b/1.5+1, where 1.5 is the coefficient of a well-known formula connecting the
magnitude M and the seismic energy (or moment) E

log E=1.5M+constant. (3)

In the present paper, log X denotes log10 X, while ln X denotes loge X. We use the
same notation for both moment and energy, because they are proportional.
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1.3. Exponential Distribution of Earthquake Magnitudes

In the first paper on the instrumental magnitude scale, RICHTER (1935) noted
that the number of shocks falls off very rapidly for the higher magnitudes.
GUTENBERG and RICHTER (1941) suggested an exponential distribution for earth-
quake magnitude. The famous equation

log n(M)=a−bM (4)

was used by GUTENBERG and RICHTER (1944, 1949). The coefficient b usually
takes a value around 1.0. Since then, this formula has been used by many
investigators. The b value has been considered as an important parameter which
characterizes the seismicity of a region.

Throughout this paper, n(M) dM represents the frequency of earthquakes
having magnitude between M−dM/2 and M+dM/2, and N(M) represents the
number of earthquakes with magnitude M and larger. If we use the earthquakes
with magnitude Mz and larger, the density function for the G-R formula (4) is
written in the form

f(X)=B exp(−BX) (X]0) (5)

where X=M−Mz and B=b ln 10.

1.4. Temporal and Spatial Variability and Stability of the b Value

Under the assumption that the magnitudes are distributed in accordance with
the G-R formula, the b value is only the parameter which characterizes the
distribution. If we have a complete magnitude data for earthquakes with magnitude
Mz and larger, M1, M2, . . . , MN, the b value is usually calculated from the
equation (UTSU, 1965)

B=E [X ]−1 i.e., b= (log e)N
, %

N

i=1

(Mi−Mz ) (6)

where E [·] denotes the expectancy and N is the total number of earthquakes. This
is the maximum likelihood estimate (MLE) of b (AKI, 1965).

Even if the above assumption is not valid, we can determine the b value from
Equation (6). Under the above assumption the significance of the difference in b
values between two earthquake groups can be tested by using the F distribution or
more easily by using AIC (see Section 3).

The spatial or temporal variation of b value has been one of the frequently
discussed topics in seismicity studies, since GUTENBERG and RICHTER (1949)
estimated the b values for earthquakes occurring in various regions of the world.
Numerous papers were published dealing with the b values or m values in Equation
(1) (m=b+1, ASADA et al., 1951). Some tried to relate the spatial variation to
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tectonics, degree of fracturing, material properties, degree of stress concentration,
etc. Some tried to relate the temporal variation to changes in stress level, pore-fluid
pressure, fracture growth condition, etc. which might be connected with the
occurrence of large earthquakes. Recent papers include OGATA et al. (1991),
FROHLICH and DAVIS (1993), OGATA and KATSURA (1993), KÁRNÍK and KLÍMA

(1993), OKAL and KIRBY (1995), ÖNCEL et al. (1996), WIEMER and BENOIT (1996),
WIEMER and MCNUTT (1997), MOLCHAN et al. (1997), MORI and ABERCROMBIE

(1997), WIEMER and WYSS (1997), WYSS et al. (1997) for spatial variations, and
SMITH (1986), IMOTO (1987), JIN and AKI (1989), OGATA and ABE (1991), IMOTO

(1991), HENDERSON et al. (1992, 1994), TRIFU and SHUMILA (1996) for temporal
variations. It is also known that some volcanic earthquakes have quite unique
magnitude distribution (e.g., OKADA et al., 1981; MAIN, 1987).

Uncertainties of the published b values are often quite large. The b values are
affected by various factors; properties of the magnitude scale used, magnitude range
of adopted data, method of determination, data completeness, etc. Care must be
taken to accept the geographic variations (in this connection, see UTSU, 1971;
FROHLICH and DAVIS, 1993; KAGAN, 1997).

Some authors are of the opinion that the b value for tectonic earthquakes in
general does not differ significantly from a universal value. Some of the reported
variations in b value must be real (e.g., earthquakes with normal faulting have larger
b values, FROHLICH and DAVIS, 1993), however there may be many cases in which
occurrence or non-occurrence of relatively few numbers of large events by chance
causes an apparent variation in b value. The spatial stability of the magnitude
distribution has been suggested or emphasized by SUZUKI (1959), RIZNICHENKO

(1959), ALLEN et al. (1965), BLOOM and ERDMAN (1980), KAGAN (1991, 1997),
among others. The temporal stability is also mentioned in some papers.

If there is no significant difference in b value between different earthquake
groups, this does not always mean that the earthquakes have the same size
distribution. We can calculate the b value for any earthquake group by the use of
Equation (6), whether the magnitude distribution fits the G-R relation or not. We
often find two earthquake groups for which the b values are nearly equal but the
patterns of the magnitude distribution are quite different. If we assume a distribu-
tion function other than the G-R relation, we may find the significant difference
between the two groups. We will discuss this problem in Section 3.

1.5. Modifications of the G-R Relation

The log n(M) versus M plots for some magnitude data exhibit considerable
deviation from a straight line expected from the G-R relation. The deviation is
either the convex type (Fig. 1, curve hB2) or the concave type (curve h\2). Many
modified equations have been proposed to represent such data. The problem of
selecting the equation best representing a given set of data will be discussed in
Section 2.
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1.5.1. Con6ex Type Equations. Most of the modified equations have been
designed for the convex type distribution. They have the form

log n(M)=a−bM−f(M) (b\0) (7)

where f(M) is an increasing function of M. Most of the functions proposed
hitherto belong to one of the following four groups.

The first group uses a polynomial f(M)=k(M−c)n (n=1, 2, . . .).
For n=1, only the case in which f(M) is truncated at M=c (f(M)=0 for

MBc) is meaningful. This case corresponds to a two-range G-R relation

log n(M)=a1−b1M (M5c), (8a)

log n(M)=a2−b2M (M]c). (8b)

A condition a1−b1c=a2−b2c is required for the continuity of n(M) at M=c.
Such two-range expression was used by GUTENBERG (1956), PACHEKO and SYKES

(1992), OKAL and ROMANOWICZ (1994), SORNETTE et al. (1996), among others.
TRIEP and SYKES (1997) used the two-range log N(M) versus M relation, which is
different from Equations (8a,b) as N(M) represents the cumulative number. This
relation looks somewhat strange because it has a discontinuity of the gradient of
the cumulative curve.

The truncated G-R equation

Figure 1
Schematic diagram of the magnitude distribution of earthquakes. Two types of the deviation from the
G-R relation (h=2), convex type (hB2) and concave type (h\2) are shown. For the definition of h,

see Section 4.2.
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log n(M)=a−bM (M5c) (9a)

n(M)=0 (M\c) (9b)

may be a variation of Equations (8a,b), i.e., b2��. The truncated G-R equation
was used by RIZNICHENKO (1964, 1966), PAGE (1968), CORNELL and VANMARCHE

(1969), KAGAN (1969), OKADA (1970), COSENTINO and LUZIO (1976), COSENTINO

et al. (1977), UTSU (1978), BERRILL and DAVIS (1980), among others. An equation
used by LATOUSSAKIS and DRAKOPOULOS (1987), N(M)=−A1+A2 exp(−A3M)
is the same as the truncated G-R equation, because Equation (9a) can be trans-
formed to N(M)=104{exp(−BM)−exp(−Bc)} where A=a− log B and B=
b ln 10.

If n=2, n(M) becomes a normal distribution. This distribution was used by
NIAZI (1964), NEUNHÖFER (1969), OLSSON (1986), and SPEIDEL and MATTSON

(1993). This corresponds to a lognormal distribution of energy E, which was used
by LOMNITZ (1964) and KAGAN (1969). Since no complete data are available below
a certain magnitude level Mz (or energy level Ez ), the distribution must be
truncated at this level. This left-hand truncation makes the density function for
n(M) fairly complex and the maximum likelihood estimation of the parameters is
not easy.

PURCARU (1975) considered the equation for the cumulative frequency

log N(M)=a−bM−k(c−M)3. (10)

This does not belong to any of the four groups treated here.
The second group uses an exponential function f(M)=k exp(hM) (k\0, h\

0). SAITO et al. (1973) obtained Equation (11) for the frequency distribution of the
size E of events generated by a branching model (equivalent to a site percolation
model) proposed by OTSUKA (1972).

n(E)=kE−3/2 exp(−aE) (11)

where k and a are constants. This equation was derived also by VERE-JONES (1976,
1977) and MARUYAMA (1978) through different procedures. If the size is propor-
tional to the energy and the energy is related to the magnitude M by Equation (3),
this yields the equation

log n(M)=a−0.75M−k101.5M. (12)

Since Equation (12) is constrained too tightly, a relaxed form

log n(M)=a−bM−k102bM (13)

has been considered. We shall call (13) the SAITO et al. equation.
KAGAN and KNOPOFF (1984) and KAGAN (1991, 1993, 1997) used an equation

for seismic moment distribution, which has the form of a gamma distribution
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n(E)=kE−1−b exp(−E/Em ) (14)

where k, b, and Em are constants. This is equivalent to a generalized form of
Equation (12)

log n(M)=a−bM−k101.5M (15)

where b=1.5b. We shall call Equation (15) the generalized SAITO et al. equation
(h=1.5), since this is a special case of a more general equation

log n(M)=a−bM−k10hM. (16)

An equation was obtained by MAIN and BURTON (1984a, 1986) based on the
entropy maximization principle. This equation which can be written as

n(M)=a exp(−l1M−l2E) (17)

is the same as the generalized SAITO et al. equation (h=1.5), if moment E is
converted to magnitude M using Equation (3).

An equation in the form

N(M)=exp{A−c exp(BM)} (18)

was proposed by LOMNITZ-ADLER and LOMNITZ (1978, 1979). This can be
transformed to

log n(M)=a+bM−c10bM (b\0). (19)

Since the sign of the second term bM is plus, n(M) decreases as M decreases for
small M. Due to this unique character, the Lomnitz-Adler and Lomnitz equation
fits better than most other equations to incomplete data sets in which small
earthquakes are missing. Incomplete data sets should not be used unless special
consideration is given such as described by OGATA and KATSURA (1993).

The third group uses a logarithmic function f(M)=−k log(c−M) for MBc.
n(M)=0 for M\c. UTSU (1971, 1978) proposed the equation

log n(M)=a−bM+ log(c−M) (MBc). (20)

This is equivalent to the power-law distribution of energy with a logarithmic taper

n(E)=kE−1−b log(Em /E) (E5Em ) (21)

where k, b, and Em are constants. The equation of MAKJANIĆ (1972, 1980) can be
written as N(M)=N{(c−M)/(c−Mz )}k+1. This is equivalent to

log n(M)=a+k log(c−M) (MBc). (22)

The equation proposed by PURCARU (1975)

log N(M)=a−bM+k log(c−M) (MBc) (23)
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is not the generalization of Equation (20) or (22), since this represents the
cumulative frequency.

The fourth group uses a function f(M)= log[1−exp{−h(c−M)}]. n(M)=0
for M\c. The equation used by ANDERSON and LUCO (1983) and MAIN and
BURTON (1984b), n(M)=A{exp(−BM)−exp(−Bc)} for MBc, can be written as

log n(M)=a−bM+ log{1−10−b(c−M)} (MBc), (24)

i.e., h=b ln 10 in this case. This is a special case (Mz=m) of a more general
distribution used by CAPUTO (1976)

n(M)=l1 exp(−BM) (MzBM5m) (25a)

n(M)=l2{exp(−BM)−exp(−Bc)} (m5MBc). (25b)

Expressions in Caputo’s paper are complicated but they are equivalent to (25a,b).
Here, we call (24) the Caputo equation.

SEINO et al. (1989) used the general form of this group

log n(M)=a−bM− log[1−exp{−h(c−M)}] (MBc). (26)

It is interesting that this equation degenerates into the G-R relation (4), when
c��, into the Utsu Equation (20) when h�0, and into the truncated G-R
Equation (7) when h��. When h=b ln 10, Equation (26) coincides with the
Caputo Equation (24).

1.5.2. Conca6e Type Equations. The equations for the concave type distribu-
tions are few. Here we consider an equation

n(M)=n1(M)+n2(M) (27a)

where

log n1(M)=a1−b1M (27b)

log n2(M)=a2−b2M (b1\b2\0). (27c)

It is readily seen that n1(M)=n2(M) at M=m, where m= (a1−a2)/(b1−b2).
n1(M) and n2(M) predominates in (27a) for M�m and M�m, respectively. We
call (27a,b,c) the combined G-R equation. If this equation is applied to a data set
of convex type, the MLEs of b1 and b2 become equal, indicating that the equation
degenerates into a single G-R relation.

The two-range G-R relation (8a,b) is concave if b1\b2. If the second range is
truncated at M=d(\c), i.e., n(M)=0 for M\d in Equation (8b), b2 may take a
negative value. It is possible that Equations (27b) and (27c) are both truncated at
different magnitude levels (WARD, 1996).

1.5.3. Other Equations. Many other equations have been proposed in seismo-
logical papers, but the MLEs of the parameter values for most of these equations
are not easy (though not impossible) to compute, because of the complicated form
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of the likelihood function. These include the truncated normal distribution (men-
tioned already), the truncated lognormal distribution (SACUIU and ZORILESCU,
1970; RANALLI, 1975), and various functions (SHLIEN and TOKSÖZ, 1970; MERZ

and CORNELL, 1973, 1981; GUARNIERI-BOTTI et al., 1981; CORNELL and WINTER-

STEIN, 1998; RUNDLE, 1993, etc.).

2. Parameter Estimation for the Frequency-magnitude Relations: Selection of the
Most Suitable One

2.1. General

We assume that we have complete magnitude data for N earthquakes with
magnitude Mz and larger, M1, M2, . . . , MN. These are considered as random
samples from a population whose magnitude distribution is represented by a
density function f(X) (X=M−Mz ). The MLEs of the parameters ui (i=
1, 2, . . . , n) in the density function are the values for ui which maximize the
log-likelihood function

ln L= %
N

i=1

ln f(Xi ) (Xi=Mi−Mz ). (28)

The density function for Equations (4), (8), (9), (12), (13), (15), (16), (19), (20), (22),
(24), (26), and (27) are shown below. The MLEs can be computed either by solving
simultaneous equations ( ln L/(ui=0 (i=1, 2, . . . , n), or by maximizing ln L by
using some nonlinear optimization procedure.

Once the MLEs are obtained we can compute AIC (Akaike information
criterion, AKAIKE, 1974)

AIC=−2 ln Lm+2n (29)

where Lm is the maximum of L and n is the number of parameters in the density
function f(X).

When AIC values are calculated for each of these distributions for a given data
set, we can judge which is the most suitable distribution for the data set. The one
which provides the smallest AIC is the best, though the difference less than about
2 in AIC is considered insignificant.

2.2. Density Functions

In the following density functions (a) to (n), B=b ln 10 and C=c−Mz unless
otherwise noted, where b and c are the parameters in the respective distribution and
Mz is the threshold magnitude.

(a) Gutenberg–Richter Equation (4)
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f(X)=B exp(−BX) (X]0).

(b) Truncated G-R Equation (9)

f(X)=B exp(−BX)/{1−exp(−BC)} (05X5C).

(c) Utsu Equation (20)

f(X)=exp(−BX)(C−X)B2/{exp(−BC)+BC−1} (05X5C).

(d) Makjanić Equation (22)

f(X)= (1−X/C)1/k−1/(kC) (05X5C).

(e) Saito et al. Equation (b=0.75) (12): B=0.75 ln 10 in (f).
(f) Saito et al. Equation (13)

f(X)=2BC−0.5 exp{−BX−C exp(2BX)}/G(0.5, C) (X]0)

where C=c (ln 10) exp(2BMz ) and G(· , ·) denotes the incomplete gamma function.
(g) Generalized Saito et al. Equation (h=1.5) (15): H=1.5 ln 10 in (h).
(h) Generalized Saito et al. Equation (16)

f(X)=HC−B/H exp{−BX−C exp(HX)}/G(−B/H, C) (X]0)

where C=c (ln 10) exp(HMz ), H=h ln 10.
(i) Caputo Equation (24)

f(X)=B{exp(−BX)−exp(−BC)}/{1− (1+BC) exp(−BC)} (05X5C).

(j) Seino et al. Equation (26)

f(X)=exp(−BX)[1−exp{−h(C−X)}]/F (05X5C)

where F={1−exp(−BC)}/B+{exp(−BC)−exp(−hC)}/(B−h).
(k) Lomnitz-Adler and Lomnitz Equation (19)

f(X)=BC exp(BX) exp[−C{exp(BX)−1}] (X]0)

where C=c(ln 10) exp(BMz ).

(l) Combined G-R Equation (27)

f(X)=lB1 exp(−B1X)+ (1−l)B2 exp(−B2X ) (1\l\0, X]0).

(m) Two-range G-R Equation (8)

f(X)=lB1 exp(−B1X) (05X5Xc )

f(X)=mB2 exp(−B2X) (X]Xc )

where l={1− (1−B1/B2)}−1 exp(B1Xc ) and m=l(B1/B2) exp(B2Xc )/exp(B1Xc ).
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Figure 2
Index map of 16 regions of Japan.

To obtain MLEs of Xc, B1, and B2, we assume a certain value for Xc and
calculate the B1 and B2 values which maximize

ln L=N1 ln(lB1)−B1 %
Xi5Xc

Xi+N2 ln(mB2)−B2 %
Xi\Xc

Xi (30)

where N1 is the number of events with X5Xc and N2 is the number of events with
X\Xc. We search a value for Xc which maximizes ln L by changing Xc in a
systematic manner. Although the number of the parameters n is 3, the penalty term
of AIC must be larger than 2n (=6) by a, because the parameter Xc represents the
changing point of the slope (for this problem, see OGATA, 1992). The increment of
the penalty a is about 6 at most.

(n) Truncated two-range G-R Equation

f(X)=lB1 exp(−B1X) (05X5Xc )

f(X)=mB2 exp(−B2X) (Xc5X5C)

where l= [1−exp(−B1Xc )+ [1−exp{(B2(C−Xc )}](B1/B2) exp(−B1Xc )]−1 and
m=l(B1/B2) exp(B2Xc )/exp(B1Xc ). The same comment on the penalty for AIC as
(m) is needed in this case.

2.3. Results from Selected Data Sets

To demonstrate the applicability of our approach, the following data sets
(2.3.1–2.3.4) are analyzed.
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2.3.1. Shallow Earthquakes in 16 Regions of Japan (1926–1997, 05h5
100 km). We deal with the 16 regions of Japan (A to P shown in Fig. 2). The
boundaries of the regions were determined with seismotectonic considerations.
They do not cross the aftershock zones of major earthquakes. Magnitudes are MJ

given by the Japan Meteorological Agency (JMA). The threshold magnitudes Mz

differ among regions as shown in Table 3 (Section 3.1). The largest earthquake in
this period was the Tokachi-oki earthquake of 1952 in region A (MJ=8.2,
Mw=8.0), or the Sanriku earthquake of 1933 in region D (MJ=8.1, Mw=8.4).
There is a small systematic difference between MJ and Mw (or Ms ) (UTSU, 1982),
so care is needed in the comparison of the results, with the results from the
worldwide data using Mw or Ms.

The MLEs of the parameters in the 14 density functions (a) to (n) presented in
Section 2.2 and the corresponding AIC values are computed. Here the results for
region B are shown in Figure 3. The AIC values for each distribution for each
region are shown in Figure 4, where dAIC represents the difference from the
smallest AIC for each region. From this figure we notice the following points.

(1) The G-R relation (a) is most suitable for 8 regions.
(2) For the remaining 8 regions except region C, one of the convex equations

provides the smallest AIC. For 6 regions, dAIC for the G-R relation is larger than
about 2 or more.

(3) For 11 regions dAIC for the truncated G-R relation (b) is less than about
1. No other distributions perform so well. The mean of dAIC for (b) is 1.94, which
is the smallest among the 14 equations tested. The second smallest mean dAIC,
2.57, is attained by the Utsu equation (c). Since mean values of dAIC for (d), (f),
(g), (i), (k) fall in the range 2.61–2.72, it can be said that no appreciable difference
in the performance seems to exist among these 6 two-parameter equations.

(4) One-parameter equations (a) and (e) and three-or-more-parameter equations
(h), (j), (l), (m), and (n) have larger mean dAIC.

(5) In computing the parameters, we often encounter the case in which some
parameter value increases infinitely or converges to zero during the iteration. This
means that the equation degenerates into the G-R relation or another equation with
fewer parameters.

2.3.2. Shallow Earthquakes in the World (1904–1980, Ms]7.0). Shallow earth-
quakes in the world (depth less than about 65 km). The magnitudes are Ms given by
ABE (1981) with corrections by ABE (1984), ABE and NOGUCHI (1983a,b). Ms for
great earthquakes (Mw]8.5) is replaced by Mw taken mostly from KANAMORI

(1977). The largest one is the Mw 9.5 Chilean earthquake of 1960. Other corrections
(e.g., PACHECO and SYKES, 1992) are not considered.

The whole data (W) are divided into two groups (H and L). Group H includes
the quakes in the high-latitude zone (south of 38°S and north of 38°N) and group
L those in the low-latitude zone (38°S to 38°N). This is to reconfirm the result by
MOGI (1979) who demonstrated that the magnitude distribution is quite different
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between high- and low-latitude zones. Mogi selected the zone boundary at 40°S and
40°N, but here we use 38°S and 38°N to include the 1960 Chilean sequence in the
high latitude group. This sequence is located south of 40°S in the catalog used by
Mogi, however they are located north of 40°S in the catalog used here.

The AIC values for the 14 equations (a) to (n) for groups W, H, and L are
shown in Table 1. The smallest AIC values and the AIC values not different from
the smallest value by 0.5 are shown in bold italic letters.

In Figure 5 (left) the magnitude distributions are shown for group W, H, and L.
The curves for the G-R equation and equation of the smallest AIC are drawn in the
figure.

Figure 3
Magnitude-frequency diagrams for shallow earthquakes in region B, 1926–1997. Solid and open circles
represent N(M) and n(M) dM (dM=0.1), respectively. Three different curves fitted to the data are

drawn in each diagram.
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Figure 4
dAIC for 14 distributions (a) to (n) (see Section 2.2) for 16 regions A to P (see Fig. 2). dAIC represents
the difference in AIC from the smallest AIC for each region. If two or more AIC values are nearly equal,
the letters are slightly displaced so as not to overlap. The letters on the right (dAIC\5) are arranged

in alphabetical order.

Although the two b values, b=1.040 for H, b=1.102 for L, are not significantly
different, the shape of the distribution is very different. This point will be discussed
in Section 3.

2.3.3. Shallow and Deep Earthquakes in the World (1977–1997, Mw]5.50). All
magnitudes used are Mw calculated to two decimal places from the seismic moment
(M0 (dyn-cm) in the Harvard University CMT catalog using Equation (3) with the
constant equal to 16.1. The largest one is the 1977 Sumba Is. earthquake which has
a moment of 3.59×1028 dyn-cm (Mw=8.31). The data are divided into high and
low-latitude groups in the same manner as before.

Table 2 lists the AIC values. For W and L groups the G-R equation provides
a very poor fit. The AIC values for the G-R equation differ by more than 24 from
the smallest AIC values provided by the Utsu and Caputo equations. The AIC
values for the other equations are larger by more than about 2. For H group the
truncated G-R and Utsu equations give the smallest AIC.

Figure 5 (right) shows the magnitude distributions for groups W, H, and L. The
curves for the G-R and Utsu equations are drawn.
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Table 1

AIC 6alues for shallow earthquakes of Ms]7.0 occurring during 1904–1980 in the whole world (W) and
high- and low-latitude zones (H and L) for 14 equations (a) to (n) gi6en in Section 2.2. For 6alues with
asterisk, increments of penalty of about 6 (at most) should be added to compare with other AIC 6alues. N

is the number of earthquakes

Zone (a) (b) (c) (d) (e) (f) (g)
(N) G-R T. G-R Utsu Mak Sai-1 Sai-2 Sai-3

W (764) 134.40 133.65 132.01 130.36 179.63 134.52 134.06
H (232) 60.90 61.82 62.91 62.90 77.42 62.62 62.73
L (532) 74.95 57.72 57.35 58.71 58.74 58.05 57.85

Zone (h) (i) (j) (k) (1) (m) (n)
Sai-4 Capu Seino Lom C. G-R R. G-R TR. G-R

W 132.15 133.66 134.48 130.13 138.40 129.59* 130.61*
H 64.90 62.80 63.82 63.06 64.64 64.18* 63.98*
L 59.83 57.45 59.35 60.45 78.95 60.51* 60.81*

2.3.4. Aftershocks of the 1995 Hyogoken–Nanbu (Kobe) Earthquake (MJ]
2.5). This devastating earthquake (January 16, 1995, MJ=7.2) produced relatively
weak but remarkably regular aftershock activity. The data are taken from the
preliminary catalog of JMA for the first 1,000 days. 4157 shocks of focal depths less
than 40 km (most shocks are less than 20 km) and of MJ]2.0 occurred in the
quadrangular region defined by the four points (34.55°N, 134.65°E), (35.0°N,
135.3°E), (34.75°N, 135.55°E), and (34.3°N, 134.9°E). These shocks are regarded as

Table 2

AIC 6alues for earthquakes of Mw]5.50 occurring during 1977–1997 in the whole world (W) and high-
and low-latitude zones (H and L) for 14 equations (a) to (n). For 6alues with asterisk, see Table 1

Zone (a) (b) (c) (d) (e) (f) (g)
(N) G-R T. G-R Utsu Mak Sai-1 Sai-2 Sai-3

W (7340) 2746.05 2720.71 2714.38 2719.66 2754.86 2717.19 2716.16
H (1580) 659.80 654.24 654.58 655.16 700.08 655.45 655.57
L (5760) 2087.33 2068.69 2062.65 2067.46 2053.65 2064.46 2063.15

Zone (h) (i) (j) (k) (1) (m) (n)
Sai-4 Capu Seino Lom C. G-R R. G-R TR. G-R

W 2717.13 2714.48 2715.08 2720.77 2750.05 2724.60* 2714.66*
H 657.18 655.98 656.72 655.17 663.80 657.19* 656.94*
L 2064.12 2062.39 2063.19 2068.57 2091.33 2068.30* 2063.62*
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aftershocks in this study. The magnitude distribution of the aftershocks of MJ]2.5
is studied, dividing the sequence into four periods I (0.1–1 day), II (1–10 days), III
(10–100 days), and IV (100–1000 days).

The G-R relation provides the smallest AIC for periods II and III. For period
I, the Lomnitz-Adler and Lomnitz equation has the smallest AIC. Perhaps some
shocks of M near 2.5 are missing. For MJ]3.0 the truncated G-R equation has the
smallest AIC. For period IV, the Makjanić equation provides the smallest AIC, but
the AIC values for the Utsu, Caputo, Lomnitz-Adler and Lomnitz, and generalized
Saito (h=1.5) equations do not differ by more than 0.5.

The b value of the G-R relation for periods I, II, III, and IV are 1.096 (N=154,
MJ]3.0), 1.104 (N=455, MJ]2.5), 1.230 (N=356), and 1.061 (N=258), respec-
tively. A significant difference in b values is not found among the four periods
(using the method described in Section 3). The temporal stability of the magnitude-
frequency relation in this aftershock sequence is also supported by the nearly
constant p value for different threshold magnitudes. The p value is an index in the
modified Omori formula introduced by Utsu (1961). The MLEs of p for aftershocks
with MJ]2.0, MJ]2.5, MJ]3.0, MJ]3.5, MJ]4.0 and MJ]4.5 are 1.134,
1.160, 1.116, 1.169, 1.301, and 1.197, respectively (the data between 0.1 day and
1000 days from the mainshock are used). Such magnitude stability in aftershock
sequences was first pointed out by UTSU (1962).

3. Difference in the Size Distribution Between Two Groups of Earthquakes

3.1. Significance Test of the Difference in b Value Between Two Groups

When we obtain fairly different MLEs of b, b1 and b2 (b1\b2), for two groups
of earthquakes, we have the problem of deciding whether this difference is
statistically significant or not. If the earthquakes in both groups are random
samples from the same population obeying the G-R relation, b1/b2 has the F
distribution with 2N1 and 2N2 degrees of freedom (N1 and N2 are the number of
earthquakes in each group). A significance test using this property was introduced
by UTSU (1966).

A similar test can be performed by using AIC (UTSU, 1992). We use two
hypotheses, a null hypothesis that the two groups have the same b value (MLE of
b for the combined group is b0) and an alternative one that the b values are

Figure 5
Magnitude-frequency distribution for world earthquakes. Solid and open circles represent N(M) and
n(M) dM, respectively. Top: the whole world. Center: the high-latitude zone, Bottom: the low-latitude
zone. Left: Shallow earthquakes of Ms]7.0 (dM=0.1), 1904–1980. Ms for earthquakes of Mw]8.5
has been replaced by Mw. For the high-latitude zone, the Makjanić equation degenerates into the G-R

equation as c��. Right: Earthquakes of all depths, Mw]5.50 (dM=0.01), 1977–1997.
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Table 3

b 6alues for 16 regions A to P in Japan during 1926–1997. The significance of
the difference between e6ery combination of regions is shown by á (highly
significant difference), � (significant difference), and × (no significant differ-

ence)

N Mz b Region (A to P)

224 5.5 0.957 A
806 5.0 0.896 ×B á: DAIC]5
127 5.0 1.072 ××C �: 5\DAIC]2
195 5.7 1.067 ×�×D ×: DAICB2
185 5.0 0.761 �� á á E
183 4.5 0.879 ×××××F
290 5.5 0.932 ××××�× G
820 4.5 0.934 ××××�××H
185 4.5 1.014 ××××á××× I
158 5.2 1.043 ××××á×××× J
139 5.0 0.919 ××××××××××K
78 5.0 0.913 ×××××××××××L

311 4.5 0.797 �× á á×××��á××M
461 4.5 0.819 ××� á×××���×××N
217 4.5 0.952 ××××�×××××××�× O

96 4.5 0.806 ××��×××××�×××××P

different (MLEs of b are b1 and b2). AIC for the former and latter hypothesis is
denoted by AIC0 and AIC12, respectively. It is easy to show that

AIC0=−2(N1+N2) ln(b0 ln 10)+2(N1+N2)+2 (31)

AIC12=AIC1+AIC2=−2N1 ln(b1 ln 10)+2N1−2N2 ln(b2 ln 10)+2N2+4. (32)

If AIC12 is significantly smaller than AIC0, we can reject the null hypothesis and
believe that the two groups have different b values. Usually the difference in AIC
is considered significant if DAIC (=AIC0−AIC12) exceeds about 2. If DAIC\5,
the difference is highly significant. If the present case, by using Equation (6), DAIC
can be written as

DAIC=−2(N1+N2) ln(N1+N2)+2N1 ln(N1+N2b1/b2)

+2N2 ln(N1b2/b1+N2)−2. (33)

It is noted here that we can test the two data sets with different magnitude
threshold Mz, because the G-R relation we assume is perfectly self-similar.

As an example, Table 3 shows the result of the test of the difference in b value
among the regions A to P in Japan (Section 2.3.1). It is seen that most of the double
and single circles are related to the small b values in regions E and M.
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3.2. Difference in Size Distribution by Using a Formula Other than the G-R Relation

It is possible that the MLEs of b for two groups are nearly equal (no significant
difference based on the test under the assumption of the G-R relation), but the
patterns of the distribution are quite different. The distributions for high- and
low-latitude zones (Section 2.3.2, Fig. 5 left) provide a good example. In this case,
putting b1=1.1023, N1=532, b2=1.0398, N2=232 in Equation (33), we obtain
DAIC=−1.45 (this is confirmed from DAIC=AIC0−AIC1−AIC2 using the
value shown in Table 1). This DAIC is smaller than 1 (even smaller than 0).
Therefore we conclude that the b values for the two zones do not differ
significantly.

Since the whole world’s data fit the Makjanić equation best, we use this
equation as representative of the population. From Table 1 AIC0=130.36, AIC1=
62.90, AIC2=58.71, then DAIC=8.75. Since this is larger than 5, the difference
between H and L groups is highly significant. This indicates that the comparison of
the b values of the G-R relation only is not always enough to find a variation in the
size distribution. DAIC values for other distributions except (1) are also larger
than 5.

To test the significance of the difference between H and L groups for the data
set of 1977–1997 (Section 2.3.3, Fig. 5 right), DAIC is calculated for the 14
formulas (a) to (n). We find that DAIC is smaller than 2 for all formulas (smaller
than 0 in most cases). This indicates that there is no significant difference under the
assumption of any of the 14 formulas. The striking difference between H and L
groups found for the data set of 1904–1980 is mainly due to the occurrence of
several great earthquakes during 1952–1965.

4. Other Indexes for the Earthquake Size Distribution

4.1. Examples of the Indexes

The character of the size distribution of earthquakes is very often indicated by
the b value of the G-R relation, or in some cases by the parameter values in other
magnitude-frequency relations. Some investigators suggested the use of indexes
other than these parameters. These are the h value (UTSU, 1978), the H value
(OUCHI and YOKOTA, 1979), the R index (KAYANO, 1982), the C value (OKUDA et
al., 1992) among others.

The h value indicates the degree of departure of the log n(M) versus M plots
from a straight line (the G-R relation) to either concave side or convex side (see
Fig. 1). The H, R, and C values provide some measure to indicate the diversity of
the earthquake sizes or the deviation from the G-R relation. Here the h value and
the R index will be discussed in detail.
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4.2. h Value

The h value was introduced by UTSU (1978). It is defined by

h=E [X2]/E [X ]2 (34)

where E [·] denotes the expectancy and X=M−Mz (Mz is the threshold magni-
tude). The theoretical value of h for the G-R relation (a) is 2. hB2 for concave
distributions and h\2 for convex distributions. For example, theoretical h for the
truncated G-R relation (b) is given by

h= [2−BC(BC+2)/{exp(BC)−1}]/[1−BC/{exp(BC)−1}] (35)

and for the Utsu equation (c)

h=
{exp(−BC)(B2C2+4BC+6)+2BC−6}{exp(−BC)+BC−1)}

{exp(−BC)(BC+2)+BC−2}2 . (36)

These are smaller than 2 for any positive values of B and C. As an example of
concave distributions, h for the combined G-R equation (l) is given by

h=2{lB−2
1 + (1−l)B−2

2 }/{lB−1
1 + (1−l)B−1

2 }2 (37)

which is larger than 2 if B1"B2.
It is apparent that earthquake swarms usually have smaller h values compared

with mainshock–aftershock sequences. UTSU (1988) suggested that foreshock se-
quences tend to have smaller h values as compared with the aftershock sequences
of the same mainshocks. Examination of more data indicates that this property of
foreshock sequences is not so clear, as will be shown in the next section. h values
were also used by ZHANG and HUANG (1990) and OKUDA et al. (1992).

The formula (6) for computing the b value by UTSU (1965) was obtained by the
method of moment, which equates the theoretical and empirical first moments. If
we use the nth moment, we obtain another equation for estimating b

b(n)= (log e){N(n !)/S(Mi−Mz )n}1/n (38)

b(1) is identical to the MLE of b. Since the weight given to the high end range of
magnitude increases with increasing n, b(n)−b(1) is positive and increases with n for
the convex distribution. We obtain h=2(b(1)/b(2))2 from (38).

4.3. R Index

The R index (relative entropy) used by KAYANO (1982) is defined by

R=
� %

K

i=1

pi log2 pi

�,
log2 K, pi=Ei

, %
K

i=1

Ei (39)



Representation of Earthquake Size Distribution 529Vol. 155, 1999

where Ei is the energy of the ith largest earthquake in a sequence. K is an integer
larger than 1. If E1=E2= · · ·=EK, R=1. If E1�SK

i=2 Ei, R:0. Usually R is
large for swarms and small for mainshock–aftershock sequences.

4.4. b, h, and R Values for Earthquake Sequences

Here a result of the study of b, h, and R values for earthquake sequences in
Japan is shown. We call the largest shock in a sequence ‘‘the mainshock,’’ and the
shocks occurring before and after the mainshock, ‘‘foreshocks’’ and ‘‘aftershocks,’’
respectively. The method for identifying earthquake sequences is the same as MBC
described in OGATA et al. (1995).

The earthquakes of M]3.0 listed in the JMA catalog for the period from
January 1926 through September 1997 are used as the database. There are 432
sequences consisting of 10 or more shocks of M]3.0, whose mainshock magnitude
is 5.0 or larger. Among these 432 sequences, 48 sequences include 10 or more
foreshocks of M]3.0, and 326 sequences include 10 or more aftershocks of
M]3.0. The b, h, and R values have been computed using the largest 10 shocks in
each whole sequence (W), in each foreshock sequence (F), and in each aftershock
sequence (A). These foreshock sequences are divided into two groups, (F1 and F2)
based on the magnitude difference between the mainshock and the largest fore-
shock. The difference is larger than 0.45 for F1 and smaller than 0.45 for F2.

It is natural that the b and R values are small and the h value is large for W
group, because the mainshock usually has a magnitude exceedingly larger than
those of the other shocks in the same sequence. There seems to be some difference
between F1 and F2 groups, although more data should be collected to draw a
reliable conclusion. Many tables similar to Table 4 have been prepared for various
combinations of Mm (lowest limit for mainshock magnitude), Mz (lowest limit of
foreshock and aftershock magnitudes), dM (magnitude difference for dividing into
F1 and F2), and K (the number of the largest earthquakes used in computing b, h,
and R values), but no particularly interesting results have been found.

Table 4

Mean b, h, and R 6alues (9standard de6iation) for foreshock sequences (F1 and F2), aftershock sequences
(A), and the whole sequences (W) which include foreshocks, the mainshock, and aftershocks. Mm=5.0,

Mz=3.0, dM=0.45, and K=10

Group NG b̄ h̄ R̄

F1 35 0.99190.354 1.66090.356 0.64690.211
F2 13 0.74690.173 1.83390.432 0.46990.234
W 432 0.73390.413 2.05590.357 0.25590.241
A 326 1.02490.217 1.70690.498 0.59290.215
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For the purpose of probabilistic earthquake prediction, the earliest K shocks of
M]Mz forming a sequence must be used. The algorithm MBC is not adequate for
this purpose because it uses the information pertaining to the mainshock. This
approach requires a rather complex procedure and the final results are not yet
achieved.

5. Conclusions

In the history of the study of the size distribution of earthquakes, introduction
of the power-law distribution of earthquake energy by WADATI (1932) and the
exponential distribution of earthquake magnitude by GUTENBERG and RICHTER

(1941, 1944) is of prime importance. These two distributions are equivalent if a linear
relationship between the logarithm of energy and the magnitude is accepted. The
power-law distribution of amplitude by ISHIMOTO and IIDA (1939) is also equivalent
to the above distributions under some natural assumptions.

The log n(M) versus M plots or the log n(E) versus log E plots (E denotes
earthquake energy or moment) for some data sets display considerable curvature,
especially near the high end of magnitude range. To represent such data, natural
modification of the power-law distribution is the truncation at some level Em (i.e.,
n(E)=0 for E\Em ), or the multiplication of an exponential taper exp(−E/Em ) or
a logarithmic taper log(Em /E) (for E5Em ). In the magnitude domain, these tapers
yield the generalized Saito et al. equation (h=1.5) and the Utsu equation,
respectively.

In addition to the above, various modifications of the G-R relation have been
proposed. The question of which is the most suitable relation among these candidates
for a given set of data can be answered by using AIC. Application of this method
to many data sets indicates that the original G-R relation is the most suitable (has
the smallest AIC) for some data sets, although for other data sets one of the modified
formulas is found to be the most suitable. In some cases several modified formulas
have AIC within 1 unit of the smallest AIC. There is no appreciable difference in
performance between these formulas and the most suitable one.

To establish the spatial or temporal variation of b value, the statistical significance
of the difference between different groups of earthquakes must be tested. The test
can be done easily by the use of AIC. Of course the test is based on the assumption
that the magnitude distribution obeys the G-R relation. Under the assumption of
distribution functions other than the G-R relation, we can perform a similar
significance test. It is possible that two earthquake groups have nearly equal b values,
however the magnitude distribution is significantly different if another distribution
function is adopted.

Some indexes other than the parameters in the formulas for magnitude-frequency
distribution have been proposed. It is certain that these indexes indicate some
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characteristic feature of the size distribution of earthquakes concerned. However, it
is not yet established that these indexes are useful in some practical problems such
as detection of precursory change in seismicity, foreshock discrimination, etc.

In this paper, we are concerned only with the statistical problems of
representing and analyzing the size distribution of earthquakes. It is beyond the
scope of this paper to discuss the mechanism responsible for the size distribution
and share the knowledge of the distribution for the studies of the complexity of
seismic activity, though numerous papers taking this approach have been published.
For reviews of some of these studies, see MAIN (1996), TURCOTTE (1997, Chapters
4 and 16) and KOYAMA (1997, Chapter 8).
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