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Rock Properties and Seismic Attenuation: Neural Network
Analysis

Fred K. Boadu1

Abstract—Using laboratory data, the influence of rock parameters on seismic attenuation has
been analyzed using artificial neural networks and regression models. The predictive capabilities of the
neural networks and multiple linear regresssion were compared. The neural network outperforms the
multiple linear regression in predicting attenuation values, given a set of input of rock parameters. The
neural network can make complex decision mappings and this capability is exploited to examine the
influence of various rock parameters on the overall seismic attenuation. The results indicate that the
most influential rock parameter on the overall attenuation is the clay content, closely followed by
porosity. Though grain size contribution is of lower importance than clay content and porosity, its value
of 16 percent is sufficiently significant to be considered in the modeling and interpretation of attenuation
data.
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1. Introduction

In recent years, attenuation of seismic waves has received considerable attention
from the geophysics community. To make full use of acquired seismic data, it is
important to interpret seismic attenuation in terms of the physical properties of
rock. Such physical properties include for example, porosity, permeability, grain-
size and clay content. Knowledge of seismic wave attenuation mechanisms and the
causative rock properties are vital for the evaluation and interpretation of field and
laboratory seismic data.

The major attenuation mechanisms presently known include matrix anelasticity
which involves frictional dissipation resulting from relative motion at solid
boundaries and across surfaces of cracks (WALSH, 1966); fluid flow with relaxation
due to shear motions at pore fluid boundaries (WALSH, 1969; SOLOMON, 1973);
dissipation in a fully saturated rock as a result of the relative motion of the solid
frame with respect to fluid inclusions (BIOT, 1956a,b; STOLL and BRYAN, 1970);
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‘‘squirting’’ and enhanced intra-crack flow phenomena (MAVKO and NUR, 1975;
MAVKO and NUR, 1979); and geometrical effects including scattering off grains and
pores (KUSTER and TÖKSÖZ, 1974). Assessing the most influential mechanism for
any given attenuation data is still a formidable task.

The factors that cause attenuation and reduction in the velocity of seismic
waves propagating through earth materials are also known to control porosity
and permeability (KLIMENTOS and MCCANN, 1990). The source of the attenuation
data used in this work is obtained from KLIMENTOS and MCCANN (1990).
Henceforth in this paper this reference is referred to as KM. The attenuation
data measured by KM and the resulting analysis enhance the possibility of
predicting porosity and/or permeability from seismic measurements. However the
non-separability of the factors affecting both the hydraulic and seismic properties
further complicate issues in the sense that other variables such as the clay content
and particle size distribution influence the relations, making them inherently
nonlinear and complex (HAN et al., 1986). Such complex relations are, however,
amenable to artificial neural network (ANN) solutions. KM (1990) used a regres-
sion-based empirical model to establish the relation between seismic attenuation
and measurable rock properties; porosity and clay content neglecting grain size and
permeability. ANNs are an interconnection of processors which mimic the biologi-
cal activity of the brain. They are particularly useful for solving complex decision
problems that are not well understood physically. Unlike traditional regression
models incorporating a fixed algorithm to solve a particular problem, neural
networks utilize a learning technique to develop an appropriate solution. The
associative relationship between input attributes and the specific output parameters
is optimized without the constraint of a priori information. The computational
paradigm of neural networks offers several advantages in solving problems within
the geosciences. The importance of ANN in solving a myriad of geophysical
problems has been indicated by DOWLA and ROGERS (1995) and MCCORMACK

(1991).
In this paper the experimental data obtained and published by KM (1990) are

further analyzed to decipher relevant relationships between physical parameters
characterizing the rock properties and seismic parameters. The physical parameters
include porosity, permeability, grain size and clay content. The seismic parameter
considered is attenuation or absorption coefficient. Firstly, the importance of grain
size in the overall attenuation is analyzed and assessed and secondly a feed-forward
neural network is used to analyze the data and infer relationships between the
variables describing the rock and the measured seismic parameter. These relation-
ships are compared with the traditional multivariate regression models as a way of
evaluating the strengths and weaknesses of the neural network modeling. Thirdly
the relative importance of the different physical rock parameters is assessed to
examine its contribution to the overall attenuation process using the neural network
weights.
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2. Seismic Attenuation and Rock Properties

The relation between seismic attenuation and rock properties is complex.
Pore-filling clay materials have important influence on permeability. Clay materials
tend to plug the pore throats and hence reduce the ease of fluid transmission, that
is, reduce permeability. Measurements of attenuation on synthetic rock by KLIMEN-

TOS and MCCANN (1988) indicate that the compressional wave attenuation is
increased by the presence of clay minerals. The attenuation is linearly dependent on
the percentage content of the intrapore clay minerals. It is conceivable that if
permeability is related to clay content, and compressional wave attenuation is
related to clay content, then one would anticipate a relationship between seismic
wave attenuation and permeability. In essence rock permeability is expected to
contribute to seismic attenuation.

Attenuation is measured by the decay of a plane wave as it propagates through
a rock material and is determined by

A(x)=A0 e−ax (1)

where A0 is the initial amplitude of the propagating wave, A(x) is the wave
amplitude after distance x, and a is the attenuation coefficient. The most common
measures of attenuation are the dimensionless quality factor Q and its inverse Q−1.
The quality factor Q is related to the attenuation coefficient a via the frequency f
of the propagating wave and the phase velocity V of the rock medium given by

1
Q

=
aV

pf−
a2V2

4pf

. (2)

Under the low-loss assumption the a2V2/4pf term is negligible and is usually
dropped. A multivariate statistical relation between attenuation coefficient, the clay
content C and the porosity f was obtained by KM (KM model):

a=0.0315f+0.214C−0.312 (3)

with a correlation coefficient of 0.88. However, other important measured parame-
ters, the grain size and permeability were not considered in the modeling process.
Grain-size distribution relates to the pore size distribution (ÅBERG, 1992) and hence
it is expected to affect permeability and attenuation. One should thus expect the
grain size of rock materials to contribute to the overall attenuation of propagating
seismic waves. In this work regression equations are developed to predict the
attenuation value, using the measured rock parameters as descriptors. These
descriptors include the porosity, clay content, permeability and grain size. The
regression model relates the attenuation value to the descriptors via the following
equation:
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S=b0+b1X1+b2X2+ . . . +bnXn (4)

where S is the computed attenuation value, bn is the coefficient determined by the
regression analysis, and Xn is the value of the descriptor or rock property. KM used
only two descriptors (n=2). In this work all the four measured descriptors were
used to develop a regression model for comparison with that of the neural network.
The resulting regression equation relating attenuation a to the rock parameters is
given as:

a=0.432+0.011f+0.002K−0.003D+0.251C (5)

with a correlation coefficient of 0.89, where f is the porosity (percent), K is the
permeability (millidarcy), D is the mean grain size (mm) and, C is the clay content
(percent) . This equation is referred to as the MLR model for the purposes of this
paper.

Geometrical spreading, elastic scattering and viscoelasticity are the three fre-
quently described mechanisms by which seismic waves propagating through a rock
material become attenuated (JOHNSTON and TO8 KSO8 Z, 1981). Clay minerals and
flow of fluids contribute to the viscoelastic effects while grain-size distributions
control the elastic scattering effects. Recent studies by GIST (1994) indicate that the
dominant attenuation mechanism is related to the interaction of pore fluids with
smaller pores and grain surfaces. This suggests that the contributions from elastic
scattering and viscoelastic effects may overlap and hence the need to establish ways
of determining the relative importance of each effect.

Fig. 1 illustrates the distribution of different rock parameters for 42 samples of
sandstones studied by KM. Though weak correlations exist among some parame-
ters, it is not unreasonable for one to infer that the permeability and average grain
size seem to evolve from similar or close distributions and therefore may be
correlated. Since the grain sizes of natural earth materials are not uniformly
distributed, their relative contribution to the overall attenuation would be signifi-
cant. None of the attenuation mechanisms described above could be solely respon-
sible for the bulk attenuation and therefore all the causative factors need to be
considered. No particular mechanism can be justifiably eliminated from consider-
ation under all the conditions studied in the laboratory and in the field (JOHNSTON

and TO8 KSO8 Z, 1981).

3. Elastic Wa6e Scattering and Seismic Attenuation

The component of wave attenuation due to elastic wave scattering as in any
medium depends upon the ratio of the seismic frequency (f) or wavelength (l) to
the size of the inhomogeneities (grains). The dependence of attenuation on the
frequency and size of the inhomogeneity (D) has been utilized to distinguish three
scattering ranges (mechanisms) and can be summarized as (SZILARD, 1982):
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Rayleigh region (Rayleigh scattering): as(f, D)8D3f4, l^D
Stochastic region (stochastic scattering): as(f, D)8Df2, l:D
Diffusive region (diffusion scattering) as(f, D)81/D, l
D

The seismic wavelength used in the experiment by KM is on the order of
4500 mm and the average grain size measured has a range of 70–300 mm. We
should thus expect a contribution to the overall attenuation from Rayleigh type
scattering satisfied by (D B l/20) (SZILARD, 1982). A simplified expression for as

relating to the frequency, medium velocity and size of the inhomogeneities satisfy-
ing both Rayleigh and diffusive scattering is given as (BLAIR, 1990):

as(f)=
Cs

D
� f

fD

�4 �
1+

f
fD

�−4

(6)

where fD=Ks (Vp/D), Ks and Cs are general constants and Vp is the P-wave
velocity of the medium. An attempt was made to fit the attenuation values provided
by KM to equation (6) above. Figure 2 shows the measured data from KM and the

Figure 1
Frequency distribution of various rock and seismic parameters analyzed and measured by KM.
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Figure 2
Comparison of model curve relating grain size and attenuation (equation (6)) and attenuation data by

KM.

fitted curve, using equation (6) for Ks=0.23 and Cs=400 and a frequency of
1 MHz. The values for the constants are generalized for rocks (BLAIR, 1990) and
their variations are reasonably insensitive to the fitted curve. The quality of the fit
as measured by the correlation coefficient is estimated as 0.895. The quality of the
fit indicates that the degree of common variation between the data and equation (6)
above is significant. This implies that the elastic scattering may usefully contribute
to the attenuation data obtained by KM and that grain size as a rock property
must be considered.

4. Neural Networks and Relationship Between Seismic and Rock/Soil
Parameters O6er6iew

Artificial neural networks are essentially crude computer models of biological
systems with learning capabilities. The networks model such systems by adopting
simple rules that govern the interactions between simulated neurons. ANNs are
increasingly used to solve a variety of scientific and engineering problems concerned
with unknown and varied functional relationships among measured variables. In
this paper, ANN is utilized to seek a relationship between seismic attenuation and
the parameters characterizing the properties of rocks (grain size, clay content,
porosity, permeability). These parameters can be measured or computed indepen-
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dently for a given earth material. However, neither the functional relationship
between the seismic and rock parameters nor the possible underlying physical
mechanism is known or well understood. At best, we can conceive the relationship
to be highly nonlinear given the likelihood of several overlapping attenuation
mechanisms. Rather than trying to derive a functional relationship from approxi-
mations to theory, an estimate of the functional form is obtained from the
measured or computed data themselves. The usefulness of a neural network stems
from its adaptability in learning by example and its ability to generalize. In the
learning process, the network encodes the generalization of the vital features of the
problem into the weights of the network nodes. The information contained in these
weights can be used to predict new input patterns. The weights also form a
knowledge base that may be exploited to gain insights about the physical system as
a whole. Neural networks are useful when searching for particular unknown
nonlinear relationships or approximating certain complicated data-generating
mechanisms.

Several ANN models have been developed based on different architectures and
learning modes. The most popular and widely used model and the one used in this
paper is the Multilayer Perceptrons (MLP), an example of which is illustrated in
Figure 3. This model can perform complex decision mapping and has wide
applications in pattern classifications and function approximation (GARRETT,
1994). The MLP can be trained by several algorithms, for example the backpropa-

Figure 3
Schematic diagram of a feed-forward artificial neural network with three layers. Input nodes are the rock
properties and the output node is the seismic attenuation. Network is designed on the basis of data

available from KM.
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gation, quasi-Newton method and the Levenberg-Marquardt optimization al-
gorithms. A brief overview of ANN training is described below as details can be
found in HASSOUN (1995).

ANN Training

During ANN training, each hidden and output neuron processes its inputs by
multiplying each input by its weights. The products are summed and processed
using an activation function, usually a sigmoidal function (f(x)=1/(1-e−x)) to
produce the output. The neural network learns by modifying the weights of the
neurons in response to the errors between the actual and targeted output values.
For a given set or vector of N inputs ((x1, x2,…xN) and M outputs (y1,y2,…yM),
the output of node j is computed as:

yj= f
�% Wij xi

�
(7)

where Wij is the weight of the connection between neurons i and j. The learning rule
for the adjustments in the weight between neuron i and j is expressed as

DWij=hdjoi (8)

where oi is either the output of node i or an input, h is a positive constant termed
the learning rate and dj is an error term of node j. Thus,

dj=−dE/dnetj

E=0.5 % (yj−oj )2 (9)

netj=% Wij oj

where yj is the target value for the jth node and oj is output for the jth node. The
value d is computed as

dj= (yj−oj ) oj (1−oj ) (10)

if the node is an output unit, or

dj=oj (1−oj ) %
k

dkWjk (11)

if the node is not an output unit. In order to improve the convergence characteris-
tics, a momentum gain b is added to the weight correction term to stabilize
oscillations during the learning process (HASSOUN, 1995),

DWi,j (n+1)=hdjoi+bDWij (n) (12)

where n is the iteration index. The training of the network is complete if the
convergence of the weighting coefficients has been achieved. The convergence
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criterion requires that the mean square error at the output must be less than a
desired tolerable error.

5. Neural Network Modeling of Attenuation Data

Computational Process

Fully connected, three layer, feed-forward neural network was used in this study
as shown in Figure 3. As illustrated in the figure, the input layer accepts the rock
physical parameters (porosity, permeability, grain size, clay content) which numeri-
cally encode the features of each rock. The input signals are weighted as they are
transmitted to the nodes of the second layer, the hidden layer. The hidden layer
neurons process the data and send signals to the neurons of the output layer. The
output layer provides the predicted value; the seismic attenuation.

In a fully connected feed-forward network, each neuron is connected to every
neuron in the level below it. Each connection has associated with it an adjustable
weight as discussed above, which determines how much information is being
transmitted from one neuron to the next. The multivariate statistical methods such
as used by KM to establish a relationship between some of their parameters
characterizing the rock properties and seismic parameters are often complex and
require the important parameters to be known for its formulation. The modeling
process of neural networks on the other hand is more direct and capable of
capturing complex nonlinear interactions between input and output in a physical
system. During training, irrelevant input variables are assigned low connection
weights which may be discarded from the data. In this work since neural networks
are trained on measured laboratory data, they are trained to deal with and handle
inherently noisy, inaccurate and insufficient data. The Levenberg-Marquardt (LM)
training algorithm is utilized as is has been found to be more efficient and
reasonably more accurate than the traditional gradient descent backpropagation
(HASSOUN, 1995).

Le6enberg-Marquardt Training Algorithm

The Levenberg-Marquardt optimization method provides an alternative and
more efficient way of minimizing the sum-square-error E given in equation (9). The
backpropagation algorithm is based on the gradient descent technique which has a
major drawback of requiring numerous steps before converging to a solution. A
reasonable increase in the convergence rate has been noted by HASSOUN, (1995)
when the quasi-Newton optimization algorithm is used. An important limitation of
the quasi-Newton method on the other hand is that it requires a good initial guess
for convergence. The suggested alternative, the Levenberg-Marquardt routine, is
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essentially an interpolation between the quasi-Newton and gradient descent meth-
ods and successfully hybridizes the useful properties of the two methods for optimal
performance. The inherent difficulty in selecting the appropriate momentum and
learning rate terms in the conventional backpropagation algorithm is overcome in
this scheme.

Consider the sum-of-squares error function as above in the form

E=
1
2

%
m

(em)2=
1
2

e2 (14)

where em represents the error associated with the mth input pattern, and e is a
vector with elements em. For small perturbations in the weights W, the error vector
can be expanded to a first order via Taylor series expansion

e(Wnew)=e(Wold)+A(Wnew−Wold) (15)

where Wold and Wnew indicate current and old points in weight space respectively
and elements in the matrix A are defined as

Ami
dem

dWi

. (16)

Thus the error function defined above can be written as

E=
1
2

e(Wold)+A(Wnew−Wold)2. (17)

If this error function is minimized with respect to the new weights Wnew we obtain

Wnew=Wold− (ATA)−1ATe(Wold). (18)

The above formula can, in principle, be applied iteratively in an attempt to
minimize the error function. Such an approach inherently poses a problem in that
the step size (change in weights) could be large in which case the basic assumption
(small change in weights) on which equation (17) was developed would no longer
be valid. This problem is addressed by the Levenberg-Marquardt algorithm by
seeking to minimize the error function while simultaneously trying to keep the step
size small enough to ensure that the linear approximation remains valid. To achieve
this aim, the error function is modified into the form:

Emod=
1
2

e(Wold)−A(Wnew−Wold)2+lWnew−Wold2

where the parameter l governs the step size. Minimization of the modified error
with respect to Wnew gives

Wnew=Wold− (ATA+lI)−1ATe(Wold)

where I is the unit matrix.
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The weight correction term in the Levenberg-Marquardt scheme is obtained as

Dwij= (ATA+bI)−1ATe (20)

where A is the Jacobian matrix of the derivatives of each error from each weight,
b is a damping factor which is a scalar and e is an error vector (difference between
output and target values). For large values of the damping factor, equation (13)
approximates the gradient descent of backpropagation while for small values it
leads to the quasi-Newton method. The damping parameter is adjusted according
to the nature of changes in the error as learning progresses. In so far as the error
reduces, b is made bigger. If the error increases however, b is made smaller. The
choice of the damping factor is crucial to the convergence rate and stabililty of the
learning process. In this work, the damping factor is chosen as 1.0 percent of the
largest singular value in each iteration which provided satisfactory results. In the
training process of the network, it took the conventional backpropagation al-
gorithm 30 min to train the network while the Levenberg-Marquardt algorithm
took only 6 min. The errors however were comparable, 0.342 for the Levenberg-
Marquardt and 0.369 for the conventional backpropagation.

When using any iterative training procedure, a criterion must be available to
decide when to stop the iterations. In this work training continued until the
sum-squared error reaches an acceptable value (0.01) for the entire training set or
after a fixed number (1000) of training cycles has been reached.

Data Processing and Network Design

The data base used in this work is based on the experimental work provided
by KM. As noted by HASSOUN (1995), proper selection of a training set with the
right type of data preprocessing and an appropriate number of data points as input
to a neural network may outrank the importance of the network design parameters.
The input attributes are: (1) porosity, (2) permeability, (3) mean grain size and (4)
clay content. The output or target parameter is the measured attenuation.

In designing the network a good training set was first obtained and then
processed as input to the net. In the development phase of the design process, the
data were divided into two sets. The first set, about 80 percent of the whole data set
selected randomly, constitutes the training set used to train the network. The
remaining 20 percent, the testing set was used to assess the external predictive
abililty of the net. The input values to be supplied to the net were preprocessed by
a suitable transformation to lie in the range 0–1. This was deemed necessary as
such process tends to improve training of the network (MASTERS, 1993). The
differences in the ranges of the various input parameters or attributes may tend to
overrule any real importance inherent in the individual attributes. To avoid this, all
inputs were scaled so that they correspond to approximately the same input ranges.
The normalization techniques used to transform or normalize the input training
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data xk (a vector composed of just the kth feature in the training set) in the interval
[b, a ] are expressed as

xk<(a–b) .
xk−xmin

xmax−xmin

+b (20)

where xmin and xmax are the respective values of the minimum and maximum
elements in the training and the testing data.

For a finite number of examples, the simplest network, the one with the fewest
number of weights that satisfies all input-output relations givben by the training set
might be expected to have the best generalization properties (DOWLA and ROGER,
1995). The number of examples-to-weight ratio (EWR) in the training process was
restricted to values greater than 9 which is close to the value of 10 recommended by
DOWLA and ROGER (1995). All computations were performed on the SPARC-20
Unix workstation using the MATLAB programming language.

6. Data Analysis and Discussions

The importance of grain size in the overall attenuation of seismic waves is
addressed and analyzed. Even though grain size as a rock property was documented
by KM, they did not utilize it in their modeling procedure. In this paper an attempt
is made to establish the relevance of elastic scattering due to grain size in the
attenuation of seismic waves. The measured physical variables in the form of rock
parameters; porosity, permeability, grain size and clay content were included in
both multiple linear regression and neural network modeling. In the regression
modeling all available data were utilized to obtain the regression coefficients. The
resulting equation (equation (5)) was then used to predict the attenuation values
given a set of input descriptors or rock parameters. In the neural network modeling,
however, part of the data (:80%) was used for training of the network and the
remaining used in assessing its external prediction potential.

A plot of the measured versus predicted attenuation values applying the MLR,
the neural network and the KM models is shown in Fig. 4. Although the range of
the test data set is restrictive, given the limited overall data set and the fact they
were chosen randomly, they were deemed sufficient for use as test data. The bench
line is the decision line along which the measured and predicted attenuation values
are equal. Points falling along or close to this line indicate accurate reasonable
predictions. The neural network model predictions matched the measured attenua-
tion values reasonably with a standard error of estimate of 0.57. This is deemed a
very good match considering the fact that the neural network has not been exposed
to these data values. The MLR model on the other hand has been exposed to the
testing data (as the testing data were part of the data used in regression modeling),
providing a weaker prediction capability in comparison to the neural network. The
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Figure 4
Comparison of prediction capabilities of neural networks and multiple linear regression models.

standard error of estimate for the MLR model is 1.41. Interestingly, when the
permeability and grain size are removed as descriptors, the resulting prediction
(KM model) gives a slightly lower standard error of estimate 1.16. A similar
analysis using neural networks gave a slightly higher standard error of estimate
0.68. The influence of permeability and grain size has been addressed earlier. Such
observations ascertain the pitfalls of linear statistical analysis in nonlinear complex
mechanisms such as seismic attenuation. This result emphasizes the usefulness of
neural networks in modeling complex nonlinear physical processes. The importance
of this result is that all the rock properties do have some level of significant
contribution to the overall attenuation of the seismic waves. However, the degree of
influence of each rock property may not be obvious. An approach to making an
inference on the relative importance or the degree of influence is provided via the
neural networks by analyzing the weights of the fully trained network. The
procedure is described below.

7. Neural Network Weights and Relati6e Importance of Indi6idual Input
Attributes

The relative importance of the individual input attributes to the overall attenu-
ation was evaluated using a scheme developed by GARSON (1991). Though the
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Table 1

Petrographic and compressional wa6e data for the 42 samples (after KLIMENTOS and MCCANN, 1990)

Perme- P-wave P-wave
Porosity Porosity ability Average Clay velocity at attenuation

Sample (%) (%) (mD) grain size content 40 MPa in at 40 MPa
No. (Helium) (Wet-dry) (Nitrogen) (mm) (%) m s−1 in dB cm−1

1HM1 30.31 29.81 17.17 74 12.00 3627.00 4.51
1VM1 36.04 35.98 21.16 76 16.00 3121.00 4.54
2V2M1 15.46 20.55 0.05 80 15.00 4152.00 3.15
2H2M1 2.72 3.489 0.00 78 0.00 5934.00 0.01
2V1M1 2.43 2.9 0.00 70 0.00 5835.00 0.08
3H1M1 27.39 32.397 9.30 78 23.00 2952.00 8.92
2H1M1 35.09 35.129 73.26 82 30.00 3108.00 8.48
4HM1 28.04 33.1 10.05 83 20.00 3181.00 4.83
4VM1 28.79 31.02 5.47 84 18.00 3056.00 4.50
5HM1 21.19 23.42 11.42 85 15.00 3700.00 2.40
5VM1 21.73 24.7 7.10 91 22.00 3572.00 3.47
6HM1 27.87 29.943 9.59 84 17.00 2990.00 5.02
6VM1 27.73 30.69 3.50 102 17.00 3090.00 4.59
6VM1 27.12 27.57 0.45 76 25.00 3000.00 8.61
7HM1 22.20 24.84 1.13 91 25.00 3500.00 7.68
8VM1 9.96 11.93 0.01 87 7.00 4705.00 1.79
9HM1 13.47 15.11 0.06 74 14.00 4498.00 4.92
9VM1 17.18 19.05 0.13 72 15.00 4362.00 6.83
9V2M1 16.71 20.48 0.44 79 8.00 4381.00 1.57
10H2M1 26.32 28.83 10.27 82 20.00 3299.00 3.33
10V1M1 33.59 33.249 2.25 80 15.00 3195.00 5.26
11HM1 25.41 27.74 5.78 87 20.00 3314.00 4.19
11VH1 28.87 29.412 7.03 91 23.00 2909.00 4.93
19VM1 27.96 28.543 33.67 139 15.00 3675.00 4.18
33HM1 17.13 18.645 2.21 145 12.00 3933.00 2.68
33VM1 16.65 17.794 0.37 140 12.00 4010.00 2.36
B3BP 14.47 14.783 220.90 242 0.20 4788.00 0.08
B1BP 14.15 15.065 150.70 229 1.00 4960.00 0.70
B2BP 14.37 15.431 255.90 272 1.00 5078.00 0.29
B5BP 15.18 14.518 160.40 260 0.70 4942.00 0.14
B4BP 13.72 15.64 87.65 235 0.50 4950.00 0.09
A1BP 16.50 16.514 41.74 377 15.00 4149.00 3.63
A4BP 16.11 17.06 50.51 312 15.00 4152.00 3.30
A6BP 15.41 16.03 52.42 330 15.00 4246.00 3.38
3H1S1 13.11 12.045 3.67 226 7.00 4666.00 2.10
3H2S1 15.72 16.48 87.55 226 5.00 4564.00 0.47
5HS1 8.96 8.21 0.13 140 6.00 4947.00 2.46
6H1S1 27.33 26.56 305.80 187 5.00 3666.00 2.73
11H2S1 15.13 14.125 11.06 271 4.00 4794.00 1.65
14HS1 11.39 11.98 0.46 153 6.00 4666.00 1.60
14H2S1 5.98 5.45 0.00 97 3.00 5225.00 0.19
15HS1 10.22 9.94 0.16 97 9.00 4895.00 4.63
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Table 2

Optimal connection weights

Weights
Hidden
nodes Input c1 Input c2 Input c3 Input c4 Output

(1) (2) (3) (4) (5) (6)

1 −70.5407 89.2112 −221.9069 159.8331 0.3693
2 −31.6879 94.0320 −59.4213 −122.3565 −0.1592
3 58.6875 1.7740 −3.7590 −41.0124 0.2065
4 89.6875 4.4093 −1.1211 −82.3228 −18.5774

scheme is approximate it nevertheless provides one with intelligible and intuitive
insights regarding the internal processing of neural networks. The method basically
involves partitioning the hidden-output connection weights of each hidden node
into components associated with each input node. The weights along the paths
linking the input to the output node contain relevant information regarding the
relative predictive importance of the input attributes: the weights can be used to
partition the sum effects of the output layer. The connection weights of the neural
network after training are shown in Table 2. The algorithm for estimating the
relative importance is as follows:

1. For each node i in the hidden layer, form the products of the absolute value
of the hidden-output layer connection weight and the absolute value of the
input-hidden layer connection weight. Perform the operation for each input vari-
able j. The resulting products Gij are presented in Table 3.

2. For each hidden node, divide the product Gij by the sum of such quantities
for all the input variables to obtain Fij. As an example for the first hidden node,
F11=G11/(G11+G12+G13)=0.1303.

3. The quantities Fij obtained from the previous computations are summed to
form Xj. Thus we have for example, X1=F11+F21+F31+F41. The results are
shown in Table 4.

Table 3

Elements of matrix of products Gij

Hidden
neurode Input c1 Input c2 Input c3 Input c4

(1) (2) (3) (4) (5)

1 26.000 32.900 81.900 59.000
2 5.000 15.000 9.500 19.500
3 12.200 0.400 0.800 8.500
4 1666.200 81.900 20.800 1529.300
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Table 4

Elements of Fij and Xj

Hidden
nodes Input c1 Input c2 Input c3 Input c4

(1) (2) (3) (4) (5)

1 F11=0.1303 F12=0.1648 F13=0.4098 F14=0.2592
2 F21=0.1031 F22=0.3058 F23=0.1932 F24=0.3979
3 F31=0.5589 F32=0.0168 F33=0.0356 F34=0.3887
4 F41=0.5052 F42=0.0248 F43=0.0063 F44=0.4637

{Sum} X1=1.2975 X2=0.5122 X3=0.6449 X4=1.5445

Table 5

Relati6e importance of input rock parameters

Result Input c1 Input c2 Input c3 Input c4
(1) (porosity) (permeability) (grain size) (clay content)

Relative importance 32.43% 12.80% 16.13% 38.64%

4. Divide Xj by the sum for all input variables. The result in terms of
percentages provides the relative importance or influence of all output weights
attributable to the given input variable. For example, for the first input node, the
relative importance is equal to (X1/(X1+X2+X3+X4))×100=32.43%. For the
four input nodes, the results are given in Table 5. It should be noted that the biases
are not factored into the partitioning process as they do not affect the outcome of
the process (GARSON, 1991).

8. Summary and Conclusions

Using laboratory data of attenuation measurements, relationships between
seismic and rock parameters have been modeled using neural networks and
regression models. The prediction capability of the neural networks was compared
with that of multiple linear regression. Neural networks outperform multiple linear
regression in predicting attenuation values with smaller standard errors. The neural
network can make complex decision mappings and this capability is exploited to
examine the influence of the various rock parameters on the overall seismic
attenuation. The results indicate that the most influential rock parameter on the
overall attenuation is the clay content, closely followed by porosity. Though grain
size contribution is of lower importance than clay content and/or porosity, its value
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of 16 percent is of enough significance to be considered in the modeling and
interpretation of attenuation data. For this data set, the contribution of grain size
is of higher relative importance than permeability, which many researchers have
considered to bear a significant correlation with seismic attenuation. In large-scale
seismic studies, heterogeneities may induce Rayleigh and/or diffusive scattering in
addition to that which may be due to fluid flow (permeability). This study may have
implications in such attempts to ascertain the relative importance of the various
causative rock properties to seismic attenuation.

Using the suggested technique, other factors known to affect seismic attenuation
such as temperature and confining pressure may also be incorporated to assess their
relative influence on seismic attenuation. Such an analysis could be important in
assessing the effect of straining of earth materials on seismic attenuation and
subsequent implications in earthquake and explosion studies.
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