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Abstract—Separation of seismic sources of seismic events such

as earthquakes and quarry blasts is a complex task and, in most

cases, require manual inspection. In this study, artificial neural

network models are developed to automatically identify the events

that occurred in North-East Italy, where earthquakes and quarry

blasts may share the same area. Due to the proximity of the loca-

tions of the active fault lines and mining sites, many blasts are

registered as earthquakes that can contaminate earthquake cata-

logues. To be able to differentiate various sources of seismic events

11,821 seismic records from 1463 earthquakes detected by various

seismic networks and 9822 seismic records of 727 blasts manually

labelled by the Slovenian Environment Agency are used. Three-

component seismic records with 90 s length and their frequency

contents are used as an input. Ten different models are created by

changing various features of the neural networks. Regardless of the

features of the created models, results show that accuracy rates are

always around 99 %. The performance of our models is compared

with a previous study that also used artificial neural networks. It is

found that our models show significantly better performance with

respect to the models developed by the previous study which

performs badly due to differences in the data. Our models perform

slightly better than the new model created by using our dataset, but

with the previous study’s architecture. Developed model can be

useful for the discrimination of the earthquakes from quarry blasts

in North-East Italy, which may help us to monitor seismic events in

the region.

Keywords: Machine learning, time series analysis, earthquake

source characterization, quarry blast detection, convolutional neu-

ral networks.

1. Introduction

Discrimination of seismic events is one of the

important tasks for having a reliable seismic cata-

logue that can be contaminated by quarry blasts

(Horasan et al., 2009). It can create problems on

seismic hazard (Ghofrani et al., 2019) and seismicity

studies (Gulia & Gasperini, 2021). Seismic cata-

logues spoiled by quarry blasts can cause high

b-values in seismicity studies and may cause the

increase of seismic hazard of a region. This may be

more serious when seismic and anthropogenic sour-

ces overlap (Astiz et al., 2014).

Various methods are developed in order to dis-

criminate seismic sources. Quarry blasts can be

treated as isotropic sources since the nature of the

explosives is to expand its surrounding in all direc-

tions. Because of that, the ratio between P and S wave

energies can be used as a discriminator. The differ-

ence between body waves are used by using their

amplitudes (Horasan et al., 2009; O’Rourke et al.,

2016; Tibi et al., 2018), power spectrum (Bennett &

Murphy, 1986; Kim et al., 1993; Arrowsmith et al.,

2006; Yavuz et al., 2019; Lythgoe et al., 2021), and

coda wave decay (Hartse et al., 1995).

Thanks to the increasing number of catalogued

earthquakes and explosions, increasing computing

powers, and easy-to-use machine learning methods,

research to differentiate seismic sources is also

developing rapidly. In recent years, several studies

are carried out by using Convolutional Neural Net-

works (CNNs) along with other tools of machine

learning methods. Machine learning algorithms may

use different types of inputs to predict the outcomes,

which in this case would be earthquakes and quarry

blasts. For instance, Kuyuk et al. (2011) used several
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parameters such as spectral ratios and P/S wave

amplitude ratios to separate seismic sources. Zeiler

and Velasco (2009), Reynen and Audet (2017),

Shang et al. (2017), Yavuz et al. (2019), Sertçelik

et al. (2020) and Renouard et al. (2021) used multiple

amplitude, frequency, and distance information to

train a model by using several different machine

learning approaches. Johnson et al. (2021) developed

a phase picking algorithm and Hourcade et al. (2023)

event discrimination algorithm for quarry blasts by

using CNNs. Moreover, instead of the predetermined

parameters, waveforms are also used for the same

goal. Linville et al. (2019) created two different

models by using CNN and Long-Short-Term-Mem-

ory (LSTM) architectures. They used spectrograms

for LSTM and CNN models. Miao et al. (2020) used

the entire waveform starting from P wave arrival to

the end of coda wave. They used the spectral infor-

mation of the waveforms to train the model.

Machine learning algorithms are also other

aspects of seismic monitoring. Determination of

seismic phases (Ross et al., 2018b; Dokht et al., 2019;

Woollam et al., 2019; Mousavi et al., 2020) and first

motion polarity (Ross et al., 2018a) are studied. Focal

mechanisms (Kuang et al., 2021; Zhang et al., 2021)

of the seismic events and seismic sources such as

earthquakes (Perol et al., 2018; Tang et al., 2020;

Yeck et al., 2021; Yang et al., 2021), volcanoes (Titos

et al., 2018; Cortés et al., 2019) and geothermal

(Holtzman et al., 2018) events and their positions are

also analyzed via machine learning tools. Magnitudes

of the events are also estimated (Mousavi & Beroza,

2020; Münchmeyer et al., 2021; Majstorović et al.,

2021). Early warning studies are also implemented

machine learning methods (Lomax et al., 2019;

Fauvel et al., 2020).

The purposes of this study are, first, to develop a

machine learning algorithm to successfully discrimi-

nate earthquake signals from quarry blast signals,

second, determining its reliability, third, and finding

its applicability in other regions. To do that we are

using both time and frequency information of the

waveforms that are collected from Austria, Croatia,

North-East (NE) Italy, and Slovenia. Moreover, we

take the study of Linville et al. (2019) as a baseline to

see the comparison between two studies since they

used a machine learning algorithm and it is

representative of current development in this topic.

We train models by using the architecture and data

preparation methods used by Linville et al. (2019)

and then compare these models with ours. The results

are important for our study area since there are

mining areas that are located on top of seismically

active regions. Hence, it is vital to separate quarry

blasts from earthquakes to obtain a convenient seis-

mic catalogue to calculate the seismic hazard of the

region properly. Furthermore, we did a statistical

analysis to see our model’s stability and to compare

with other models. In the end, we implement our

model to other explosion database. Afterwards, we

try to predict the origin of the seismic signals used by

Miao et al. (2020) to see the capabilities of our model

in other region.

Outcomes of the study are

(i) our model performs well on the separation of

seismic sources

(ii) and outperforms the baselines that we compare

with our model and

(iii) we show the relation between the high perfor-

mance model and data features by comparing

our model with the study of Linville et al. (2019)

and training our model along with Linville et al.

(2019) by using different data sets.

It is found that, it our model along with the model of

Linville et al. (2019) perform well in the dataset that

are collect from a specific region and fail on different

dataset collected from other region. In this study, we

discover that previous studies do not perform well in

our dataset and to solve the problem of source

identification of our study area, we developed a

machine learning model with a high accuracy rate.

2. Data

In the study, events detect with the detection

algorithm developed by Gallo et al. (2014) and

Slovenian Environment Agency (ARSO 2001) are

combined. Events from the border between Italy and

Slovenia with longitudes of 11.80 and 14.00, and

latitudes of 45.50 and 46.56 are selected for the study.

We do not discriminate the earthquake sources,

whereas ARSO manually investigates the
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earthquakes and identify quarry blasts. Earthquake

signals with epicentral distance less than 150 km are

retrieved. The seismic events between September

2002 and April 2021 are collected. The events that

are labelled as quarry blasts in the ARSO catalogue

were specifically excluded from the Italian National

Accelerometric Network (RAN) catalogue (Costa

et al., 2022). Earthquakes cover the time range

between September 2015 and April 2021 and the

explosions between September 2002 and April 2021

with magnitude up to 4.0. In total, 11,821 earthquakes

and 9822 explosion records with 3 components out of

1463 earthquakes and 727 explosions are used as an

input for the deep neural network (Fig. 1). 142 events

that are registered as earthquakes in RAN catalogue

are removed after comparing the origin times of the

events from ARSO catalogue.

The study area has a complex tectonic regime.

There are more than 5 different seismogenic zones

defined in the area (Basili et al., 2008). The region

between the cities of Trieste and Monfalcone has

convergence regime (Tari, 2002) along eastern Adria

margin and the Northwest (NW) - Southeast (SE)

oriented Idria fault system that created 1511 Idria

earthquake with strike-slip deformation (Vičič et al.,

2019). In this area, there are active quarries in

Monfalcone, North of Trieste (Sežana, Slovenia),

Gorizia (Nova Gorica, Slovenia), and East of Koper

along with the mentioned tectonic regimes. The other

major tectonic regime is located North of Udine. It

has thrust fault systems that produced 1976 Friuli

seismic sequence (Slejko et al., 1999) along with

strike slip faults. Complexity of the tectonic regimes

in the region requires a careful monitoring of the

Figure 1
Earthquake (red star), explosion (green star), and station (blue triangle) distribution of the dataset. Active fault lines are retrieved from

Atanackov et al. (2021) and plotted as black lines
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seismic events to understand the location of the event

and its source characteristics. In this study, we work

on the latter to separate mining related events, which

are spread along the study area, from the earthquakes.

Time span of the waveforms always start from the

origin time of the event and end 90 s after the origin

time (Fig. 2a). If the signal has gaps in the seismic

records related to the event part, it is deleted, other-

wise filled with zeros. The data is detrended and re

sampled as 100 Hz. The data is filtered by using four

corner butter-worth filter between 1 Hz and 20 Hz.

Finally, the records are tapered with 5 % Hann win-

dow. No pre-determined signal filtering method (eg.

signal-to-noise ratio threshold) is used. The fre-

quency information of the waveforms is also used by

using the fast-Fourier transformation (FFT) (Fig. 2b).

In total, our database contains 21,643 records (11,821

earthquake and 9822 explosion) with 3 channels.

3. Method

Our proposal is modelled over a CNN. The inputs

of our model are 2 different representations of a

seismic record: the waveform, s, and frequency

content of the record, F ðsÞ. In particular, the inputs

of the models are waveforms with 9000 sample points

(90 s signal), and their FFTs with the length of 4500

data points (up to 50 Hz with 0.011 Hz interval). We

remark that our approach differs from previous works

since two different sources of information were

combined without the need to specify handwritten

features. The rationale behind this choice is twofold.

The first one is that, the P/S amplitudes between

earthquakes and quarry blasts are different from each

other. Moreover, coda waves are also different from

each other, which can be both visible on waveform

and frequency domains. The second one is that,

quarry blasts have different frequency information

that can be used as a separator (Kim et al., 1993). On

top of these, FFTs are calculated in real-time to

dynamically filter the waveforms for earthquake

monitoring purposes (Gallo et al., 2014). Having a

model that requires only the seismic signals and FFT

information may easily be adapted to real-time

information of the seismic sources.

We designed a CNN that combines the inputs.

The CNN is composed of two different convolutional

parts that process these two types of information.

Convolutional parts process the waveform and FFT

information separately. Since the length of these two

inputs is different, we implement two separate CNNs

instead of a single multi-channel analysis. Wave-

forms and FFTs are separately analyzed as multi-

channel inputs in their parts of the model since we

use 3 channels of seismic stations. These two com-

ponents are responsible for extracting the most

interesting features to correctly process the seismic

Figure 2
a Example waveforms from an earthquake (top) and a quarry blast (bottom), b and average of normalized FFTs of components of earthquakes

and quarry blasts
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event, avoiding manually describing any parameter.

The features extracted are then concatenated to con-

struct a single data vector. Then, this is processed by

a fully connected neural network that will take care of

classifying the record between earthquake and

explosion events. The complete structure of the net-

work is described in Fig. 3. Tensorflow (Abadi et al.

2015) and Keras (Chollet et al. 2015) libraries of

Python are used to construct the model.

In order to find the optimal structure, different

configurations were explored by a trial-and-error

process. Unlike the study of Majstorović et al. (2021)

in which optimization functions, learning rates, and

batch sizes are optimized, we analyzed the effect of

number of convolutional and deeply connected lay-

ers, and kernel, pool, and filter sizes of the layers.

Then the ideas were converged to the following

structure. For the waveform part, 4 layers were used

with 64, 32, 32 and 16 filters respectively and a

kernel size of 24, 12, 12 and 6. Between all convo-

lutionary layers, a maxpooling layer was placed with

a size of 2, with the only exception of the first one

where we use a size of 4. For the frequency part, 2

layers were used with 16 and 8 filters and a kernel a

size of 2 and 1. Maxpooling sizes are chosen as 6 and

3 for the frequency part. A Rectified Linear Unit

(ReLU) was used as an activation function and all the

weights are initialized with a Glorot normal initial-

ization (Glorot and Bengio 2010). The fully

connected layers are 2 with, respectively, from 20 to

10 neurons for each layer, everyone with a ReLU

activation. The last layer is activated through a sig-

moid function and the network is optimized with an

Adam stochastic gradient descent (Kingma & Ba,

2014).

4. Results

The performance of our model was quantified

with different measures: false positive ratio (FPR)

and false negative ratio (FNR). FPR is the ratio

between the number of false positives (FP), in other

words, explosions that are predicted as earthquakes,

and the number of FP and true negatives (correctly

predicted explosions, Eq. 1a). FNR is the ratio

Figure 3
Graphical representation of the model architecture
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between the false negatives and true positives

(Eq. 1b).

FPR ¼ FP

FPþ TN
ð1aÞ

FNR ¼ FN

FN þ TP
ð1bÞ

To reduce the variation related to lucky or

unlucky data, our proposal was evaluated through a

4-fold cross-validation, and we averaged both indices

on all the repetitions. With cross-validation, we

repeat the training and testing procedure k ¼ 4 times

varying the portion of the data used as training and

validation sets. Then, we averaged the results among

the k repetitions in order to achieve a reliable eval-

uation. Moreover, to avoid our results being tainted

by random initialization of the weights, all the

experiments were repeated 5 times, varying the seed

used of the random generation, resulting in 4� 5 ¼

20 repetitions for each experiment (16,232 signals for

each training fold). FNR and FPR values are calcu-

lated for validation set of each repetition. The signals

are given to the model in maximum 20 epochs. At the

end of each epoch, the model is evaluated on a dif-

ferent set of examples (validation set). If the loss

function measured on the validation set increases for

2 consecutive times, the training is stopped early to

avoid over-fitting. The size of the validation set is

fixed to 25 % of the examples used for the training.

We trained the neural network on an Intel� Xeon�

Gold 6140 CPU @ 2.30GHz with 34 cores and

equipped with 196GB of RAM along with Tesla

V100 with 16GB of RAM GPU. The duration of the

training process is in order of minutes.

4.1. Comparison with Linville et al. (2019)

There are previous studies that are dedicated to

solving the same problem as ours. Study of Linville

Figure 4
(a) ROC performance of developed models along with models of Linville et al. (2019), (b) zoomed in view of the figure on (a)

Table 1

Comparison between our model, retrained model of Linville et al. (2019) with the data from our study, and Linville et al. (2019) model

Model Training data Validation data FPR FNR

Our model NE Italy NE Italy 0.006 0.004

Linville et al. (2019) NE Italy NE Italy 0.017 0.013

Linville et al. (2019) Utah, USA NE Italy 0.281–0.705 0.192–0.521

Averaged FPR and FNR among all the folds is presented. The statistical comparison with a Wilcoxon signed-rank test results in p-values of

0.0015 and 0.0003 for FPR and FNR between our model and Linville et al. (2019) NE Italy. The comparison between our model and Linville

et al. (2019) Utah USA shows p-values of 1:12e�9 for both FPR and FNR. All the p-values are corrected with the Bonferroni correction
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et al. (2019) is selected for the comparison (Linville

et al. (2019) Utah, USA). To do that, our data is pre-

processed as explained in the study, then the data is

given to the 10 models that are created from each fold

that Linville et al. (2019) has used (https://github.

com/quapity/Utah, last access: 17 June 2022).

Waveforms are given to the models in the same order

as we give them to our models. The receiver oper-

ating characteristic (ROC) data-points of these

models can be seen in Fig. 4.

Results of Linville et al. (2019) show that our

study is far more accurate both in terms of FPR and

FNR metrics. Several reasons may have played a role

in the results. The most important factor would be the

data. In Linville et al. (2019) most of the quarry blasts

are detected by the stations in intermediate distances

and the earthquakes by near-source distances,

whereas in our study, records are coming from all

distant ranges for both types of seismic sources.

Moreover, the data is recorded by only the vertical

component stations, the horizontal components are

given as zero. In contrast, for this study only the

stations with 3 components were retrieved.

To see the effect of the data on the method

of Linville et al. (2019), a new model was created by

using our dataset with the data pre-processing and the

architecture of Linville et al. (2019) NE Italy). The

results can be seen in Table 1. The results are

improved dramatically thanks to waveforms that are

coming from our dataset. It can be said that Linville

et al. (2019) models have learnt the features that can

be applicable for their study area but not ours. The

results of the new model with Linville et al. (2019)

architecture are very promising, but they show

slightly worse performance indices compared with

our proposal. In order to get a meaningful compar-

ison, we perform a statistical test among all the

repetitions by means of a Wilcoxon signed-rank test

with a Bonferroni correction. From the statistical

comparison, it is evident how our model is better than

the other proposal with a confidence level of 99 %

(a ¼ 0:01): the comparison with Linville et al. (2019)

NE Italy shows that our model is better with a p-value

of 0.0005 (0.0015 after correction) for the FPR index

and with a p-value of 0.0001 (0.0003 after correction)

for the FNR.

4.2. Model Tuning

Different configurations of the model were

explored to find the most suitable solution. More in

detail, we experimented with 10 different models

whose details can be seen in the Electronic supple-

ment. To find the best model, the performance of the

models are visualized by using ROC (Fig. 4) and

their performance in terms of area under the curve

(AUC) are measured. The Figure showed that all

models are almost identical in terms of AUC.

Model 5 is selected as the main model with its

relatively higher AUC.

In Fig. 4 there are two clusters among the studies.

Models trained with the data from Utah, the USA by

Linville et al. (2019) show significantly low perfor-

mance, whereas 10 models developed and the trained

model of Linville et al. (2019) with the data from our

study show high performance. On the right side of the

figure, only the high-performance results are pre-

sented. One can see that they all have high True

Table 2

Comparison between our model and model of Linville et al. (2019) with the data from our study, and the study of Miao et al. (2020)

Model Training data Validation data FPR FNR

Our model NE Italy Kentucky, USA 0.498 0.510

Our model Kentucky, USA Kentucky, USA 0.030 0.038

Linville et al. (2019) NE Italy Kentucky, USA 0.436 0.377

Linville et al. (2019) Kentucky, USA Kentucky, USA 0.055 0.071

Averaged FPR and FNR among all the folds is presented. The statistical comparison with a Wilcoxon signed-rank test results in p-values of

5:40e�8 for both FPR and FNR between our model and Linville et al. (2019) trained in NE Italy. The comparison between our model and

Linville et al. (2019) trained in Kentucky, USA shows p-values of 0.0013, 0.0114 for FPR and FNR. All the p-values are corrected with the

Bonferroni correction
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Positive Rate (TPR, 1� FNR) and low FPR. In fact,

the difference between our models are not statisti-

cally significant. However, the model with the best

performance among 10 models was selected and that

is our model. Even though the retrained model of

Linville et al. (2019) has high performance, our

model outperforms it (Table 1).

4.3. Comparison with Miao et al. (2020) Dataset

To understand the capability of our model in

another dataset, we used the study of Miao et al.

(2020). Dataset consists of 4406 event in which 4256

are quarry blasts collected in Kentucky, USA. In

total, there are 57,680 records for quarry blasts and

2081 records for earthquakes. To have a balanced

database, 2081 records are randomly picked from

quarry blast records. The same procedure for the

training method is followed along with the cross-

folding. Data pre-processing is carried out in the

previous sections and predictions capabilities of our

model along with the model that we created by using

the architecture of Linville et al. (2019) can be seen

in Table 2. Furthermore, we trained a model by using

the dataset of Miao et al. (2020) by using our model

architecture along with the architecture of Linville

et al. (2019). Their results are presented in Table 2. In

order to compare all the results among all the

repetitions, we perform a statistical validation using

a Wilcoxon signed-rank test with a Bonferroni

correction.

5. Discussion

As we mentioned in the Sect. 1, several previous

studies have also tried to solve the problem of dis-

tinguishing quarry blasts from earthquakes. To see

the performance of our model, the study of Linville

et al. (2019) was used as a comparison study. We

cannot fully compare our model with Linville et al.

(2019) using the same dataset, because the data is not

completely available. Hence we limited the compar-

ison by evaluating the trained models of Linville

et al. (2019) on our dataset. Moreover, we trained

some models with the very same architecture of

Linville et al. (2019) using our dataset. To do that,

first the seismic sources of our data were predicted as

described in the study. Linville et al. (2019) states

that both LSTM and CNN models work equally and

with high accuracy. 10 different LSTM models that

are trained from each fold were implemented by

using the spectrograms of our signals calculated

according to the description of the study. TPR and

FPR of the models vary between 0.478 - 0.807 and

0.281 - 0.705, which are significantly worse than our

model (Fig. 4). Several factors may play a role in the

significant differences among these studies.

Figure 5
Average of FFTs of components of earthquakes and quarry blasts from a) Linville et al. (2019) and b) Miao et al. (2020) dataset
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First of all, Linville et al. (2019) trained their

models by using the data from Utah, the USA,

whereas our data is coming from NE Italy. In both

seismic sources, frequency content can be different

due to explosive related parameters (eg. explosive

type) or some frequencies may not reach the recorder

due to attenuation. Deep and shallow velocity struc-

ture may play a role on attenuation. Secondly, to

expose the distinctive features of earthquakes and

quarry blasts, different studies use different types of

data. In Linville et al. (2019), most quarry blasts data

are coming from longer distances, unlike their

earthquake counterparts. In our study area, both of the

sources have both near-source and intermediate dis-

tances. These variable may play role on the waveform

and its frequency content. A comparison between a

sample taken from our dataset, one from the portion

that we retrieved from Linville et al. (2019), and one

fromMiao et al. (2020) can be seen in Fig. 5. The

figure highlights that frequency contents of each class

are different among not only these dataset but also

from our dataset.

However do not have insight about these effects

among study areas. It is not the scope of the study to

analyze the contribution of the medium or the source

effect. on seismic waveforms and their frequency

content. Furthermore, we only use 3 component sig-

nals, whereas Linville et al. (2019) uses only single-

channel waveforms by adding zeros to horizontal

components.

Then, a model is trained by using the same

architecture and the data processing method that

Linville et al. (2019) described. As a result, Linville

et al. (2019) model has TPR of 0.987, and FPR of

0.017. It shows the importance of the data for the

training of a model. Even though the model that is

trained with our dataset is almost good as our models,

our models perform statistically better than the model

developed by Linville et al. (2019). Our data pro-

cessing procedure can also be easy to apply to our

monitoring activities, since waveforms are collected

and FFTs of the seismic records are all calculated in

real-time Gallo et al. (2014). Models that use wave-

forms along with spectrograms that have high

accuracy rates were also created, however waveforms

and FFTs are more suitable for our data processing

routines.

To see the capabilities of our model along with

the trained model of Linville et al. (2019) in other

settings, we used the database of the study of Miao

et al. (2020). As presented in Table 2, models trained

on our dataset are failed. Even though the the model

of Linville et al. (2019) shows slightly better per-

formance with respect to our model in both FPR and

FNR metrics, neither of the model has reliable with

having 37.7 to 51.0 % mislabeled earthquakes and

quarry blasts in given dataset. On the other hand, the

models have better results, when they are trained with

the data provided from the study area of Miao et al.

(2020). This demonstrates that our CNN architecture

can generalize the features from a given dataset. In

Fig 4 our models have stable performances along

different folds. But neither the weights of the CNN

defined in our model nor the models of Linville et al.

(2019) are capable of predicting the sources from

other datasets. It can be seen in the experiment that

we carried out with the dataset of Miao et al. (2020).

As presented in Table 2 our model statistically out-

performs the model of Linville et al. (2019) when

trained with the same data.

In Miao et al. (2020), the data is coming from

Kentucky, USA and the features of the data are not

similar with the one coming from our study area. It

leads models to fail not because the models are weak

but because the feature space of the data is diverse.

The CNN extracts the features from the given dataset

and when the features are different among datasets,

weights that are tuned with the given dataset may not

work efficiently in another dataset. When the models

are trained by using the data from the Miao et al.

(2020), both models work efficiently.

There are other methodologies developed to

conduct the same task. Sertçelik et al. (2020) devel-

oped multiple models to make the source

characterisation. Amplitude differences between P

wave and S wave (amplitude ratio) developed by

Wüster (1993), energy differences between low fre-

quency and high frequency bands (complexity)

developed by Gitterman and Shapira (1993) are used

for linear (LDF) and quadratic discriminant functions

(QDF) and continuous wavelet transform (CWT) to

make a decision about the source. In the end 5 dif-

ferent models are created for each station. However,

the decision making algorithms dependent to the
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LDF, QDF, and CWT functions and cannot be used in

any other stations since they are tuned for stations

separately. Moreover, one needs to detect P and S

wave arrivals to use the amplitude ratio approach.

Determination of the S wave is also fixed to the time

difference between P and S waves which may not

always true. In the complexity method, high and low

frequency bands are fixed and they may not represent

the frequency information of another region. Zeiler

and Velasco (2009) used the amplitudes of P, S,

Love, and Rayleigh wave amplitudes along with

earthquakes magnitudes of mb from P and Rayleigh

waves, ML, and Ms calculated with these waves. Hard

cut-offs are determined by visualizing the results of

amplitude ratios of the waves and magnitude differ-

ences between different type of magnitudes. Surface

waves are not analyzed by our group and it requires

further analysis of the waveforms. Different types of

magnitudes are also required to carry out this method.

Furthermore, the results may be different among

regions depending on the soil type and their effects

on amplitudes, and magnitudes. Our model, on the

other hand, has the information of an overall feature

from the given signals and provides a generalized

solution.

6. Conclusion

In this study, a solution for the separation of

earthquakes from quarry blasts by using artificial

neural networks was proposed. To do that, seismic

traces from NE Italy and its surroundings that are

recorded as a result of earthquakes and quarry blasts

were recorded. The earthquake and the quarry blast

catalogues are from us, and ARSO, respectively. To

separate the seismic sources, 10 models were created

and compared with each other to obtain the best

model for the problem.

Furthermore, our model was compared with a

previously developed model by Linville et al. (2019),

using machine learning algorithms. We found that

our model has better performance indices with

respect to the models developed by the previous

study. However, when we use the data from our study

area to train new models with the architecture of

Linville et al. (2019), we have good results. But

Model 5 of our study performs better than the

recreated model from Linville et al. (2019) study.

This claim was verified with a statistical test that

certified how our model is the best one. Moreover, in

our method, the waveform and FFTs which are

monitored by our group in real-time are used, and it is

easier to implement them to the monitoring system

with respect to model of Linville et al. (2019) which

uses spectrogram. We found that our model is more

applicable than the study of Linville et al. (2019)

model and it can be used for the separation of

earthquakes from the quarry blasts that occurred in

the study area. It is important since multiple active

seismogenic zones and quarries are located in the

same region and our we are not labelling the source

of the seismic events. As we mentioned in Sect. 2,

there are more than 100 events that are stored in our

catalog as earthquakes, in reality they are quarry

blasts. Thanks to this study, we, now, have the

capability of detecting the blasts without making any

change in monitoring parameters.

Above mentioned findings indicate that our model

can separate quarry blasts from earthquakes in our

study area with high precision and our model has

high confidence level in the metrics that has been

used for comparison. It is easy-to-apply in our data

collection routines and do not require any analytical

analysis as we mentioned in Sect. 5. However our

model trained, along with the model of Linville et al.

(2019) that are both trained with the data from our

dataset, fail to separate seismic sources of the data-

base of Miao et al. (2020). On the other hand, when

the models re-trained with the data of Miao et al.

(2020), they have good results. It, again, shows the

importance of the data.

In conclusion, we proposed a model which is

generalized for our area of interest works successfully

in our study area and it provides consistent results.

Models of Linville et al. (2019) do not predict the

seismic sources of the events in our region, but it

works when a new model trained by using our data-

set. Neither of these models are trained with the

dataset of Miao et al. (2020) and they fail to predict

the seismic sources of the dataset. However, our

model has the capability of providing good results

when trained with the data from area of interest.
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