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Seismic Cycles and the Evolution of Stress Correlation in Cellular
Automaton Models of Finite Fault Networks

CHARLES G. SAMMIS1 and STEWART W. SMITH2

Abstract—A cellular automaton is used to study the relation between the structure of a regional
fault network and the temporal and spatial patterns of regional seismicity. Automata in which the cell
sizes form discrete fractal hierarchies are compared with those having a uniform cell size. Conservative
models in which all the stress is transferred at each step of a cascade are compared with nonconservative
(‘‘lossy’’) models in which a specified fraction of the stress energy is lost from each step. Particular
attention is given to the behavior of the system as it is driven toward the critical state by uniform
external loading. All automata exhibit a scaling region at times close to the critical state in which the
events become larger and energy release increases as a power-law of the time to the critical state. For the
hierarchical fractal automata, this power-law behavior is often modulated by fluctuations that are
periodic in the logarithm of the time to criticality. These fluctuations are enhanced in the nonconserva-
tive models, but are not robust. The degree to which they develop appears to depend on the particular
distribution of stresses in the larger cells which varies from cycle to cycle. Once the critical state is
reached, seismicity in the uniform conservative automaton remains random in time, space, and
magnitude. Large events do not significantly perturb the stress distribution in the system. However, large
events in the nonconservative uniform automaton and in the fractal systems produce large stress
perturbations that move the system out of the critical state. The result is a seismic cycle in which a large
event is followed by a shadow period of quiescence and then a new approach back toward the critical
state. This seismic cycle does not depend on the fractal structure, but is a direct consequence of
large-scale heterogeneity of these systems in which the size of the largest cell (or the size of the largest
nonconservative event) is a significant fraction of the size of the network. In essence, seismic cycles in
these models are boundary effects. The largest events tend to cluster in time and the rate of small events
remains relatively constant throughout a cycle in agreement with observed seismicity.
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Introduction

Regional seismicity has many characteristics of a critical system including a
power-law Gutenberg–Richter magnitude frequency relation and a fractal spatial

1 Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740,
U.S.A.

2 Geophysics Program, University of Washington, Seattle, WA, U.S.A.



Charles G. Sammis and Stewart W. Smith308 Pure appl. geophys.,

distribution of hypocenters (HIRATA, 1989a,b; ROBERTSON et al., 1995). This had
led many investigators to explore the possibility of using formalisms from statistical
physics to model the spatial, temporal and magnitude distributions (ALLÈGRE et
al., 1982; ALLÈGRE and LE MOUEL, 1994; RUNDLE, 1988a,b, 1989, 1993; RUNDLE

et al., 1995, 1996; SMALLEY et al., 1985; SAHIMI et al., 1993a,b; SORNETTE and
SORNETTE, 1990; NEWMAN et al., 1994; SORNETTE and SAMMIS, 1995; SALEUR et
al., 1996a,b; MOREIN et al., 1997; FISHER et al., 1997; DAHMEN et al., 1998). In the
course of analyzing seismicity as a critical phenomenon, an interesting controversy
has arisen as to the interpretation of such models and their implications. The
central issue is whether the crust is in a continuous state of self-organized criticality
(SOC), or whether it repeatedly approaches and retreats from a critical state. The
working hypothesis for this later view is that a large regional earthquake is the end
result of a process in which the stress field becomes correlated over increasingly
long scale-lengths. The largest event cannot occur until regional criticality has been
achieved. This large event then destroys criticality on its network creating a period
of relative quiescence after which the process repeats by rebuilding correlation
lengths toward criticality and the next large event.

The reason this question of continuous vs. discontinuous criticality is important
is that it bears directly on the question of whether earthquakes can be forecast. BAK

and TANG (1989) argue that the crust is always in a state of SOC. Their analog is
a uniform cellular automaton in which a ball dropped in a randomly chosen cell is
equally likely to start an avalanche of any size at any time. The crustal equivalent
is that all small earthquakes have the same probability of growing into a great
event. This model has been used by GELLER et al. (1997) as a physical basis for
their recent assertion that earthquake prediction is inherently impossible. If the
earth is always in a state of SOC, they may be correct. However, if a large shock
moves some associated region away from criticality, then the seismicity associated
with the subsequent return to criticality (and the next large event) is expected to
have a number of observable characteristics including an increase in event size with
growing stress correlation length, and an energy release rate which increases as a
power law of the time-to-failure.

The central question thus becomes: is the crust in a continuous state of SOC?
Several recent observations suggest not. SYKES and JAUMÉ (1990) and TRIEP and
SYKES (1997) have found that large earthquakes are preceded by a cluster of
intermediate-sized events (within 2Mw units of the main shock) in a large surround-
ing region. KNOPOFF et al. (1996) found that all 11 earthquakes in California since
1941 with magnitudes greater than 6.8 were preceded by an increase in the rate of
occurrence of earthquakes with magnitudes greater than 5.1 in the appropriate
tectonic domain. There is also mounting evidence that the rate of intermediate-sized
events decreases following a large earthquake—an observation generally inter-
preted as resulting from a regional stress shadow. Such shadows have been
documented by SYKES and JAUMÉ (1990) following the 1989 Loma Prieta earth-
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quake, by TRIEP and SYKES (1997) following the 1950 Assam shock, by HARRIS

and SIMPSON (1996) following the 1857 Fort Tejon earthquake, and by Jones
following the 1952 Kern County and 1992 Landers earthquakes. BOWMAN and
SAMMIS (1997) and TRIEP and SYKES (1997) have suggested that these shadows
represent the retreat of a region from a state of SOC. SORNETTE and SAMMIS

(1995), SAMMIS et al. (1996), and SALEUR et al. (1996a,b) also argue that the
observed power-law buildup of intermediate events before a great earthquake
represents the approach of the appropriate region toward a state of SOC.

The power-law increase in regional seismicity before large events was first
documented by BUFE and VARNES (1993) and BUFE et al. (1994) who found that
the clustering of intermediate events before a large shock produces an increase in
cumulative regional energy release (or in cumulative regional Benioff strain, o(t)=

�N(t)
j=1

E1/2
j ) that can be fit by a power-law time-to-failure relation of the form

o(t)=A+B(tc− t)m (1)

where tc is the time of the large event, B is negative and m is usually about 0.3.
SORNETTE and SAMMIS (1995) showed that the power law (1) is expected if the
largest event is viewed as some sort of critical point for the region. In this case the
mathematical techniques developed in statistical physics to describe critical phase
transitions can be applied to seismicity. One technique, the renormalization group
(RG), leads directly to (1) (see SALEUR et al., 1996a,b for a discussion of the
application of the RG to regional seismicity). The renormalization group also
explains the observed clustering of large events prior to the largest shock (SYKES

and JAUMÉ, 1990) in terms of the growth of the spatial correlation length of the
regional stress field. In this view, larger events are not possible until the stress field
is correlated at a sufficient length to produce them. Before this time small events are
unable to jump barriers and grow into big events. Only when criticality is reached
is the stress field correlation on all scale lengths permitting events of all sizes up to
the largest possible on the given fault network. The implication is that the smaller
events are the agents by which longer stress correlation lengths are established—
they effectively smooth the stress field at larger scale lengths (SAMMIS et al., 1995;
BEN-ZION, 1996). It is important to note that the largest regional event need not
occur at tc in Equation (1). Rather, this is the time when the region reaches the
critical state and a large event is possible.

An important observational question arises when fitting Equation (1) to seismic-
ity data: how is the size of the ‘‘critical region’’ to be chosen for a given event?
BOWMAN et al. (1999) showed that, for all 12 California earthquakes having
magnitude m\6.2, a critical region size could be found which optimized the fit to
Equation (1). Moreover, they found that the logarithm of the radius R of these
optimal critical regions scaled as the magnitude

log R80.5 m (2)
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and that they could reject the null hypothesis that their fits were consistent with a
random catalog with 99.9% confidence. A similar study by BREHM and BRAIL

(1998) analyzed nineteen events from the New Madrid Seismic Zone and found
log R80.75 m. JAUMÉ and SYKES (1999) combined the two data sets and found
the best fit is log R80.36 m in better agreement with Equation (2). It is interesting
that Equation (2) is compatible with the scaling of preparatory region with
magnitude found by KEYLIS-BOROK and MALINOVSKAYA (1964) using a different
method.

Another testable hypothesis that has emerged from the critical point model for
seismicity is the possibility of log-periodic fluctuations in seismicity approaching
criticality. SORNETTE and SAMMIS (1995) showed that if the spatial renormalization
can only be made at a discrete fractal hierarchy of scale lengths, then the critical
exponent is imaginary in time and Equation (1) becomes (to a first approximation,
retaining only leading term in the periodicity)

o(t)=A+B(tc− t)m�1+C cos
�

2p
log(tc− t)

log l
+c

�n
. (3)

Such log-periodicity has been documented in several cases (SORNETTE and SAMMIS,
1995; VARNES and BUFE, 1996), but it has yet to be established as a universal
precursor to large events. The modeling study presented below suggests that it may
not be universal. However, if observed, log-periodicity allows a more precise
estimate of tc (SORNETTE and SAMMIS, 1995; SAMMIS et al., 1996).

The physical cause of log-periodicity is still an open question. One possibility is
the existence of a discrete fractal hierarchy in the regional fault network. Such
structures may be simulated by a discrete hierarchical fractal automaton (BARRIER

and TURCOTTE, 1994; HUANG et al., 1998) which is explored further in this paper.
Another possibility is that the earthquake sequence develops its own discrete
hierarchy through stress shielding interactions in a highly heterogeneous region.
This possibility has been demonstrated experimentally by ANIFRANI et al. (1995),
numerically by SAHIMI and ARBABI (1996), and analyzed by HUANG et al. (1997).
A third possibility is that log-periodicity may arise from random fluctuations in the
power-law approach to criticality (HUANG, personal communication). Although
not physically interesting, the observation of randomly generated log-periodic
oscillations can be taken as evidence of power-law behavior and used to help
determine tc.

In this paper, we use cellular automaton models to explore conditions under
which these simple systems alternately build then destroy stress correlation thereby
simulating regional seismic cycles. We begin with the homogeneous conservative
automaton originally formulated by BAK et al. (1987) and explore the power-law
scaling and growth of stress correlation as the initial loading transient moves the
system toward SOC. Once SOC is established in this system, large events do not
destroy stress correlation and the system remains critical. Large events in the SOC
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state do not show the precursory increases in seismicity or post-event quiescence
observed in real catalogs. We next explore the uniform nonconservative automaton
discussed by OLAMI et al. (1992) in which a fraction of the energy is lost from each
subevent in a cascade. We find that the largest cascades in this model destroy stress
correlation thus moving the system out of the critical state and producing seismic
cycles having many characteristics observed in real catalogs. Finally, we explore the
discrete hierarchical fractal automaton previously studied by BARRIER and TUR-

COTTE (1994) and HUANG et al. (1998). The largest events in this model also
destroy stress correlation and produce seismic cycles for cases where the scale of the
structural heterogeneity associated with the fractal structure is comparable to the
scale of the network. We expand the previous work of HUANG et al. (1998) by
exploring a range of fractal dimensions, by exploring the relationship between the
scale of the heterogeneity and the size of the network, and by separating the effects
of energy loss from effects of the discrete hierarchical structure. Our general result
is that seismic cycles in the automaton model result from the finite size of the
network and either heterogeneity on a scale comparable to the size of the network,
a significant loss of energy from the network during the event, or a combination of
both.

A Cellular Automaton Model for Regional Seismicity

We begin with a review of the basic elements of the cellular automaton, first
exploring the homogeneous automaton developed by BAK et al. (1987) for conser-
vative systems and extended by OLAMI et al. (1992) for nonconservative systems
which map onto the BURRIDGE-KNOPOFF (1967) spring-block model of earth-
quakes. We then review the conservative fractal automaton as defined by BARRIER

and TURCOTTE (1994) and extended to nonconservative cascades by HUANG et al.
(1998).

The Homogeneous Cellular Automaton with no Losses

Since the homogeneous conservative automaton is known to exhibit SOC (BAK

and TANG, 1989) we use it here to establish the conditions which characterize SOC
as a basis for comparison with the nonconservative and fractal systems. The
uniform cellular automaton defined by BAK et al. (1987) consist of a 2-D array of
equal sized cells as in Figure 1a. The array is loaded by dropping ‘‘balls,’’ one at a
time, into randomly selected cells. A cell is considered full when it contains three
balls. If a fourth ball is added to a full cell, the contents of that cell are distributed
equally to the four nearest neighboring cells. If this redistribution results in four
balls in a neighboring cell, then that cell also unloads to its four neighbors (one of
which goes back into the original cell), and so on. Cells that are on the edge of the
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array dump one ball off the array while corner cells dump two balls off the array.
When no cell contains four balls, the cascade ends and the random dropping of
balls onto the array resumes. The term ‘‘conservative’’ is used here to denote the
conservation of balls during each subevent in a cascade, even though balls are lost
from the edges of the network.

The size of a cascade is measured by the number of cells that are involved.
Cascades of all sizes occur from one cell up to the size of the array. Once the
number of balls on the array reaches equilibrium, the distribution of avalanche sizes
follows a power law and the system is in a state of self-organized criticality (SOC).

Figure 1
Grids used for (a) the uniform homogeneous automaton, (b) the discrete hierarchical fractal automaton
with rescale factor R=2, and (c) the discrete hierarchical fractal automaton with rescale factor R=3.



Seismic Cycles and the Evolution of Stress Correlation 313Vol. 155, 1999

A characteristic of SOC is that the individual events are not predictable in time, or
space, or magnitude. The fact that regional seismicity follows the Gutenberg–
Richter power-law relation between number and magnitude suggests the possibility
that the crust is in a state of SOC, and that regional seismicity is a member of the
class of phenomena described by the homogeneous automaton. If this is true, then
the time place and magnitude of individual earthquakes is inherently unpredictable.

Interpreting regional seismicity in terms of the cellular automaton, the balls can
be viewed as representing increments of stress, strain, or stored elastic energy—all
are equivalent measures in an elastic solid. We will discuss the process in terms of
stored energy. Each ball drop represents an equal increment of time. The random
loading of the array corresponds to a slowly increasing tectonic stress while the
unloading of a cell represents the stress redistribution associated with an earth-
quake. A larger cascade represents a spatially larger redistribution of stress and
therefore corresponds to a larger earthquake. The cascades are assumed to take no
time since the time-scale associated with an earthquake is short in comparison to
the time-scale associated with the tectonic loading. Although the long-term average
loading rate is constant for the array and may be viewed as due to the constant
motion of tectonic plates, the random dropping of balls continuously introduces
random fluctuations at the smallest scale. In the geological context, this corre-
sponds to a continuous, small-scale, spatially random roughening of the stress field.
A physical source for such small-scale roughening is not obvious. One might assert
that it is the result of small earthquakes that produce stress redistribution at
scale-lengths less than or equal to that of the smallest box. However, as will be
discussed below, small events are expected to smooth the field at scale-lengths larger
than themselves, not roughen it. The amplitude of this small-scale roughening in the
model can be decreased by increasing the failure threshold from four balls to, say,
400 balls in which case 100 balls are distributed to each of the four neighbors. The
roughening produced by each random ball drop is thereby proportionally reduced.
We have found that such reduction in the amplitude of small-scale roughening has
no observable effect on the temporal or spatial behavior of the automaton.

It is also possible to formulate the automaton such that the loading is equally
distributed to all cells (OLAMI et al., 1992). In this case the energy in each cell is not
an integral number of balls, but a real number between 0 and some arbitrary
threshold which we take to be 1. The cell with the maximum energy smax is
identified and the energy in each cell is increased by 1−smax. The energy in the
maximal cell is then set to zero and its energy of 1 is distributed equally among
each of its four nearest neighbors that receive 0.25 each. If this redistribution results
in another cell having an energy s]1, the energy in that cell is set to 0 and its
energy, which may be greater than 1, is distributed in equal portions to its four
nearest neighbors (which includes reloading the cell which failed initially). The
cascade continues until no cell has s]1. The time-scale in this case is set by the
assumption of a uniform loading rate which requires that time increments be
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Figure 2
Normalized energy vs. normalized time for the uniform homogeneous automaton with no losses (q=1).
The upper heavy line shows energy on the grid while the catalog of events is shown below. The linear,

scaling, and SOC regions are identified as discussed in the text.

directly proportional to increments in the energy. Since the constant of proportion-
ality is arbitrary, we choose it to be unity, i.e., we take Dt=Ds. This means that a
cell having an energy of 0.6 will fail in 0.4 time units if no other energy is added
from neighboring cells. Again we assume that cascades take no time. In this case
the automaton is initiated by assigning a random number in the interval (0,1) to
each cell. This random initial distribution can be interpreted as the result of a
combination of elastic heterogeneity and the prior history of events. This system
evolves to an equilibrium state that is independent of the random starting distribu-
tion. We use uniform loading for all the simulations presented in this paper and
discuss those results which are affected by this choice.

Figure 2 shows the catalog generated by a homogeneous 64×64 automaton
with uniform loading and no losses. As in BAK and TANG (1989) the total number
of cells which spill during a cascade is taken as the size of the event and as a
measure of the energy released by the event. Also shown on this figure is the
average energy density in the system. Initially, the average energy density increases
linearly from its starting value of 0.5 (since each cell is given a random initial energy
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between 0 and 1). The initial slope is one since most of the energy added to the grid
through the loading process remains on the grid. As the energy density grows, the
size of the largest avalanche increases. As these larger avalanches begin to intersect
the edges of the grid on a more regular basis, more energy is lost from the grid per
unit time and the slope of energy-density vs. time curve in Figure 2 decreases.
Eventually, the energy density on the grid becomes constant—energy is lost from
the edges at the same rate it is added through the loading process.

We can thus identify three regions in the energy density curve labeled I, II, and
III in Figure 2. Region I is the initial transient where most of the energy added to
the grid remains on the grid. Region II is the transition region between region I and
the steady-state region III that we identify as characterizing the SOC state. By
fitting straight lines to regions I and III in Figure 2, the transition region II can be
seen to extend from about t=0.64 to t=0.67. We will show below that region II
is the ‘‘scaling region’’ close to SOC where the energy released by the cascades can
be fit to the power law in Equation (1). Note that tc does not correspond to the
largest event in the sequence. Figure 3 shows the cumulative energy released by the
events in Figure 2. The average energy density and three regions from Figure 2 are
also plotted for reference.

Figure 3
Cumulative release of scaled energy as a function of time for the uniform homogeneous automaton with

no losses. The energy on the grid and regions I–III are replotted from Figure 2 for reference.
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Figure 4
For the cumulative energy in Figure 3, the quantity log(A−cumulative energy) is plotted as a function
of the logarithm of the distance from the critical point, log(tc− t), in order to test the fit to Equation

(1). The fit is linear in the scaling region II as expected.

To further investigate region II we fit Equation (1), the expected behavior in the
scaling region close to criticality (SORNETTE and SAMMIS, 1995). Both tc and A in
this equation are known since A is the value of the cumulative energy when t= tc

(see Fig. 3). Figure 4 is a plot of log(A−� E) vs. log(tc− t). The linear portion of
this curve indicates the scaling region II in which Equation (1) applies (with
m=0.83). Note that this region extends to about tc− t=0.03. Since we took
tc=0.67 the scaling region covers 0.64B tB0.67, in agreement with the transition
region II identified in Figure 2.

The rate of occurrence of earthquake over a broad region is well described by
the GUTENBERG–RICHTER (1956) frequency-magnitude relation

log10 N(M\m)=a−bm (4)

where N is the number of events with magnitude M greater than m. Using the
energy magnitude relation

log10 E=c+dm (5)
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The Gutenberg–Richter relation becomes a power-law relation for the number of
earthquakes having E0 greater than E

N(E0\E)�E−b/d=E−B (6)

with B commonly in the range 0.80–1.05. The observation that the cellular
automaton produces this distribution of event sizes is commonly cited as evidence
that the crust is in a state of SOC (BAK and TANG, 1989; OLAMI et al., 1992). We
also find that events in the SOC region (t\ tc=0.67) are consistent with Equation
(6).

We end our discussion of the conservative homogeneous automaton by explor-
ing the growth of stress correlation during the approach to criticality and the
fluctuations in correlation in the SOC state. By stress correlation we mean the size
of ‘‘critical clusters’’ which would cascade if one element were triggered. The
simplest measure of stress correlation is the size distribution of the avalanches
themselves. Since we are most interested in the largest critical cluster at any time,
we can simply identify the largest event as a function of time. The only problem
with this approach is that, at any given time, the largest cluster may not be
triggered. We therefore plot the largest event in successive time intervals of
Dt=0.01 to minimize nucleation effects. Figure 5a shows the maximum event as a
function of time for the case shown in Figures 2–4. The correlation length grows
steadily in region I, at an accelerated rate in the scaling region II, and then remains
relatively constant in the SOC region III. Figure 5b shows the rate of small events
(events which have an area B5% of the maximum event area observed over the
entire time shown). Note that rate of small events remains relatively constant over
the entire time interval in agreement with observations by ELLSWORTH et al. (1981).

The Homogeneous Cellular Automaton with Losses

OLAMI et al. (1992) explored the effect of a loss factor 0BqB1 on the behavior
of the uniformly loaded homogeneous automaton. In this case, if a cell contains an
energy s]1, its energy is set to zero and the energy qs is distributed equally to its
four neighbors. The justification for this loss factor is clear if the automaton is
being used to simulate the complexity of slip on a fault-plane. In this case q
represents the fraction of energy lost to friction, to the formation of fault gouge,
and to seismic radiation. However, the justification of q is not as clear when the
automaton is being used to simulate regional seismicity. In this case, a cascade does
not represent a growing slip patch, but the transfer of shear stress released by an
earthquake. In an abstract sense, if s is viewed as the elastic energy stored in a cell,
then the overall loss of energy from the system could be viewed as representing the
losses to friction and other forms of nonelastic deformation, fragmentation, and
radiation. Since this loss limits the size of the cascade, it could be argued that an
earthquake with larger nonelastic losses transfers stress to a smaller region.
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Figure 5
Temporal distribution of event sizes in the uniform automaton without losses. In panel (a) the maximum
event size is plotted as function of scaled time illustrating the growth of correlation length in the scaling
region leading up to the critical point and the relative constancy of correlation in the SOC region. Panel
(b) shows the temporal distribution of small events which remains approximately constant in agreement

with observed seismicity.



Seismic Cycles and the Evolution of Stress Correlation 319Vol. 155, 1999

The q factor will be shown below to introduce memory into the automaton. The
largest events leave ‘‘stress shadows’’ that move the system out of the critical state.
This result seems to be at odds with OLAMI et al. (1992) who claim that their
nonconservative automaton displays SOC based on its generation of power-law
scaling of event sizes. However, KLEIN and RUNDLE (1993) point out that the
scaling with system size found by OLAMI et al. is not consistent with their model
being at the true scaling limit and their conclusions about critical behavior are
therefore suspect. GRASSBERGER (1994) developed a fast computational algorithm
that allowed him to explore the nonconservative model on larger grids and for
longer times. He found that the scaling observed by OLAMI et al. was largely a
boundary effect that is observed only in relatively small systems or in larger systems
during the long transient period. Grassberger suggested that such boundary effects,
or other forms of frozen heterogeneity, might be important in the earthquake
problem and we agree. The significant factor appears to be the size of the largest
event relative to the size of the network. Where the size of the largest event in the
conservative automaton is limited only by the size of the system, we will show
below that the size of the largest event in the nonconservative system is limited by
the losses during the cascade. Significant retreats from the critical state only occur
when the size of the largest event is a significant fraction of the size of the network.

Figure 6 shows the catalog generated by this model for q=0.9 and the average
energy density in the grid for selected values in the range of 0.55q51.0. There are
several striking differences between this figure and Figure 2. Most notably, the
events here are much smaller. We found that the size of the events is proportional
to 1/(ln q). For qB1, the size of the events is limited by the losses, not by the size
of the grid. In fact, the size of the events is controlled by the clustering statistics of
the array of random initial values assigned to the cells. A simple statistical analysis
of an n×n array of random initial values in the range (0,1) predicts that the
maximum event size should vary approximately as (ln 4−2 ln n)/ln q which we
have verified with simulations over a range of n and q.

Another contrast with Figure 2 is that the average energy on the grid in Figure
6 shows periodic structures in what should be the SOC region III. The period of
this behavior, T, increases with decreasing q as T=1−q. This periodicity is also
evident in the catalogs and appears to be due to stress shadows left behind by the
large events. To understand why T=1−q, consider a cell that nucleates a large
cascade. Initially, its load drops from 1 to 0. For a large cascade, it is likely that
this will cause its four nearest neighbors to fire each of which returns q/4 units of
stress to the initial cell. Hence, the nucleating cell ends up with a load of q and will
therefore trigger another large cascade after T=1−q time units have passed. Note
that the relation T=1−q holds at the extremes of q=1 and q=0. The case q=1
corresponds to full stress transfer and SOC where there is no periodicity (T=0).
The case q=0 corresponds to no stress transfer in which case the initial random
distribution of loads is preserved and leads to an exact repetition of the catalog
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Figure 6
Normalized energy vs. normalized time for the uniform homogeneous automaton with losses (qB1).
The upper heavy lines shows energy on the grid for a range of q while the catalog of events for q=0.9
is shown below. Note the periodic fluctuations in energy on the grid and related periodicity in the

catalog.

after each full loading period T=1 (recall that we defined the threshold of 1 to
correspond to one time unit). It is interesting that this periodicity does not appear
for the case of strong random loading (a four ball-threshold). In this case the
memory of stress shadows is destroyed by the random fluctuations introduced
through loading.

Figure 7 shows the cumulative energy corresponding to the catalog in Figure 6.
Note that the three regions can also be identified in the initial transient, but the
interpretation of region III as SOC is questionable because of the predictability
introduced by the periodic structure. The parameters A and tc identified in Figure
7 are used in Figure 8 to test the suitability of Equation (1) to describe the scaling
region II. Note that an apparent scaling region can be identified extending to
tc− t=0.05 with a slope of m=0.8. Figure 9a shows the largest event (our proxy
for maximum correlation length) as a function of time. Note that the losses produce
fluctuations in the maximum correlation length in region III which correspond to
the periodic structures in the energy on the grid and in the catalog (Fig. 6). Figure
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9b shows that the rate of small events also remains relatively constant during the
initial approach of lossy systems toward criticality. In Figure 7 we have only
analyzed the initial transient for direct comparison with the conservative case. We
have also analyzed the increasing portions of the cycles and found that they also
can be fitted to Equation (1), although there is a bit more scatter.

We therefore interpret the periodic fluctuations in Figure 6 as reflecting the
repeated approach and retreat of the system from the critical state. It is interesting
that the retreat from criticality is not caused by a single large event. Rather, the
decrease of energy on the grid is caused by a swarm of large events across the grid
over the entire decreasing interval. Often the largest event occurs at the end of the
swarm and marks the onset of the increase in grid energy leading to the next
swarm. Note that as q decreases, the average energy on the grid in region III
decreases while the amplitude of the fluctuation increases. Both effects are related
to the decrease in the maximum size of the events with decreasing q. In general, as
energy on the grid increases the correlation length increases. However, when the
correlation length reaches the size of the maximum event for the given q, the events

Figure 7
Normalized energy on the grid and cumulative energy released as a function of scaled time for the
uniform automaton with loss factor q=0.9. Note that regions I, II, and III can also be identified in this

case.
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Figure 8
For the cumulative energy in Figure 7, the quantity log(A−cumulative energy) is plotted as a function
of the logarithm of the distance from the critical point, log(tc− t), in order to test the fit to Equation

(1). The fit is linear in the scaling region II for the loss factor q=0.9.

of that size unload the grid ending the cycle. Since this correlation length is reached
at a lower grid load for a lower q the average energy on the grid decreases with
decreasing q. Also, for a given grid size n, there are statistically more limiting events
at lower q since they are smaller. Since the energy DE lost by a limiting event is
almost independent of q, there is more unloading and hence larger fluctuations at
smaller q. To see why DE is almost independent of q, write the energy lost per event
as the energy lost per cell, (1−q), times the size of the event and approximate
ln q: (1−q) for q:1

DE: (1−q)
ln 4−2 ln n

ln q
: (1−q)

2 ln n− ln 4
(1−q)

=2 ln n− ln 4. (7)

Hence, for qB1 the system never reaches the critical state but is moved away by
events at the largest allowable size.
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Figure 9
Temporal distribution of event sizes in the uniform automaton with loss factor q=0.9. In panel (a) the
maximum event size is plotted as function of scaled time. The correlation length again grows in the
scaling region leading up to the critical point but the maximum event size fluctuates for t\ tc in concert
with the fluctuations in energy on the grid in Figure 6. Panel (b) shows the temporal distribution of small

events which remains approximately constant in agreement with observed seismicity.
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The Conser6ati6e Fractal Automaton

BARRIER and TURCOTTE (1994) explored the fractal automaton shown in
Figure 1b. This fractal is discrete in that it is only strictly self-similar when rescaled
by a factor of R=2. For the case of uniform loading, the smallest cells still unload
when they reach a threshold of 1, but progressively larger cells do not unload until
they reach a larger load equal to their area.

Barrier and Turcotte also gave a slightly different interpretation to the meaning
of a cascade. Unlike the uniform automaton where each cascade represents one
earthquake, they view the failure of each cell as representing an earthquake. This is
equivalent to viewing each cell as an individual fault and assuming a characteristic
earthquake model in which the size of the earthquake is proportional to the size of
the cell. For each cascade, they identify the largest cell to spill as the mainshock.
Those members of the cascade that spill before the mainshock are identified as
foreshocks while those that spill afterwards as aftershocks. Their principal result is
that while all large events have many aftershocks, only about 28% have fore-
shocks—a result that mimics actual seismic statistics.

In the modeling given here, as in HUANG et al. (1998), the entire cascade is
viewed as one event. The assumption is that the time-scale of foreshocks and
aftershocks is short in comparison to the time-scale associated with tectonic
loading. The stress redistribution associated with the foreshocks and aftershocks is
combined with that caused by the mainshock. These models capture two aspects of
real seismicity missing from the homogeneous automaton: large events are more
likely to occur on pre-existing large structures and regional fault networks tend to
have a hierarchical fractal structure (AVILES et al., 1987; OKUBO and AKI, 1987;
HIRATA, 1989a; ROBERTSON et al., 1995; OUILLON et al., 1996).

In order to investigate the effect of spatial structure on the temporal fluctuations
in seismicity, we also considered the discrete fractal having a rescale factor of R=3
shown in Figure 1c. For both the R=2 and R=3 fractals we also investigated the
effects of the loss factor q discussed above. The fractal automatons were initiated
by assigning a random number in the interval (0,1) to each of the 1×1 subcells of
the uniform grid from which the fractal automaton is constructed. The initial load
in each of the larger cells was then calculated as the average of the load in all its
subcells. Therefore, the larger a cell, the more likely its initial average load was
close to 0.50. The decision of when to spill a large cell was based on this average
load—a cell spills when its average load reaches one.

We begin with the case of no attenuation (q=1). Figure 10 shows the catalog
of events and the energy on the grid during the initial transient approach to the
critical state; Figure 10a is for the R=2 grid in Figure 1b and Figure 10b is for the
R=3 grid in Figure 1c. The scaling region is again defined by the range of times
where the energy on the grid has a slope of less than one and more than zero.
Figure 11 shows the cumulative energy of the events for the two fractal models.
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Figure 10
Total scaled energy on the grid and the catalog for the fractal grids in Figure 1 with no losses (q=1).

Panel (a) is for a discrete rescale factor of R=2 and panel (b) for R=3.
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Figure 11
Cumulative scaled energy on the grid for the fractal grids in Figure 1 with no losses (q=1). Panel (a)

is for a discrete rescale factor of R=2 and panel (b) for R=3.
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Figure 12
Energy on the grid and seismic catalog for several ‘‘cycles’’ of the R=2 fractal automaton with no losses

(q=1).

Comparing these figures with the equivalent Figures 3 and 7 for the homogeneous
model, note that the fractal models show larger fluctuations in the cumulative
energy release. Figure 12 shows an extended catalog for the R=2 grid and the
energy on the grid. Note that the fractal structure introduces a periodicity into the
energy on the grid. These ‘‘seismic cycles’’ are produced by big events in which the
largest cell unloads and significant energy is lost from the grid. They do not require
a fractal grid, only a grid in which the largest cell is a significant fraction of the grid
size so its unloading produces an observable perturbation in the state of the system.
In this view, each cycle represents the approach to criticality followed by a large
event that moves the system away from the critical state. Note that the correlation
and decorrelation of stress in the fractal model is forced by the structure since the
larger structures are not allowed to unload until the average stress over the entire
area becomes critical. When these large structures unload, the correlation of highly
stressed regions is necessarily reduced.

As already demonstrated by HUANG et al. (1998), the discrete hierarchical
structure produces log-periodic fluctuations in the power-law increase of cumulative
energy release approaching the critical state of the form given by Equation (3).
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Figure 13 shows the maximum event size as a function of time for the realization
shown in Figure 11. The model used by HUANG et al. (1998) included a loss factor
q=0.5. We will see below that the introduction of loss into the fractal automaton
enhances the amplitude of the log-periodic fluctuations.

It is important to note that while all realizations of this model produced a
log-periodic sequence of discrete jumps in the maximum correlation length of the
critical region as in Figure 13, this did not always produce log-periodic fluctuations
in the cumulative energy release. A clear log-periodic progression of steps in
cumulative energy was only observed when the intermediate events (one and two
orders smaller than the maximum cell) tended to cluster in time. For those cases in
which events of a given order are more evenly distributed in time, the jumps in scale
only produce a subtle increase in slope of the cumulative energy producing the
power-law increase before failure, but no evident log-periodic fluctuations.

The log-periodic sequence of jumps in correlation length is a direct consequence
of the way in which the initial loads were assigned. Since we define the load in a
box by the area average of loads in its subcells, a larger box is more likely to have
an initial load close to 0.5 than is a smaller box. Since we are averaging random
variables, the standard deviation of the average loads in boxes having N subcells
decreases as 
N. Hence, smaller boxes are more likely to trigger first because they
have a larger range of loads and because there are more of them. Now, consider the
R=2 fractal in Figure 1b. Since there are only three second largest cells and nine
third largest, it is more likely that the loads in the larger cells will cluster to produce
log-periodic fluctuations in the cumulative energy. This may explain why only one
or two log-periodic fluctuations are observed even though there are many more
orders in the fractal hierarchy.

Figure 13
Seismic catalog for the R=2 fractal grid with no losses illustrating the discrete jumps in event size

leading up to the critical point.
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Figure 14
Energy on the grid and seismic catalog for several ‘‘cycles’’ of the R=2 fractal automaton with q=0.7.

Losses appear to produce longer and more irregular cycles than in Figure 12 where q=1.

The Fractal Automaton with Losses

The calculations in the previous section were repeated with q=0.7 and q=0.5.
Figure 14 shows the catalog and scaled energy on the grid for the case R=2 and
q=0.7. Comparison with the q=1 case (Fig. 10a) shows that the effect of losses in
the fractal network is to make the cycles longer and more irregular. Figure 15
shows the cumulative Benioff strain (sum of the square root of the energy of each
event through time) during an initial transient approach to SOC for the R=2 and
R=3 grids. We plot Benioff strain here because it is the quantity usually analyzed
for log-periodic fluctuations (SORNETTE and SAMMIS, 1995; HUANG et al., 1998).
There is no theoretical reason for the choice of this parameter. Note that the
wavelength of the log-periodic fluctuations is longer for the R=3 case. This is the
expected result based on the analysis of HUANG et al. (1998) since it takes longer
for the correlation length to grow by a factor of 3 than by a factor of 2. However,
a more definite quantitative analysis was frustrated by the large variations between
different realizations of the model (probably due to the statistical nature of the
log-periodic fluctuations themselves as discussed above) and by the sensitivity of the
fitting procedure for the nonlinear equation (3).
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Figure 15
Cumulative Benioff strain for the fractal grids with loss factor q=0.5. Note that the wavelength of the

log-periodic oscillations increases with increasing R as expected.
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Discussion and Conclusions

Self-organized criticality, as exhibited by the uniform cellular automaton, was
proposed by BAK and TANG (1989) as a simple robust conceptual model for
regional seismicity which offered an explanation for the ubiquitously observed
Gutenberg–Richter power-law relation between the number of events and their
energy. However, the uniform cellular automaton clearly oversimplifies the interac-
tion between the various faults in a regional network in a number of ways. First,
it considers only interactions between nearest neighbor cells while elastic interac-
tions between faults are long-range. It also ignores time dependent effects that
might arise from anelastic coupling between the crust and the mantle. Second, the
cells are uniform whereas faults in natural networks are generally heterogeneous in
both size and strength. Third, the only losses in the automaton are from the edges
of the array whereas real earthquakes dissipate energy locally through friction,
fragmentation, and elastic radiation. Fourth, a cellular automaton is usually large
in comparison to the size of its individual cells so that boundary effects can be
ignored. In most natural networks the size of the largest fault is a significant
fraction of the size of the network.

There is mounting evidence that the spatial and temporal patterns of regional
seismicity are more complicated than those predicted by the simple automaton.
Other theoretical studies indicate, in contrast to the SOC paradigm, that the
simulated seismicity patterns depend strongly on the assumed form of the interac-
tion, heterogeneity, and rheology (BEN-ZION and RICE, 1995; BEN-ZION, 1996;
FISHER et al., 1997; DAHMEN et al., 1998). In this paper we have shown that the
inclusion of a local loss factor in the cascades leads to temporal cycles in the
automaton seismicity which mimic many characteristics of observed seismic cycles.
The largest events tend to be preceded by a power-law increase in seismicity
associated with the clustering of intermediate-sized events and followed by a
decrease leading to a period of relative quiescence. Even subtler characteristics of
observed seismicity, such as the constant rate of small events through the cycle and
the temporal clustering of larger events, are simulated by the lossy automaton. The
seismic cycles associated with a local loss are a memory effect that is erased if
strong random perturbations are introduced into the loading. Whether they are also
destroyed by long-range interactions is an open question. We also found that the
inclusion of structural heterogeneity produces similar cycles as long as the largest
scale of the structure is comparable to the size of the network. Seismic cycles in
lossy and structurally heterogeneous automatons are clearly seen to be associated
with the repeated approach and retreat from the SOC state. The automaton allows
us to document the growth in stress correlation and power-law energy increase in
the scaling region near criticality and the destruction of correlation by large lossy
events or by events associated with large structures and the subsequent movement
of the system away from criticality.
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The automatons provide other insights into spatial and temporal fluctuations in
regional seismicity. For example, it is apparent that the largest event need not occur
when the network reaches the critical point. At the critical point, the largest
regional event is possible, but forecasting its actual occurrence becomes a nucle-
ation problem that may ultimately limit the precision of an earthquake forecast (see
also BOWMAN et al., 1999). Also, although we find that log-periodic fluctuations in
the power-law increase of seismicity preceding large events can result from a
discrete hierarchical fractal structure, such fluctuations are statistical in nature and
need not always occur.

Probably the most significant and general insight gained by this study is the
central importance of the finite size of a regional seismic network in relation to the
size of its largest structural element. Virtually all the details of the seismic cycle in
these models are the consequence of boundary effects. The largest events in such
finite networks are fundamentally different than smaller events. The power-law
buildup before the largest events is uncontaminated by the seismicity associated
with neighboring events, an effect which makes power-law precursors difficult to
observe for smaller events. These largest events, if they are associated with a large
structural element and/or they result in a significant loss of energy, move the entire
system away from its critical point to produce a regional seismic cycle.
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