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Abstract—Information regarding the uncertainty associated

with weather forecasts, particularly when they are related to a

localized area at convective scales, can certainly play a crucial role

in enhancing decision-making. In this study, we discuss and eval-

uate a short-range forecast (0–75 h) from of a regional ensemble

prediction system (NEPS-R) running operationally at the National

Centre for Medium Range Weather Forecasting (NCMRWF).

NEPS-R operates at a convective scale (* 4 km) with 11 per-

turbed ensemble members and a control run. We assess the

performance of the NEPS-R in comparison to its coarser-resolution

global counterpart (NEPS-G), which is also operational. NEPS-R

relies on initial and boundary conditions provided by NEPS-G. The

NEPS-G produces valuable forecast products and is capable of

predicting weather patterns and events at a spatial resolution of

12 km. The objective of this study is to investigate areas where

NEPS-R forecasts could add value to the short-range forecasts of

NEPS-G. Verification is conducted for the period from 1st August

to 30th September 2019, covering the summer monsoon over a

domain encompassing India and its neighboring regions, using the

same ensemble size (11 members). In addition to standard verifi-

cation metrics, fraction skill scores, and potential economic values

are used as the evaluation measures for the ensemble prediction

systems (EPSs). Near-surface variables such as precipitation and

zonal wind at 850 hPa (U850) are considered in this study. The

results suggest that, in some cases, such as extreme precipitation,

there is a benefit in using regional EPS forecast. State-of-the-art

probabilistic measures indicate that the regional EPS has reduced

under-dispersion in the case of precipitation compared to the global

EPS. The global EPS tends to provide higher skill scores for U850

forecasts, whereas the regional EPS outperforms the global EPS for

heavy precipitation events ([ 65 mm/day). There are instances

when the regional EPS can provide a useful forecast for cases,

including moderate rainfall, and can add more value to the global

EPS forecast products. The investigation of diurnal variations in

precipitation forecasts reveals that although both models struggle to

predict the correct timing, the time phase and peaks in precipitation

in the convection-permitting regional model are closer to the

observations.

Keywords: Ensembles, forecast verification/skill, uncertainty,

decision making, high impact weather, model evaluation/perfor-

mance, regional models.

1. Introduction

The primary objective of forecasts is to mitigate

uncertainty by providing valuable information to

users. Weather details specific to location and time is

critical for decision-making across various industries.

Those include agriculture, hydrology, transportation,

energy, construction, and defense services.

Parameterizing deep convection is a significant

source of uncertainty in coarse-resolution models

(Yano et al., 2018). Models that permit convection

(CP models) prove advantageous for precipitation

forecasting by explicitly resolving convection and

capturing finer details of topography. Moreover, a CP

ensemble prediction system (CP-EPS) has the capa-

bility to quantify uncertainty in forecasts over

complex terrain. Over the past decade, advancements

in supercomputer capabilities have empowered

meteorological services to explore ensemble appli-

cations at CP scales (Clark et al., 2012; Golding et al.,

2014; Klasa et al., 2018). The utilization of CP-EPS

in many studies has identified added value particu-

larly in predicting heavy precipitation events by

dynamically downscaling global ensemble predic-

tions (Weusthoff et al., 2010; Wang et al., 2011; Duc

et al., 2013; Schellander-Gorgas et al., 2017; Gowan

et al., 2018; Frogner et al., 2019; Schwartz, 2019;

Wastl et al., 2021; Capecchi, 2021). However, even

CP-EPS face challenges that require further

improvement. Duc et al. (2013) identified shortcom-

ings in predicting light rainfall in convective scales,
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indicating that regional models might not completely

resolve convective cells. Whereas, Holloway et al.

(2012) identified that parameterized convection

models have tendency to generate light rain occur-

rences too frequently as compared to the observation

Gowan et al. (2018) demonstrated that the perfor-

mance of CP-EPS could be affected by insufficient

ensemble spread. Additionally, Frogner et al. (2019)

noted challenges related to a decline in predictability

for precipitation at scales smaller than * 60 km

within the first 6 h in his experiments. Nevertheless,

there is added value for both severe precipitation

events and precipitation/no precipitation decisions for

shorter lead times. Schwartz (2019) concluded from

his experiments that the benefits of CP ensembles are

primarily significant for forecast lengths up to 48 h.

These studies suggest that CP-EPS find applica-

tions in various contexts, and improvements in

certain aspects, especially concerning small-scale

forecasts compared to coarser model forecasts.

However, it’s important to note that the skill of

convection-permitting models at longer lead times is

known to be limited, and expecting a perfect point-to-

point agreement between model forecasts and

observations is unrealistic (Hohenegger and Schär,

2007). Weusthoff et al. (2010) further suggested that

the traditional verification methods may prove inef-

ficient due to their insistence on exact matches

between forecasts and observations in terms of time

and location, thereby overlooking the small-scale

variability. Here, traditional ensemble verification

methods comprise metrics like Brier Score, the

Continuous Ranked Probability Score, the Rank

Probability Score, the Reliability Diagram, and more.

This may underscore the significance of enhanced

value in CP models over finer grid-specific informa-

tion. The added value of the forecast predictability

also varies across seasons and locations. Also, the

differences between the models in various studies are

significant and robust against small changes in the

verification settings.

Over the tropics, most rainfall originates from

convective systems, making rainfall forecasting

challenging, especially regarding intensity and diur-

nal timing in this region. There are a limited number

of studies investigating the potential advantages of

CP-ENS in the broader context of the tropics,

specifically for South Asia region. Maurer et al.

(2017) investigated that a single model setup inte-

grated with land surface and atmosphere

perturbations, demonstrated higher skills in predict-

ing precipitation than the multimodal setup over West

Africa. They also highlighted the under dispersive

nature of CP-ENS using a single model setup. For

tropical East Africa region, Cafaro et al. (2021) found

that CP-EPS is more skillful in predicting rainfall

location and discriminating between events and

nonevents. Comparing CP-EPS with a parameterized

convection ensemble, Ferrett et al. (2021) revealed

that the representation of convection plays a more

significant role than grid resolution in experiments

covering the Southeast Asia domain. Across different

Indian regions, some studies in the past have utilized

regional models with explicit convection. Ensembles

were created with multi physics options (Kirthiga

et al., 2021; Sisodiya et al., 2022), exploring the role

of representing deep convection and orography in

predicting precipitation events at the local scale.

However, a comprehensive study to explore the scale

dependence of forecast skill over the South Asian

region is lacking, particularly in the context of added

value with driving lower-resolution counterpart.

This study utilizes a unified framework to assess

the role of explicitly resolving convection with finer

topographical detail. The aim is to measure the

effectiveness of CP-EPS forecasts for low-level wind

and precipitation in the South Asian domain. Addi-

tionally, we further investigate the performance of

CP-ENS in terms of its ability to capture the diurnal

cycle of convective summer monsoon precipitation

forecasts in the core monsoon zone. The global ver-

sion of the EPS with a 12 km horizontal grid size,

known as NEPS-G, has been operational at

NCMRWF since June 1, 2018. Detailed descriptions

of this high-resolution EPS implementation and its

performance are discussed in Mamgain et al.,

(2018b, 2019, and 2020). Additionally, the regional

Ensemble Prediction System with explicit convection

(NEPS-R) has been operational at NCMRWF since

July 2019. This marks the first time in India that an

EPS is running operationally at a CP scale. Details

about the model configuration are described in Prasad

et al. (2019). This study focuses on the comparative

analysis of the performances of NEPS-G and NEPS-
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R at short range. While NEPS-G exhibits good skill

in medium-range forecasting of large-scale atmo-

spheric features, its coarse horizontal resolution and

inability to resolve convective physical processes

limit its skill in short-range forecasts at finer scales,

particularly regarding the intensity of high-impact

events. The goal of this study is to enhance users’

intuitive understanding of the products from the

NEPS-R, providing insights for future planning and

improvements in the modeling system.

Different verification metrics have been used to

assess the capabilities of NEPS-G and NEPS-R and

the performances are evaluated extensively over two

months, August and September of 2019 i.e., during

the South Asian summer monsoon. The regional

models are tuned with a focus more on specific

weather phenomena close to the surface than at the

higher vertical levels. Variables at lower atmospheric

levels such as zonal wind at 850 hPa and precipita-

tion over the Indian region are considered. This study

will also give a measure of temporal variation of the

forecast skill of NEPS-R from day 1 to day 3. The

results thus can provide information to the forecasters

about the capability and limitations of probabilistic

forecast from a convection-permitting ensemble pre-

diction system over the Indian domain.

The next section describes the characteristics of

the EPSs and the observation data. Section 3 intro-

duces the strategy and verification methods that we

have used. The verification results and discussion

based on the skill scores followed by the actual

comparative verification are given in Sect. 4. Sec-

tion 5 presents the comparison of diurnal variations

in precipitation forecasts. Finally, summary of the

results is provided in Sect. 6.

2. Model and Data

The global model NEPS-G provides the lateral

boundary and initial conditions to the regional model

NEPS-R. Both operational NEPS-G and NEPS-R are

based on Met Office global and regional versions of

the ensemble prediction systems known as

MOGREPS. NEPS-G uses the configuration of the

Unified Model based on Wood et al. (2014) and

Walters et al. (2017). It comprises a total of 22

perturbed forecasts along with one control forecast.

The 22 analysis perturbations, including horizontal

wind speed components, potential temperature,

specific humidity, and exner pressure, are generated

through the ensemble transform Kalman filter

(ETKF) method, utilizing forecast perturbations from

previous cycles (Bishop et al., 2001). Perturbations

are also applied to deep soil temperature, soil mois-

ture content, and sea surface temperature, as outlined

by Tennant and Beare (2014). Additionally, NEPS-G

incorporates two stochastic physics schemes repre-

senting the effects of structural and subgrid-scale

model uncertainties. Those physics schemes are ran-

dom parameters (RP) and stochastic kinetic energy

backscatter (SKEB) schemes (Bowler et al., 2008;

Tennant et al., 2011). The perturbations in NEPS-G

are added to the analysis fields prepared by the

hybrid-4DVar method (Clayton, 2013; Kumar et al.,

2018) to produce multiple perturbed initial condi-

tions. Though 22 analysis perturbations are generated

using ETKF at a 6-hourly cycle, only 11 perturbed

initial conditions of 00 and 12 UTC are used for long

forecast of 10 days forecast lead time. In NEPS-G,

each perturbed member is considered to have an

equal probability of occurring, meaning the system

treats all generated scenarios with the same level of

likelihood. This approach ensures an unbiased rep-

resentation of potential outcomes. Operationally, the

size of 11 perturbed members in NEPS-G is deter-

mined based on the optimal use of available

resources. The eleven members, which run for

10 days forecast lead time from the initial condition

of 00 UTC, provides the initial and boundary condi-

tions to 11 ensemble members of NEPS-R.

NEPS-R has a horizontal grid resolution of nearly

4 km and it consists of 11 perturbed members plus

one unperturbed control member. Operationally it

runs once a day from the initial condition of 00 UTC

and provides probabilistic forecasts up to 75 h on a

domain centering over India (62–106� E; 6� S–41� N)

and this domain has been shown in Fig. 1. Model

uncertainties in NEPS-R are represented by RP

scheme. It is designed to account for the structural

and subgrid-scale sources of model error. The per-

turbed and unperturbed initial conditions from NEPS-

G are reconfigured for NEPS-R. The lateral boundary

conditions to NEPS-R are provided at a 3-h
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frequency. NEPS-R has irregularly spaced but

smoothly varying 80 hybrid-height levels with a lid at

38.5 km. These levels are terrain-following near the

surface but relax towards the horizontal in the free

atmosphere. Some more detail about the EPSs is

summarized in Table 1.

For the verification of zonal wind at 850 hPa

(U850), we have used the analysis data from the

control member of NEPS-G. Here, the analysis is the

initial condition or the best estimate of initial state

that is used to initialize the deterministic forecast. In

NCMRWF, the atmospheric data assimilation is

originally running at a resolution of N320L70 that is

nearly at 40 km horizontal grid scale. We have used

daily gridded rainfall data at * 25 km resolution

from merged products of satellite and gauge (Mitra

et al., 2013). In this merged product, Global Precip-

itation Measurement (GPM; Hou et al., 2014) based

satellite estimates are also used as a first guess for the

rainfall. We have also used Integrated Multi-satellitE

Retrievals for GPM (IMERG) precipitation from final

run estimates available at half hourly intervals to

investigate diurnal variations.

Figure 1
NEPS-R domain (62–106� E; 6� S–41� N) that has been used for the evaluation of statistics used in this study. Colour shading shows the

model orographic height in the * 4 km NEPS-R. The ‘core monsoon domain’ that is roughly considered over 73�–82� E; 18– 28� N and

marked with red dashed line box, was considered for the calculation of diurnal variation in precipitation and discussed in Sect. 5

2220 A. Mamgain et al. Pure Appl. Geophys.



3. Verification Methods

The verification has been carried out over the

domain of NEPS-R (Fig. 1) that is mainly covering

the Indian and neighbouring region. Two important

variables during monsoon months, zonal wind at

850 hPa (U850) and precipitation are considered for

evaluation. We have used the standard verification

metrics for the evaluation of NEPS-R with respect to

NEPS-G. The metrics used here are the mean of

ensemble-spread Vs ensemble root mean square error

(RMSE) of the ensemble mean, rank histogram, area

skill score (ASS) using the values of area under the

relative operating characteristic (ROC) curve, brier

score (BS), rank probability score (RPS), continuous

rank probability score (CRPS), fractions skill score

(FSS), reliability and sharpness diagrams and Poten-

tial economic value (PEV). Standard verification

measures of the Global Ensemble Prediction System

are based on the recommendation by WMO Manual

on the Global Data-processing and Forecasting Sys-

tem, 2017 in its Appendix 2.2.35. Also, the diurnal

variation in rainfall is compared using hourly data of

observed rainfall. The methods are discussed in detail

in the next section.

The forecast data of both models used for verifi-

cation are projected to a common grid size. For

rainfall evaluation, the forecast data were brought to

the observation grid size that is * 25 km whereas

for U850, the model grid of higher resolution that is

NEPS-R was re-gridded to * 12 km, a coarser grid

size of NEPS-G. The regional model at 4 km reso-

lution is expected to forecast rainfall at a higher

intensity range. According to the criteria set by India

Meteorological Department (IMD), rainfall amount

in the range of 15–65 mm/day is considered to be in

the ‘‘moderate’’ category. Values greater than

65 mm/day are used as a threshold limit for heavy

rainfall cases. We have used both categories for

rainfall verification. Values above the 95th percentile

are also considered while calculating the fractions

skill score of rainfall forecast. For U850, dichoto-

mous events are selected based on one standard

deviation greater than the sample data climatology.

4. Results and Discussion

In this section, we briefly use the popular

approach of assessing probabilistic forecasts. Here,

we also compare the growth in the forecast errors

during first the 72 h of forecast predicted by both

NEPS-R and NEPS-G for the same number of 11

ensemble members at 00UTC.

4.1. Spread Vs RMSE

The method of Spread-skill relationship is used

here to check the extent of dispersion in NEPS-R and

NEPS-G. This method has been widely used to

evaluate the statistical reliability of EPSs (Johnson &

Bowler, 2009). EPSs are generally under-dispersed as

all the sources of uncertainty are not accounted for by

the forecasting system. In a perfect case, when all the

Table 1

Main characteristics of the NEPS-R and NEPS-G

NEPS-R NEPS-G

Horizontal resolution (grid size) 4 km 12 km

Ensemble Size 11 members ? 1control 11 members ? 1control

Vertical levels 80 (Top:38.5 km) 70 (Top: 80 km)

Grid points 1200 9 1200 2048 9 1536

Domain 62� E-106� E; 6� S 41� N Global

Forecast length 75 h 10.5 days

Model time step 2 min 5 min

Long forecast length Once per day ( 00 UTC) Twice per day (00 and 12 UTC)
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sources of uncertainties associated with the analysis

data and model physics are represented by the EPS,

then the RMSE of ensemble mean and ensemble

spread curves can match each other (Palmer et al.,

2006).

For the NEPS-R domain, averaged RMSE of the

ensemble mean and average spread of the ensembles

are plotted as a function of forecast lead time and

shown in Fig. 2 for U850 and Fig. 3 for precipitation.

A re-sampling technique known as bootstrap method

has been used to estimate the statistical significance

of spread and RMSE scores at 95% confidence

interval as shown with error bars. For U850, the

forecast and analysis data both are available at 6

hourly intervals. In the case of precipitation, the

forecast of 24 h of accumulated rainfall is verified

with quality-controlled daily satellite-gauge merged

precipitation data. Here, the average spread is calcu-

lated as the square root of the averages over all

forecasts of the ensemble variance. In the case of

NEPS-G, growth in the ensemble spread includes the

model error through the stochastic physics

scheme and the inflation factor. An inflation factor

acts as a tuning variable that adjusts the ensemble

spread to the ensemble mean error. It inflates the

analysis perturbation amplitude to adjust the

Figure 2
RMSE and ensemble spread of the a NEPS-R and b NEPS-G for zonal wind (m/s) at 850 hPa as a function of forecast lead time in hours.

Error bars (black marks) indicate 95% confidence interval using the bootstrap method

Figure 3
Bar diagram of RMSE and ensemble spread of 24 h accumulated precipitation (mm/day) for a NEPS-R and b NEPS-G as a function of

forecast lead time in days. Error bars (black marks) indicate 95% confidence interval using the bootstrap method
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ensemble forecast variance consistent with the unper-

turbed forecast error variance. We can see in Fig. 2b

that the ensemble spread of NEPS-G is varying

between 1.6 and 2 (m/s) and not increasing with

forecast lead time. This may be due to the small size

of the ensemble that is 11 in this study. Similarly, in

NEPS-R (Fig. 2a), the spread in U850 is slightly

higher during starting hours only and after that, it

nearly remains constant as it is seen in the case of

NEPS-G. Here the small error bars indicate that the

results are not overly sensitive to small changes in the

data and hence significant. RMSE is slightly better in

the case of NEPS-G and that can be attributed to the

error computation with respect to global analysis with

coarser resolution. Since the values of error bars are

not overlapping, significant difference is noticed in

the case of 24 h accumulated precipitation. Figure 3

shows that both RMSE and spread are much closer to

each other in NEPS-R (Fig. 3a) as compared to

NEPS-G (Fig. 3b). A larger spread is noticed in

NEPS-R and the precipitation values are in between

18 and 20 (mm/day). In the case of NEPS-G the

precipitation values are comparatively more under-

dispersed. There is a slight decrease in spread per day

in the case of NEPS-R, whereas NEPS-G shows a

slight increase in precipitation spread with forecast

lead time. RMSE is slightly better in the case of

NEPS-G. In this case also, the observation data is at a

coarser grid (* 25 km). Although precipitation

observation is quality controlled, it is also possible

that the coarse resolution observations have smoothed

precipitation and it affects particularly higher inten-

sity range. In a previous study by Mamgain et al.

(2018a), a number of rainfall days with very heavy

and extremely heavy categories are overestimated in

the control version of NEPS-R in comparison to the

observation. The uncertainty in verifying analysis is

well known and has effect on the verification

statistics (Bowler, 2008; Candille & Talagrand,

2008). Further, for the shorter lead time, the forecast

has less time to diverge from the actual conditions

and therefore any discrepancy can primarily arise

from the uncertainties and limitations in the observed

data. Therefore it is important to consider uncertainty

in the observation while interpreting the verification

scores.

4.2. Rank Histogram

The rank histogram is also known as the Tala-

grand diagram or binned probability ensemble

(Anderson, 1996; Hamill, 2001). It represents the

rank frequency of the verifying observation/analysis

relative to the values of ensemble members sorted

from lowest to highest. The observed probability

distribution is expected to be well represented by the

members of the ensemble. By observing the shape of

the histogram, the nature of bias and spread in the

ensemble system can be understood. The uniform

rank distribution of the EPS indicates a reliable

system but a flat distribution may also be generated

from unreliable ensembles. Here the uniformity of a

rank histogram has been tested using Pearson chi-

square (v2) goodness-of-fit test under the null

hypothesis of a flat rank histogram (Jolliffe & Primo,

2008; Wilks, 2019). For the large sample size and

under-dispersed ensembles, the v2 test is considered

to be a powerful approach.

An under-dispersive ensemble system has a U

shape rank histogram whereas a bell-shaped distri-

bution indicates an over-dispersive system. The shape

of the rank histogram in Fig. 4 for U850 indicates

that both NEPS-R (Fig. 4a–c) and NEPS- G (Fig. 4d–

f) are under-dispersive or over-confident forecasting

systems in all forecast lead days. In the case of

NEPS-G, larger populations at the lower ranks mean

forecast have a positive bias or over-forecasting.

NEPS-R shows that the ensemble has little spread.

Figure 5 shows the rank histograms for day 1, day 2,

and day 3 precipitation forecasts by NEPS-R

(Fig. 5a–c) and NEPS-G (Fig. 5d–f). While NEPS-

R shows dry bias which increases with forecast lead

time NEPS-G exhibits tendency of overestimating

precipitation. The positive precipitation bias in the

global deterministic version due to overestimated

frequency of light precipitation events is discussed in

Mamgain et al., (2018a). It is also discussed that the

convection-permitting model has the tendency to

underestimate statistics of light rainfall events. Since

the sample size is very large, the goodness-of-fit test

for the flatness of rank histogram is highly significant.

Although the v2 statistic are large as shown in Figs. 4

and 5, U850 v2 statistic are smaller in NEPS-G as

compared to NEPS-R (Fig. 4) and those are
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increasing with forecast lead time. Whereas for

precipitation in Fig. 5, NEPS-R shows lower v2

statistic means more uniformity in rank distribution

as compared to the NEPS-G.

Verification scores such as area skill score, brier

score, continuous rank probability score, and rank

probability score are shown in Fig. 6 for U850 and

Fig. 7 for precipitation. Following is the point-wise

discussion based on matrices used for measuring the

skill of the forecasts.

4.3. Area Skill Score (ASS)

The relative (or receiver) operating characteristic

(ROC; Mason, 1982) curve represents a variation of

hit rate with false alarm rate for threshold probability

ranges between 0 and 1. It is the measurement of the

forecasting system’s ability in discriminating

between events and non-events. The higher the area

under the ROC curves (AUC) better is the capability

to distinguish between event and non-event cases. An

AUC value equal to 0.5 indicates that the model has

no skill. Scores in the middle of 0 to 1 are hard to

interpret as good or bad and so sometimes skill scores

are calculated. The ASS can be calculated using the

values of the AUC (Richardson, 2000). The improve-

ment in the forecast can be determined by comparing

it with the unskilled prediction where the hit rate is

equal to the false alarm rate. The value of AUC in the

case of the unskilled forecast is 0.5 (‘‘random

chance’’). It is considered here as a reference

forecast. So the result indicates how good the forecast

is in terms of % improvement in score compared to

the reference forecast with no skill. The ASS can be

defined as:

NEPS-R NEPS-R NEPS-R
(a) (b) (c)

NEPS-G NEPS-G NEPS-G
(d) (e) (f)

P.Χ2= 388032 P.Χ2= 783528 P.Χ2= 1038703

P.Χ2= 120580 P.Χ2= 494808 P.Χ2= 739102

Figure 4
Rank histograms for Day 1 (a, d), Day 2 (b, e) and Day 3 (c, f) forecasts of NEPS-R (a, b, c) and NEPS-G (d, e, f) for zonal wind at 850 hPa.

Pearson Chi-Square test statistic that could indicate deviation from flatness of a rank histogram is shown here
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ASS ¼ AUCforecast � AUCunskilled

AUCperfect � AUCunskilled

¼ AUCforecast � 0:5

1 � 0:5

¼ 2AUCforecast � 1

The significant testing for the difference between

AUC values of both the EPSs has been performed

using bootstrap method and found that the true

difference in AUC is not equal to zero. The ASSs of

the models are calculated using AUCs and shown in

Fig. 6 afor U850 and Fig. 7a and b for precipitation.

A positive value of a skill score indicates an

improvement or skillfulness in the forecast relative

to the reference forecast or sample climate. U850 in

Fig. 6a shows that the discrimination property of both

models has skill above 0.6 till 72 h of the forecast.

The NEPS-G in the case of U850 has shown a better

skill score as compared to the NEPS-R. As discussed

earlier also, the assessment of forecast skill for U850

has been conducted using the respective models’

analyses. In the NEPS-G model, the preparation of

the verifying analysis through data assimilation (DA)

techniques is expected to provide the best possible

estimation of the atmospheric state. DA methods

integrate background information from the model

with available quality-controlled observations. How-

ever, analysis data derived from DA methods at a

global scale may have limitations in capturing fine-

scale details, especially in regions characterized by

complex topography and sparse observational cover-

age. Additionally, as outlined in Sect. 2 of this study,

DA in NEPS-G operates at approximately a 40 km

(a) (b) (c)
NEPS-R NEPS-R NEPS-R 

(d) (e) (f)
NEPS-G NEPS-G NEPS-G

P.Χ2= 219054 P.Χ2= 454785 P.Χ2= 637409

P.Χ2= 3019796 P.Χ2= 2759299 P.Χ2= 2595891

Figure 5
Rank histograms for Day 1 (a, d), Day 2 (b, e) and Day 3(c, f) forecasts of NEPS-R (a, b, c) and NEPS-G (d, e, f) for 24 h accumulated

precipitation. Pearson Chi-Square test statistic that could indicate deviation from flatness of a rank histogram is shown here
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horizontal grid scale. In contrast, convective-scale

data assimilation in NEPS-R is still under research

and is beyond the scope of the present study. High

resolution NEPS-R with explicit convection can

plausibly show the ability to capture fine-scale

features due to the improved representation of

orography. However, for validation of the results,

observational data at a similar grid scale is a key

factor.

In the case of precipitation, greater than 15 mm

per day in Fig. 7a, ASS is above the value of 0.4 till

day 3 forecasts in both models. It is interesting to see

that the skill of NEPS-R did not deteriorate for higher

rainfall intensity ([ 65 mm per day) in Fig. 7b.

However, NEPS-G which performs better for light

and moderate rainfall intensity events is not better

than NEPS-R for heavy rainfall cases.

4.4. Brier Score (BS)

A popular verification score that concisely sum-

marizes the concepts of reliability and resolution is

the Brier Score (Brier, 1950). The Brier Score is a

measure of probability forecast accuracy for dichoto-

mous events. It is the average square deviation

between the forecast probabilities and their outcomes

and is defined as:

BrierScore ¼ 1

N

XN

i¼1

pi � Oið Þ2

where pi is the forecast probability which is the

fraction of members predicting the event and Oi is the

observed outcome with the value of 1 if an event

occurs and 0 if an event does not occur. N is the

Figure 6
Verification skill scores a ASS, b brier score and c CRPS of NEPS-

R and NEPS-G for zonal wind (m/s) at 850 hPa as a function of

forecast lead time in hours. For ASS and Brier Score calculations,

zonal wind greater than 1 standard deviation from the sample

climatology is considered

Figure 7
Verification skill scores of NEPS-R and NEPS-G are a ASS for the

precipitation values greater than 15 mm/day, b ASS for the

precipitation values greater than 65 mm/day and c RPS for the

different rainfall categories (as explained in the text) as a function

of forecast lead time in days
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forecast–observations pairs considered. BS is nega-

tively oriented. The best possible value of the Brier

Score for total accuracy is 0 and the worst value is 1.

It means scores closer to 0 indicating better forecast.

In Fig. 6b, Brier scores indicate that the NEPS-G is

performing better than NEPS-R for the U850 forecast

for all 3 days’ lead times. As previously mentioned,

this could be due to the coarse resolution of the

analysis data.

4.5. Continuous Rank Probability Score (CRPS)

The CRPS is analogous to Brier Score with an

infinite number of continuous classes (Hersbach,

2000). It can be interpreted as the integral of the Brier

score over a continuum set of all possible thresholds

of the selected variables. The CRPS reduces to the

mean absolute error in the case of a deterministic

forecast. Like the Brier score, CRPS is also nega-

tively oriented. For a perfect deterministic system, it

reaches a minimum value of zero. A lower value of

the CRPS indicates that EPS has better skills.

Figure 6c indicates that NEPS-G is more skillful

than NEPS-R for U850 at all forecast ranges.

4.6. Rank Probability Score (RPS)

The RPS is also an extension of the Brier Score

but for a sum over a set of selected discrete forecast

categories. It is defined as:

RPS ¼
XK

k¼1

Xk

i¼1

pi

" #
�

Xk

i¼1

Oi

" #" #2

where K is the number of forecast categories.Pk
i¼1 pi

h i
is the cumulative probability assigned by

the model to the kth component and pi is the forecast

probability in category i,
Pk

i¼1 Oi

h i
is the cumulative

observation with Oi equals 1 if the true outcome

(observation) falls in category i, and equals 0 other-

wise. (Wilks, 2005). As discussed earlier in the text,

the ASS is a metric used to evaluate the discrimina-

tion ability of a model in binary classification of

events. In simpler terms, the ASS provides insight

into the model’s resolution, or its capability to

accurately depict the differences between the cate-

gories such as ‘‘event’’ and ‘‘non-event’’. On the other

hand, RPS assesses the accuracy of probabilistic

forecasts by comparing the ranked probabilities

across different categories (it can be considered as a

measure of bias as it is the difference between fore-

casts and observations). Unlike the ASS, which

focuses on specific events or thresholds, RPS focuses

on the entire probability distribution and quantifies

the spread between the forecasted and observed

probabilities for different categories or bins.

In the case of RPS as well, a smaller score means

better skill. This method rewards the sharp forecast

and emphasizes accuracy by penalizing large errors

compared to near missed forecasts. Both models are

verified against the same observation interpolated to a

grid size of 25 km.We have used 0, 2, 15, 65, 115,

and 195 mm per day rainfall categories for the

calculation of RPS. The results based on RPS in

Fig. 7c suggest that the NEPS-R can perform well in

terms of probability distribution calibration as indi-

cated by a lower value of RPS compared to NEPS-G.

However, it possesses lower discriminating capabil-

ities particularly for moderate rainfall amounts

(rainfall[ 15 mm/day) as indicated by a lower value

of ASS (Fig. 7a). On the other hand, for heavier

precipitation (rainfall[ 65 mm/day), NEPS-R

demonstrates better discrimination between event

and non-event classification compared to NEPS-G

(Fig. 7b).

4.7. Fractions Skill Score (FSS)

In the convection-permitting model, we are more

interested in small-scale weather details. However, at

this scale, local details tend to be noisier and

contribute significantly to shorter lead time errors.

Forecast errors associated with the convection-per-

mitting model tend to grow more rapidly compared to

the coarse resolution model. At the convective grid

scale, model skill is often affected by the classical

’double penalty effect’ or displacement error. Dis-

placement error is a type of representation error that

occurs when the model misplaces or misaligns

atmospheric features compared to their observed

positions. At the higher grid resolution, the main

improvement can be seen in the reduction of repre-

sentativeness error. That can only be verified against

the observations for a specific location. The
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availability of high-resolution quality-controlled

observations at the surface level is very limited.

FSS (Roberts & Lean, 2008) is a neighborhood

verification method and does not require matching

the fine-scale forecast exactly to the location of the

observation grid. It is generally used for the verifi-

cation of precipitation forecasts from numerical

weather prediction models to determine the forecast

accuracy as a function of spatial scales (Mittermaier

et al., 2013; Weusthoff et al., 2010). It enables the

comparison of forecasts of different grid resolutions

with respect to the same observation. Also, we can

define a minimum spatial scale at which a forecast

can be considered useful or skillful. In this method

precipitation exceeding a threshold value is used to

compare fractions of model forecast and observed

value within a selected domain. The value of FSS

increases with an increase in fractions rainfall

coverage. In most cases, an FSS value greater than

0.5 is considered a good sign of a useful forecast. In

this method, the ensemble mean is used to make

dichotomous events and the spatial distribution of

events in a selected window is calculated probabilis-

tically (Mittermaier & Csima, 2017).

Data from both models and observation are first

converted to binary fields based on thresholds 15 and

65 (mm/day) accumulation and 95th percentile based

on sample climatology. Here we are not considering

the light rainfall intensity. In a previous study by

Mamgain et al. (2018a) using a deterministic version

of a regional model, it was noticed that at convection-

allowing scale, the model underestimates the light

rainfall events which are considered as a general

tendency of convection-allowing models. If the data

at grid points are found greater than the selected

thresholds, they are given a value of 1 else the value

is 0. The accumulation threshold value can be used

for a one-to-one measure of model skill against

observation whereas the percentile threshold will

remove the impact of systematic biases in the rainfall

forecast due to different grid resolutions.

In a selected window, if the forecast has the same

frequency of events as those in the observation, then

FSS is considered perfect and it scores 1. The FSS is

computed as introduced by Roberts and Lean (2008):

FSS ¼ 1 � MSE

MSEref

Here, the mean square error (MSE) and its

reference (MSEref) are given by:

MSE ¼ 1

N

XN

i¼1

Oi � Fið Þ2

MSEref ¼
1

N

XN

i¼1

O2
i þ

XN

i¼1

F2
i

" #

where the Oi and Fi are the observed and forecast

fractions respectively at each point and N is the total

number of grid boxes of the sliding window. MSEref

is the lowest skilled reference forecast obtained from

observed and forecast fractions. FSS can also be

explained as the variations on the brier skill score and

computed as fractions brier score divided by the

mean of the sums of squared observed and forecast

fractions.

The FSS is computed for all the required neigh-

borhood sizes and the window size moves up to the

whole domain. The variations in forecast skill as a

function of neighborhood size are shown in

Fig. 8.Precipitation accumulation values 15 mm/day

and 65 mm/dayare used as a threshold in Figs. 8a and

b, respectively whereas Fig. 8c is based on percentile

threshold (95th percentile). Other than the FSS

variations a difference between the results obtained

from these thresholds can be noted at the extreme

right corner of these figures where the neighborhood

size is covering the whole domain and FSS is

reaching to a score 1. Accumulation based threshold

shows some bias as FSS not indicating a perfect score

of 1 over the whole domain. This difference is larger

for a higher accumulation threshold which is

65 mm/day. Figure 8c indicates that percentile-based

FSS has a score of 1 for the whole domain. The

smallest scale at which the forecast is sufficiently

skillful is (indicated by the dashed line) defined as

FSS[ 0.5 ? b/2, where b is the observed fractions

rainfall coverage of the sliding window (Roberts &

Lean, 2008). In this case for (Fig. 8a) b = 13%,

(Fig. 8b) b = 2% and (Fig. 8c) b = 5%. The value of

‘b’ is large for Fig. 8a because a large fraction of the

model domain could be covered by moderate rainfall.

The fraction values just above the dashed lines in
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Fig. 8 are the values of FSS above which the forecast

is skillful. Since the resolution of observed data is

25 km, the grid square of FSS represents the same

resolution as both models first bring to this grid size.

FSS for precipitation greater than 15 mm/day in

Fig. 8a depicts that day 1 forecast of NEPS-R has

better scores over NEPS-G. On days 2 and 3, for

smaller grid distance, NEPS-G has a better score but

NEPS-R has higher scores for increased grid distance.

Both models’ forecast skill is above the reference line

(a) Precipita�on (>15mm/day)

Day 2 Day 3Day 1

(c) Precipita�on (>95th percen�le)

Grid Squares

FS
S

Day 2 Day 3Day 1

(b)  Precipita�on (>65mm/day)

Day 2 Day 3Day 1

0.51

0.57

0.52 

Figure 8
Fractions Skill Scores for day 1, day 2 and day 3 forecasts of 24 h accumulated precipitation greater than a 15 mm/day, b 65 mm/day and

c 95th percentile of the sample climatology. The horizontal dashed black line indicates skill greater than a random forecast. Each grid size is

equivalent to 25 km which is the resolution of observed precipitation
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roughly just after the 5 grids on day 1 and 13 grids on

day 3. When the precipitation threshold is increased

to 65 mm per day (Fig. 8b), NEPS-R outperforms its

global counterpart for all the days’ forecast. How-

ever, both models exhibit poor scores for small grid

distance due to the presence of large spatial errors.

Also, the fractions coverage bias of the precipitation

is lower in the case of NEPS-R. NEPS-G does not

improve much with increased grid distance and

remained below the referenced line which indicates

substantial high precipitation bias. The percentile-

based threshold that is shown in Fig. 8c is based on

the model climatology of sampled data. As the range

of the simulated model forecast may not match the

range of the observations, an approach based on

percentile normalizes the scores for the simulated

values that may not be as high as the observations. In

both models we can notice (Fig. 8c) much-improved

scores with removed bias. This enables a fairer

assessment of scores for similar thresholds. The

normalized fractions scores indicate better skill in

day 2 and day 3 forecasts of NEPS-G for smaller grid

size. For the day 1 forecast, the FSS curves of both

models are overlapping.

The NEPS-G demonstrates the ability to better

capture the signature of extremes when evaluated

with respect to the sample climatology. On the other

hand, NEPS-R may offer better skill compared to

NEPS-G for extreme precipitation when the forecast

is based on a threshold approach. The percentile-

based method indicates the higher rate of reduction in

the predictability in NEPS-R with lead time as

compared to its global counterpart. Additionally, for

moderate rainfall cases NEPS-R has the tendency of

providing higher skill till day 1. However, for higher

lead time the predictability of NEPS-R reduces for

moderate cases compared to NEPS-G. Presently,

high-resolution climatology is not available for the

NEPS-G which could provide quality products based

on the percentile-based approach. Re-forecasting the

model climate for ensembles at high resolution is

challenging due to its requirement of computation

resources.

4.8. Reliability and Sharpness Diagrams

A reliability diagram can show the reliability and

resolution components of an EPS by plotting the

observed relative frequency as a function of its

forecast probability (Wilks, 2005). It is a measure of

agreement between the probabilistic forecasts and the

observations. The diagonal line in this plot means the

observed frequency matches with the forecast prob-

ability and the system is perfectly reliable. In the

cases when the reliability curve falls below the

diagonal line, the system over-forecasts and if the

curve lies above then it under-forecasts. The sharp-

ness diagram indicates how often the probabilities

were issued and related sampling issues.

Figure 9 represents the reliability diagram for

U850 and Fig. 10 is for the precipitation forecasts.

Both Figs. 9 and 10 show that with an increase in the

forecast probability of the occurrence of events, the

verified chance of observing the event is also

increasing. The reliability curves depict mostly

over-forecasting. However, in both models, slight

under-forecasting is also noticed in the lower-quintile

category of U850 (day 2 and day 3 forecasts) as

shown in Fig. 9b–e, and fand precipitation greater

than 15 mm/day (Fig. 10). U850 reliability diagram

(Fig. 9d–f) of NEPS-G shows more reliable curves

compared to NEPS-R (Fig. 9a–c). Precipitation

greater than 15 mm/day as simulated in NEPS-R

(Fig. 10 a, b, and c) shows more reliability than

NEPS-G on all the forecast days. However, NEPS-G

is slightly better than NEPS-R for low precipitation

forecast probability (\ 20%). For the precipitation

category greater than 65 mm/day, NEPS-R is only

competing with NEPS-G at highest forecast proba-

bility which is close to 90%. Below that probability,

NEPS-G shows better reliability. For high-resolution

forecast, we can have better sharpness but reduced

reliability and low probability due to the double

penalty effect. Sharpness diagrams in both models

(Figs. 9 and 10) show that most of the forecasts

predict a lower probability than the climatological

probability. Although, both models can predict prob-

abilities slightly greater than 40% of the cases of

precipitation forecasts (Fig. 10), however, the sample

size used in this calculation are comparatively much
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lower than the sample size used in calculating

models’ skill for lower quartile category.

Using the most standard verification measure we

have assessed different attributes which generally

contribute to the quality of the forecasts. These

aspects of forecast performance can strongly influ-

ence the value of a forecast. The forecast value can

guide a decision maker to understand a level of

benefit or loss while using the forecast products.

Next, we will discuss this measure of forecast value

that could contribute to decision making.

4.9. Relative or Potential Economic Value (PEV)

There are chances that forecasts are not of good

quality but it might help the forecasters in providing

some useful information which is necessary to

provide mainly when the cost of the missed event is

high. The PEV is a skill score of the expected

expense relative to the climatological details. The

value of a system can be calculated using a cost-loss

ratio (C/L) decision model (Richardson, 2000). Here

C is the cost of taking preventive action and L is the

loss if no preventive action was taken. In the case

when the action has been taken and the event occurs,

the loss that is prevented is a part of the overall loss

L. It is not necessary that event will occur and the

cost is justified but the overall benefit should be for

the long term.

As discussed in Roulin (2007), the PEV of a

forecast system can be simply defined by:

NEPS-GNEPS-G NEPS-G NEPS-G

(d) (e) (f)

NEPS-R NEPS-R NEPS-R NEPS-R 

(a) (b) (c)

Figure 9
Reliability and Sharpness diagrams for day 1 (a, d), day 2 (b, e) and day 3 (c, f) forecasts from NEPS-R (a, b, c) and NEPS-G (d, e, f) of zonal

wind at 850 hPa. Zonal wind greater than 1 standard deviation from the sample climatology is considered as event. The sharpness histogram

represents the relative frequency of events in each forecast probability bin
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NEPS-R NEPS-R NEPS-R 

NEPS-G NEPS-G NEPS-G

(d) (e) (f)
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(d) (e) (f)
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PEV ¼ Eclimate � Eforecast

Eclimate � Eperfect

where Eclimate, Eforecast, and Eperfect are the possible

expenses that one can bear while taking preventive

action based on the information related to the cli-

matology, forecast methods, and near perfect

observation, respectively. Expenses in the case of the

perfect forecast (Eperfect) will be the least among all

the three expenses. In the forecasting system when

Eforecast \Eclimate, decisions can be made using the

information based on the forecasting system. Using

the forecast probabilities and economically beneficial

thresholds, decision makers can achieve action rec-

ommendations (Lopez et al., 2020; Fundel et al.,

2019). The perfect score of economic value is 1. The

user will benefit from the forecast when PEV[ 0.

We assessed the value of the precipitation forecast

from the NEPS-R prediction system using a cost/loss

decision model and compared it with the correspond-

ing results from NEPS-G. Simulated precipitation has

been assessed for rainfall amounts exceeding

15 mm/day and 65 mm/day. Figure 11i shows that

NEPS-G provides a slightly higher peak value than

NEPS-R in the case of rainfall amount exceeding

15 mm/day. However, it is clear from this figure that

varied users with different cost/loss ratios can exploit

the positive value of the NEPS-R forecast by

choosing different probability thresholds for decision

making. In the case of heavy precipitation

([ 65 mm/day) the peak value occurs at a very small

value of a (= C/L) because the peak value occurs at

a = ō (Richardson, 2000) where ō is the climatolog-

ical mean frequency of the event. Since heavy

precipitation is a rare event the peak value occurs at

a very low value of a. It can be noticed from Fig. 11i

that though the maximum value obtained from NEPS-

G forecast for moderate precipitation amount

([ 15 mm/day) is marginally higher, heavy precipi-

tation ([ 65 mm/day) forecast in NEPS-R (Fig. 11ii)

provides a higher maximum value compared to the

NEPS-G in all three forecast lead days. The range of

users getting positive values for heavy precipitation

from NEPS-R and NEPS-G forecasts remains nearly

the same.

5. Diurnal Variation

Capturing diurnal variations in precipitation poses

a complex challenge particularly over the tropics, and

the ability of numerical models to depict these pat-

terns can vary region to region. High resolution

regional models, by explicitly incorporating convec-

tion and detailed local topography, become pivotal in

simulating orographic effects that impact diurnal

precipitation patterns. Many studies show an

improvement in representing the diurnal cycle of

precipitation at a convection permitting scale com-

pared to their coarser resolution version (Clark et al.,

2007; Lean et al., 2008; Mamgain et al., 2018a).

The evaluation of diurnal variations in rainfall has

been conducted for both the NEPS-R domain and the

core monsoon domain as shown in Fig. 1. The core

monsoon zone of India is crucial for understanding

the dynamics of the Indian summer monsoon (Man-

dke et al., 2007; Rajeevan et al., 2010). This region

encompasses the continental tropical convergence

zone, which typically fluctuates during the peak

monsoon months, serving as a representative indica-

tor of the intensity of Indian summer monsoon

rainfall. For our analysis, we focus on the area

between latitudes 18�N and 28�N, and longitudes

73�E and 82�E, falling within the core monsoon zone

and considering only the Indian land region. This

specific area has also been used to calculate diurnal

variations in precipitation. In this section, the diurnal

cycle of precipitation during 1st August to 30th

September 2019 from both global and regional

models has been compared with respect to the

observation for the whole of the regional model

domain (Fig. 12a) as well as for the monsoon core

zone (Fig. 12b).We have used GPM IMERG data and

those were further re-gridded to the coarser resolution

model for a fairer evaluation. Those data are avail-

able at hourly intervals.

bFigure 10

Reliability and sharpness diagrams for day 1 (a, d), day 2 (b, e) and

day 3 (c, f) for precipitation forecasts of NEPS-R (a, b, c) and

NEPS-G (d, e, f). 24 h accumulated Precipitation (i)[ 15 mm/day

and (ii)[ 65 mm/day are considered as events
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The precipitation amount in NEPS-R during the

first two hours is very low and unrealistic in both

domains (Fig. 12a and b). We are not using 4-km

analysis from convective-scale data assimilation in

NEPS-R as this is the area of ongoing research and

that could be a primary cause for the spin-up of

rainfall details in the forecast. In ‘All Indian’ domain

(Fig. 12a), the frequency of variation in precipitation

is higher than that in the monsoon core zone

(Fig. 12b). For India as a whole, different frequencies

of variations in precipitation from different regions

are combined to form the final wave which is

expected to be much smoother than any region-

specific variation in precipitation. During the first

11 h (except for the initial 3 h, those needed to get

the spin-up details), NEPS-R tends to over-predict the

intensity and this wet bias reduced in subsequent

hours as shown in Fig. 12a. After nearly 34 h, it

further reduces to dry bias. In NEPS-R, this negative

trend in precipitation with lead time is probably

derived from NEPS-G lateral boundary conditions, as

a similar pattern is also noticed in the global model.

According to the observations, there are two occa-

sions when peaks in precipitation may occur; those

are between 3:30 to 5:30 pm (late afternoon) and

2:30 to 6:30 am (early morning). Early morning

maxima in precipitation of NEPS-R is well in phase

with the observations but there is a lead of nearly 3 h

in late afternoon precipitation that is between 12:30

to 3:30 pm. NEPS-G also exhibits two diurnal peaks

for ‘All India’ domain like those in the observations

but the forecast and the observed peaks are not in

phase. The late afternoon precipitation has a higher

intensity than the early morning precipitation in both

models. We can notice here that the overall precipi-

tation amount and mainly the peaks are higher in the

case of NEPS-G as compared to NEPS-R. That can

be attributed mainly to the fact that the majority of

the events in NEPS-G are from light rainfall episodes

and those cases are over-predicted due to parame-

terization in convection and hence contributed to the

total rainfall amount. For the monsoon core domain

shown in Fig. 12b, a decrease in precipitation inten-

sity with lead time can also be noticed in both

models. There is one diurnal peak in the evening

around 6:30 pm and NEPS-R is simulating it nearly

3 h earlier than that, at 3:30 pm. NEPS-G is indi-

cating two different peaks and the phase does not

agree with that of the observations. The higher diur-

nal peak in NEPS-G is nearly 6 h earlier than the

observation timings. Overall, NEPS-R has demon-

strated the better ability to capture the diurnal cycle

and the intensity of convective precipitation com-

pared to the global NEPS-G, bringing it closer to

observed values. Further enhancement of this forecast

can be achieved through the application of appro-

priate bias correction methods, a topic which is

beyond the scope of the present study.

6. Summary and Conclusions

The intention of this paper is to discuss the skill of

the operational regional EPS with respect to its

driving global model and how the regional model can

add any value to the short-range forecast of global

EPS operational in NCMRWF. For the comparison of

the performances of the two forecasting systems, we

have used 11 members of both global and regional

models with the initial condition at 00 UTC only.

Considering a few verification scores may give a

different impression due to small displacements or a

temporal shift of the forecast. The forecast based on

grid-scale only will not provide the best usable

information. So, a comparison has been done using a

set of forecast–observation pairs with the help of

recommended EPS verification metrics and also

including a neighbourhood approach that can deter-

mine scales where the model has the desired skill. We

also computed the potential economic value of the

forecast and finally, diurnal variations in precipitation

are analyzed. In this comparative study, the following

main points have been noticed.

bFigure 11

Variation of Economic Value of precipitation greater than

(i) 15 mm/day and (ii) 65 mm/day for day 1 (a, d), day 2 (b,

e) and day 3 (c, f) forecasts from NEPS-R (a, b, c) and NEPS-G (d,

e, f) with cost/loss ratio. Different curves correspond to Pt ranging

from 0.09 indicated with solid red line to 0.91 indicated with solid

green line. Rest of the Pts (0.18, 0.27, …, 0.72, 0.82) are depicted

with dashed lines. The black curve envelope indicates overall value

added by all threshold values of the probability forecasted
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• Enough ensemble spread is required to represent

all the features of the distribution of possible

outcomes. We are using 11 members and those are

already under sampled. Here both models show

under-dispersive nature in U850 and precipitation.

Rank histogram statistics indicated wet bias in the

global EPS. That is plausibly due to an overesti-

mated count of light precipitation events.

Similarly, dry bias is noticed in regional EPS that

is increasing with lead time.

• Spread and RMSE in the case of U850 are nearly

consistent in both models. The spread in precipi-

tation is much improved in the case of the regional

EPS compared to the global EPS. RMSE in U850

and precipitation are however slightly better in

global EPS. That can be attributed to the fact that

the error computation was done with respect to

observation/analysis data at 25 km coarse grid

resolution that could generally favor forecast at

nearer grid size, here that is 12 km grid of the

global EPS compared to the regional EPS at 4 km

grid size.

• Skill scores indicate that both models have relia-

bility, resolution, and a tendency to discriminate

between the events. However, global EPS skill

scores are higher in the case of U850. In the case of

precipitation, global EPS scores are also better in

the statistics of events including moderate precip-

itation ([ 15 mm/day). For heavy precipitation

([ 65 mm/day), the area skill score and rank

probability scores of regional EPS are higher than

that of global EPS. There are limitations of the grid

point-based spatial measurement of errors that

arises from the ‘double penalty problem’ where the

error associated with a weather system displaced in

space is counted worse than the cases of complete

miss or a false alarm.

• Fractions skill scores of precipitation greater than

15 mm/day in the day 1 forecast of regional EPS

are better than those of global EPS. Day 2 and day

3 forecasts of global EPS is better for smaller grid

distance, but regional EPS scored higher for

increased grid distance. Regional EPS outper-

formed the global EPS for precipitation greater

than 65 mm/day.

• The reliability diagram of U850 in global EPS has

more reliable curves compared to the regional EPS.

Precipitation greater than 15 mm/day as simulated

in regional EPS is more reliable than those in

global EPS in all the forecast days mainly for

higher forecast probability ([ 20%). For the high

precipitation events ([ 65 mm/day), regional EPS

is scoring above the global EPS at the highest

forecast probability which is near 90%.

• For precipitation exceeding 15 mm/day, global

EPS provides a slightly higher peak of potential

economic value than the regional EPS. However,

regional EPS provides positive values for a larger

range of cost/loss ratios of the forecast for different

probability thresholds. For heavy precipitation

greater than 65 mm/day, regional EPS provides a

higher maximum value compared to the global

EPS in all the three forecast lead time days.

• For the spatial precipitation averaged over the ‘All

India’ domain and the ‘monsoon core’ domain,

regional EPS over-predicts the intensity during the

4th to 11th hours of the precipitation forecast and

after that at nearly the 34th hour, it further reduces

to dry bias. The peaks in precipitation are also over

predicted in global EPS but the decrease in

precipitation intensity with lead time forecast is

at a slower rate. For ‘All India’ domain, the early

morning maxima in precipitation of regional EPS

are well in phase with the observations but there is

a lead of nearly 3 h in the late afternoon precip-

itation forecast. Global EPS exhibits these two

diurnal peaks for ‘All India’ domain as those in the

observations but overall, the precipitation forecast

and the observed peaks are not in phase. Late

afternoon precipitation maxima have a higher

intensity than the early morning maximum precip-

itation in both models. Overall precipitation

amount and mainly the peaks are higher in the

case of global EPS as compared to the regional

EPS.

bFigure 12

Diurnal variation in area averaged precipitation (mm) calculated

for a All India domain that is 62o E-106� E; 6� S-41� N, and

b Monsoon core domain that is 73–82� E; 18–28� N, as simulated

by NEPS-R and NEPS-G. Time shown in IST is equivalent

to ? 05:30 UTC
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This study suggests the added benefit of using a

convection-permitting model for different applica-

tions of ensemble forecasting. NEPS-R is expected to

provide more information related to the extreme

precipitation and diurnal variation. On the other hand,

NEPS-G can provide the large-scale patterns and

general features more effectively. Still, there are

challenges to assess the location specific probabilistic

forecasts. The numerical models at the near convec-

tion scale may not increase the forecast accuracy as

the small-scale errors can also increase because day-

to-day random errors are not being included. A major

issue in the case of verification and identifying sys-

tematic biases of surface variables is the limitations

of high-resolution quality-controlled observation.

The uncertainty in the verifying analysis or the

initial conditions of the ensemble members is a crit-

ical factor in determining the accuracy of the final

forecast and making decisions based on them. Any

future developments in NEPS-R could include a

strategy to perturb initial conditions, considering

small-scale uncertainties. Sensitivity experiments can

be conducted to fine-tune the model, progressing

towards perturbations in model physics. Regional

models with explicit convection is expected to have

some predictability up to 3 days whereas beyond that

period large scale features plays important role.

Uncertainty in weather prediction can be addres-

sed by increasing the ensemble size in a single

ensemble prediction system, as well as by using dif-

ferent methods such as multi-model ensembles and

bias correction techniques. Further, predicting

weather using Artificial Intelligence or Machine

Learning (AI/ML) models has become a new and

emerging field. There are many new research studies

where AI/ML models have shown remarkable results

in terms of predicting heavy rainfall events over India

(Narang et al., 2024; Pham et al., 2020; Subrah-

manyam et al., 2021). The European Centre for

Medium Range Weather Forecasting (ECMWF) has

launched the AI based integrated forecasting system

(AIFS) as part of its experiment suite. However, the

physics-based numerical weather prediction models

still hold importance. They are required for the data

assimilation processes to provide initial conditions as

well as to create high resolution and accurate

reanalysis datasets which will then be used for

training the ML models. Therefore, the requirement

of improving the physics-based models is very much

relevant and must go hand-in-hand with the advances

in the AI/ML based models.

Acknowledgements

The authors gratefully acknowledge the Ministry of

Earth Sciences (MoES; India), for providing the

resources and encouragement required for this study.

We thank the anonymous reviewers for insightful

comments and suggestions on this work. The GPM-

IMERG data were provided by the NASA Goddard

Space Flight Center’s Precipitation Measurement

Missions Science Team and Precipitation Processing

System, which develops and computes GPM-IMERG

as a contribution to GPM, and archived at the NASA

GES DISC.

Author contributions Ashu Mamgain Conceptualization,

Data curation, Formal analysis, Investigation, Methodology,

Software, Validation, Visualization, Writing – original draft S

Kiran Prasad Data curation, Software Abhijit Sarkar

Methodology, Writing – review & editing Gauri Shanker

Data curation, Software Anumeha Dube Writing – review &

editing Ashis Mitra Project administration, Resources

Funding

The authors have not disclosed any funding.

Data availability

The datasets generated and analyzed during the

current study are not publicly available but are

available from the MoES, India on reasonable

request.

Declarations

Conflict of Interest None.

Publisher’s Note Springer Nature remains neutral

with regard to jurisdictional claims in published maps

and institutional affiliations.

2238 A. Mamgain et al. Pure Appl. Geophys.



Springer Nature or its licensor (e.g. a society or other

partner) holds exclusive rights to this article under a

publishing agreement with the author(s) or other

rightsholder(s); author self-archiving of the accepted

manuscript version of this article is solely governed

by the terms of such publishing agreement and

applicable law.

REFERENCES

Anderson, J. S. (1996). A method for producing and evaluating

probabilistic forecasts from ensemble model integration. Journal

of Climate, 9(7), 1518–1530. https://doi.org/10.1175/1520-

0442(1996)009%3c1518:AMFPAE%3e2.0.CO;2

Bishop, C. H., Etherton, B. J., & Majumdar, S. J. (2001). Adaptive

sampling with the ensemble transform kalman filter. part1:

Theoretical aspects. Monthly Weather Review, 129, 420–436.

https://doi.org/10.1175/1520-0493(2001)129%3c0420:

ASWTET%3e2.0.CO;2

Bowler, N. E. (2008). Accounting for the effect of observation

errors on verification of MOGREPS. Meteorological Applica-

tions, 15, 199–205. https://doi.org/10.1002/met.64

Bowler, N. E., Arribas, A., Mylne, K. R., Robertson, K. B., &

Beare, S. E. (2008). The MOGREPS short-range ensemble pre-

diction system. Quarterly Journal of the Royal Meteorological

Society, 134(632), 703–722. https://doi.org/10.1002/qj.234

Brier, G. W. (1950). Verification of forecasts expressed in terms of

probability. Monthly Weather Review, 78(1), 1–3. https://doi.org/

10.1175/1520-0493(1950)078%3c0001:VOFEIT%3e2.0.CO;2

Cafaro, C., & Coauthors,. (2021). Do Convection-permitting

ensembles lead to more skillful short-range probabilistic rainfall

forecasts over tropical East Africa? Wea. Forecasting, 36,

697–716. https://doi.org/10.1175/WAF-D-20-0172.1

Candille, G., & Talagrand, O. (2008). Impact of observational error

on the validation of ensemble prediction systems. Quarterly

Journal of the Royal Meteorological Society, 134, 959–971.

https://doi.org/10.1002/qj.268

Capecchi, V. (2021). Reforecasting two heavy-precipitation events

with three convection-permitting ensembles. Weather Forecast-

ing, 36, 769–790. https://doi.org/10.1175/WAF-D-20-0130.1

Clark, A. J. (2012). An overview of the 2010 hazardous weather

testbed experimental forecast program spring experiment. Bul-

letin of the American Meteorological Society, 93(1), 55–74.

Clark, A. J., Gallus, W. A., & Chen, T. C. (2007). Comparison of

the diurnal precipitation cycle in convsection-resolving and non-

convection-resolving mesoscale models. Monthly Weather

Review, 135(10), 3456–3473. https://doi.org/10.1175/Mwr3467.1

Clayton, A. M., Lorenc, A. C., & Barker, D. M. (2013). Operational

implementation of a hybrid ensemble/4D-Var global data

assimilation system at the Met Office. Quarterly Journal of the

Royal Meteorological Society, 139(675), 1445–1461. https://doi.

org/10.1002/qj.2054

Duc, L., Saito, K., & Seko, H. (2013). Spatial-temporal fractions

verification for high-resolution ensemble forecasts. Tellus A, 65,

18171. https://doi.org/10.3402/tellusa.v65i0.18171

Ferrett, S., Frame, T. H. A., Methven, J., Holloway, C. E., Webster,

S., Stein, T. H. M., & Cafaro, C. (2021). Evaluating convection-

permitting ensemble forecasts of precipitation over Southeast

Asia. Weather Forecasting, 36, 1199–1217. https://doi.org/10.

1175/WAF-D-20-0216.1

Frogner, I.-L., Singleton, A. T., Køltzow, M. Ø., & Andrae, U.

(2019). Convective-permitting ensembles: Challenges related to

their design and use. Quarterly Journal of the Royal Meteoro-

logical Society, 145(S1), 90–106. https://doi.org/10.1002/qj.3525

Fundel, V. J., Fleischhut, N., Herzog, S. M., Göber, M., & Hage-
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