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Abstract—Receiver function (RF) inversion is a well-estab-

lished method to quantify a horizontally layered approximation of

the S-wave velocity structure beneath a seismic station. It is well-

known that the RF inverse problem is highly non-unique, and

various tools such as joint inversion with other seismological

observations exist that may overcome this problem. We present a

joint inversion framework along with a Python package that

implements the joint inversion of RF and the apparent S-wave

velocity (VS,app). Our implementation includes a pseudo-initial

model estimation, which helps address the inherent non-uniqueness

of the joint inversion of RFs and VS,app. This implementation

enhances the resolving power, enabling estimation of S-wave

velocities with resolution approaching that of deep controlled

source seismic methods. As an illustration, we showcase an

example from a permanent station in the Makran subduction zone

southeast of the Iranian Plateau and two other stations in the sup-

plementary material. We compare our joint inversion results with

several S-wave velocity models obtained through a deep seismic

sounding profile and joint inversion of surface wave dispersion and

RFs. This comparison shows that although we note a slightly lower

sensitivity of our proposed method at greater depths (beyond

50 km), the method yields much better results for shallow struc-

tures. Our inversion code provides a powerful, accessible software

package that has superior resolving power at shallow depth com-

pared to RFs-surface wave inversion codes. Furthermore, the fact

that only one data-derivative is used, makes this inversion code

extremely easy to use, without the need for complementary

datasets.

Keywords: Receiver function inversion, Apparent velocity,

Python package for RFs inversion, Joint Inversion of RFs and

apparent velocity, Delay time thickness parameterisation.

1. Introduction

The teleseismic receiver function time series

(RFs) provides an estimate of the Earth’s seismic

impulse response. RFs are obtained by deconvolving

the incident P-wavefield of teleseismic earthquakes

from the P-to-S (Ps) converted wavefield and thereby

equalising source and path effects (e.g., Langston,

1979; Vinnik, 1977). The pulses, expressed as peaks

and troughs in the receiver function radial component

(RFR) indicate the timing and strength of the wave

conversions at seismic discontinuities underlying the

station, as well as associated multiples. By analysing

amplitudes and time of the signals in the RFR time

series, the underlying S-wave velocity structure can

be estimated, usually assuming a horizontally layered

medium beneath the seismic station. A quantitative

analysis may involve a mathematically formalised

inverse algorithm which estimates a S-wave velocity

model that minimises the misfit between observed

and synthetic RFR, under the given assumptions.

However, inferring the Earth’s properties from RFR

inversion can be challenging due to the non-unique-

ness and non-linearity of the time-depth-velocity

relationship of the P-to-S delay time in the RFR

waveform (Ammon et al., 1990; Jacobsen & Sven-

ningsen, 2008). Ammon et al. (1990) developed a

linearised iterative inversion scheme based on the

method of Owens et al. (1984) and Shaw and Orcutt

(1985) for RFR inversion. Moreover, Ammon et al.

(1990) examined the non-uniqueness of the RFR

waveform inversion and showed how the trade-off

between the layer thickness and S-wave velocity

affects the resulting velocity model. Jacobsen and

Svenningsen (2008) also investigated the non-

uniqueness and non-linearity of RFR inversion and
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vägen 16, 752 36 Uppsala, Sweden.

Pure Appl. Geophys. 181 (2024), 65–86

� 2024 The Author(s), under exclusive licence to Springer Nature Switzerland AG

https://doi.org/10.1007/s00024-023-03413-9 Pure and Applied Geophysics

https://doi.org/10.1007/s00024-023-03413-9
https://doi.org/10.1007/s00024-023-03413-9
http://crossmark.crossref.org/dialog/?doi=10.1007/s00024-023-03413-9&amp;domain=pdf
https://doi.org/10.1007/s00024-023-03413-9


demonstrated that the changes in the delay time

during the RFR Jacobian computation are the main

source of non-linearity of the inverse problem. They

showed that parameterising the velocity model using

delay time thicknesses instead of spatial layer thick-

nesses improves the uniqueness and performance of

the RFR inversion (Jacobsen & Svenningsen, 2008).

The inherent non-uniqueness and non-linearity of

RFR inversion encouraged many researchers to

develop and adopt alternative methods to fit the RFR

time series. Some of these methods are grid search-

based schemes (e.g., Sandvol et al., 1998; Zhu &

Kanamori, 2000; Zor et al., 2006; Ogden et al., 2019

and 2022), global search algorithms such as simu-

lated annealing (e.g., Vergne et al., 2002; Vinnik

et al., 2004; Zhao et al., 1996), and stochastic

methods such as genetic and neighbourhood algo-

rithms (e.g., Frederiksen et al., 2003; Levin & Park,

1997; Reading et al., 2003; Shibutani et al., 1996)

that aim to model the receiver function time series

observations.

The sensitivity of both RFR and surface waves to

S-wave velocity structure led Julia et al. (2000) to

propose a joint inversion framework reducing the

non-linearity and non-uniqueness of the RFR inver-

sion. This method has become an established tool for

quantifying the Earth’s crustal and upper mantle

structures and has been widely used in many studies

(e.g., Julià et al., 2000, 2005; Motaghi et al.,

2015, 2017; Rastgoo et al., 2018; Priestley et al.,

2022). The advantage of this method lies in the

combination of two independent observations that are

sensitive to absolute S-wave velocity (i.e., surface

wave dispersion curve) and S-wave velocity contrast

(i.e., RFR time series). However, the rather low lateral

resolution of the surface wave tomography images

used to obtain surface wave dispersion curves may

potentially dampen the effect of small-scale features

that are well observed by the receiver function time

series, especially at shallow depth. Furthermore, the

frequently-used dispersion curves from teleseismic

earthquake surface waves have very limited resolu-

tion at upper crustal levels. Even if shorter periods

of\ 10 s are analysed, for example in ambient noise

tomography, the ray coverage is often poor leading to

significant lateral smearing. Consequently, the dis-

persion curves extracted from these tomographic

models, which may be jointly inverted with RFR, lack

essential information about the shallow structures. A

joint inversion of RFR and surface waves often fits the

surface wave dispersion data well at the cost of an

increased data misfit in the RFR time series. Due to

the issues with upper crustal resolution, smearing and

smoothing of the surface wave/ambient noise

tomography, and the over-fitting of dispersion curves,

the shallow structure is likely less-well resolved in

joint RFR inversion using surface wave dispersion.

Svenningsen and Jacobsen (2007) showed that

RFs themselves are in fact sensitive to the absolute

S-wave velocity of the subsurface through the inci-

dence angle of the teleseismic wave, expressed as the

amplitude of RFs at P-arrival at a known ray-pa-

rameter. They used RF polarisation to derive the

apparent S-wave velocity (VS,app) beneath the seismic

stations, which are primarily sensitive to upper-

crustal structures.

The observed angle of incidence (iOP) on a three-

component seismogram is the superposition of the

incident P-plane wave, as well as reflected P and

converted P-to-S phases. Therefore, its value differs

from the true P-wave incidence angle (iTPÞ. Wiechert

(1907) derives the relation between observed and true

angle of incidence, as follows (Eq. 1).

sinðiOP=2Þ
VS

¼ sinðiTPÞ
VP

¼ p ð1Þ

Equation 1 can be used to estimate the apparent

half-space S-wave velocity (VS,app) beneath a seismic

station at zero time delay (P-wave arrival) which is a

function of S- and P-wave velocity of the subsurface,

the incoming P-waveform and event slowness (ray

parameter) for a horizontally layered subsurface. This

will additionally be affected by three-dimensional

crustal variations with incidence angle and back

azimuth (full description of the apparent S-wave

velocity inversion can be found in Svenningsen &

Jacobsen, 2007; Hannemann et al., 2016; Park &

Ishii, 2018, the interested reader can also find the

background theory in chapter five of Aki & Richards,

2002). The effect of the complex incoming source

waveforms on the observed angle of incidence can be

eliminated by using the Z and R components of RFs

instead of using seismic waveform (Svenningsen &

Jacobsen, 2007). The observed angle of incidence
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(iOP) and apparent S-wave velocity (VS,app) are

determined by convolving the Z and R components of

receiver functions with an integration function with

varying periods covering different time windows

(Chong et al., 2018; Svenningsen & Jacobsen, 2007).

The resulting values of iOP and VS,app depend on the

velocities of the phases present within the integrated

time span that corresponds to the associated wave-

length. Thus, by increasing the period (T) of the

integration function’s kernel, the apparent velocities

represent successively deeper S-wave velocity struc-

ture of the Earth’s interior.

The VS,app inversion of Svenningsen and Jacobsen

(2007) was implemented as part of a joint inversion

framework together with RFR by Schiffer et al.

(2015). The algorithm was recently extended to a

random model search scheme (Schiffer et al., 2022).

The joint inversion of RFR and VS,app has since

become a robust method to image Earth’s crust and

upper mantle (e.g., Chong et al., 2018; Park & Ishii,

2018; Schiffer et al., 2015, 2022; Wang et al., 2022)

and Mars crustal structures (Joshi et al., 2023).

The joint inversion of RFR and VS,app is able to

map the complex interference of primary and multi-

ple arrivals in RFR and the amplitude of VS,app into

velocity changes in appropriate depth ranges. Thus, it

is essential to find a layer setup which enables the

inversion to map the observations into absolute

S-wave velocity. Our new joint inversion core algo-

rithm uses a grid search over different layer setups

while estimating S-wave velocity through a linearised

joint inversion scheme. As the linearised joint

inversion of RFR and VS,app depends on a good

starting model, demonstrated by larger posterior

errors when using inaccurate/inappropriate starting

models, we propose a 2-stage inversion with the

major difference to previous models being a pre-

conditioning stage of a suitable starting model

(hereafter called pseudo-initial model). This pseudo-

initial mode is then used in the joint inversion core

algorithm to estimate the final S-wave velocity

model. To achieve this, we modify the method pro-

posed by Schiffer et al. (2015) and explain the effect

of initial model selection, parameterised in layer

delay time thickness. We then propose a stochastic

method to estimate an initial model for the RFR-VS,app

joint inversion and modified the random model search

method proposed by (Schiffer et al., 2022) to use our

joint inversion core algorithm for finding appropriate

layers setup instead of preconditioning according to

the peaks in the RFR observation. We explain the

joint inversion core algorithm and our joint inversion

framework for estimating a high-resolution S-wave

velocity model. As a case example, we will apply this

framework to estimate the S-wave velocity beneath a

permanent station in the Makran subduction zone and

compare the results with the previously estimated

S-wave velocity from joint inversion of RFR and

surface dispersion curves and a controlled source

seismic velocity model. To evaluate the method’s

reliability in diverse tectonic settings, we also applied

it to real data from a station in the Indian craton and a

station in Himalaya. The results off the Makran

subduction zone is presented in the main text, the

results of the latter two are presented in the Supple-

mentary Material.

2. Method

2.1. General Description of the 2-Stage Inversion

The observed RFR and VS,app-curves depend on

the subsurface structures beneath stations and can be

reconstructed if the subsurface structures are known

using a suitable forward function. Joint inversion of

these datasets reversely estimates those model

parameters that reduce a defined objective function,

usually including the data misfit. In this case, the

objective function is primarily defined by the data

misfit of both RFR and VS,app, but also includes

expressions for model roughness and the misfit to the

starting model. The various expressions are internally

weighted. The RFR and VS,app datasets are both

functions of the model properties including P-, S-

wave velocity, density and layer thicknesses, thus we

can explain these observations according to Eq. 2:

RFR ¼ f mð Þ
Vs;app ¼ g mð Þ

ð2Þ

where f and g are nonlinear functions and m represent

the model properties (e.g., S-wave velocity and layer

thickness). The process of finding a model through a

linear joint inversion involves linearising f and
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g about an initial model. However, the effects of non-

linear terms which were neglected through lineari-

sation increase when the difference between initial

and true models is large. To address this issue, we

propose a two-stage joint inversion procedure. Stage

1 of the joint inversion involves finding a good

starting model (pseudo-initial model; Sect. 2.4.1) and

in stage 2, we estimate the detailed S-wave velocities

and layer thicknesses that minimise the defined

objective function through the joint inversion core

algorithm (2.4.2).

We make use of the parameterisation of the model

by defining the vertical extend of a layer not in spatial

thickness but in delay time (Jacobsen & Svenningsen,

2008), from now called delay time thickness. We first

describe the delay time thicknesses and how it

combines the S-wave velocity and spatial layer

thicknesses in the joint inversion core algorithm

(2.2). Then, we detail the linearisation of the two

datasets used in the linearised joint inversion (2.3.1),

after which we will present the algorithm to find the

best layer setup (2.3.2) and finally explain stage 1 and

stage 2 of the joint inversion framework in

Sects. 2.4.1 and 2.4.2, respectively.

2.2. Description of Delay Time Thickness

To improve the RFR inverse problem that suffers

from inherent non-uniqueness and non-linearity,

Jacobsen and Svenningsen (2008) have parameterised

Earth’s structure in terms of fixed delay time

thickness, instead of fixed spatial thickness. For any

change in S- and P-wave velocity, the spatial layer

thickness is then updated according to Eq. 3 to retain

the same delay time thickness.

Dznew ¼ Dzold

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
S;old � p2

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
P;old � p2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
S;new � p2

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
P;new � p2

q ð3Þ

where Dznew and Dzold are the new and old spatial

layer thickness, VS;new and VS;old are the new and old

S-wave velocities of the layer, VP;new and VP;old are

the new and old P-wave velocities of the layer and p

is the ray parameter. This correction has been

implemented in Schiffer et al. (2015)’s inversion

algorithm and subsequent versions, although there the

delay time thicknesses were allowed to change in the

inversion.

In our proposed RFR-VS,app joint inversion, we use

such fixed delay time thicknesses that are calculated

from given S-wave velocities and spatial layer

thicknesses. We first describe the medium by several

layers with an initial S-wave velocity and layer

thickness. We then determine the delay time thick-

ness of each layer for the initial model and calculate

the Jacobian matrices (partial derivatives of observa-

tions with respect to inversion model parameters) for

RFR and VS,app. The Jacobian matrices calculation

involves perturbing S-wave velocity of each layer and

finding the sensitivity of RFR and VS,app to S-wave

velocity for all time samples and periods. In this

process, we adjust the spatial thickness of the layers

according to the S-wave velocity perturbation by

Eq. 3 to maintain a fixed delay time thickness. The

Jacobian matrices can be used to estimate a S-wave

velocity change in an iterative weighted least-squares

scheme. In each iteration of the linearised joint

inversion the spatial layer thickness will therefore

change according to the estimated S-wave velocity

perturbation to retain the fixed delay time thicknesses

and the Jacobian matrices are recalculated.

2.3. Joint Inversion Core Algorithm

2.3.1 Linearised Joint Inversion

The Jacobians of the RFR and VS,app are calculated by

linearising the observables according to Eqs. 5 and 6.

We linearise the RFR by expanding this time series

about an initial model by using Eq. 4:

RFR tiRFR
;m1

� �

¼ RFR tiRFR
;m0

� �

þ
oRFR tiRFR

;m1

� �

om
m1 � m0ð Þ

þ 1

2!

o2RFR tiRFR
;m1

� �

om2
m1 � m0ð Þ

þ . . .

ð4Þ

where m1 and m0 are the perturbed and initial models

and tiRFR
represent the time of the ith sample in the

RFR. We can linearise the RFR by keeping the first
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term in the right hand of Eq. 4 and find the Jacobian

of the RFR, as follows (Eq. 5):

JRFR
ðtiRFR

; jÞ ¼
RFRðtiRFR

;m0 þ I � DmjÞ � RFRðtiRFR
;m0Þ

I � Dmj

ð5Þ

where I is the identity matrix and Dmj is an array

representing the perturbation value of the jth layer,

while the rest of the layers have a value of zero. A

similar linearisation is performed for the VS,app curve

Jacobian (Eq. 6):

JVS;app
ðTiapp

; jÞ ¼
VS;appðTiapp

;m0 þ I � DmjÞ � VS;appðTiapp
;m0Þ

I � Dmj

ð6Þ

where VS;appðTiapp
;m0Þ is the apparent velocity for the

period Tiapp
.

We use S-wave velocities as the unknown model

parameters of the linearised joint inversion since they

are the main parameters that affect the RFR and VS,app

(Ammon et al., 1990; Chong et al., 2018; Sven-

ningsen & Jacobsen, 2007). We apply Christensen

and Mooney (1995)’s relations to calculate the P-

wave velocity and density. By using JVS;app
and JRFR

,

we can estimate the absolute S-wave velocity using a

standard iterative least-square formula with smooth-

ing and damping constraints (Eq. 7).

mkþ1 ¼ mk þ ða2JRFR

T JRFR
þ b2JVS;app

T JVS;app

þ k2ST S þ l2ITIÞ�1 � ðaJRFR

TdRFR

þ bJVS;app

TdVs;app þ kSTdsk þ lITdmkÞ ð7Þ

In this equation, S is the second derivative

smoothing matrix (Menke, 2018), I is the identity

matrix, dRFR is the difference between the observed

and the predicted RFR calculated from mk and dVs;app

is the difference between the observed and the

predicted apparent velocity curve. dsk ¼ 0� Smk
is

the model roughness, and dmk ¼ m0 � mk is the

difference between the initial and current model. The

coefficients a, b, k, and l adjust the effect of receiver

function, apparent velocity, smoothing, and damping

misfits (dRFR; dVs;app; dsk, and dmk) on the output

S-wave velocity model, respectively.

We have estimated the best set of a, b, k, and l
through a grid search over 900 different combinations

of these parameters. We selected several sets and

combinations of weights which generate low

objective function values using a synthetic test with

40% error in delay time thickness (see Fig. 2). We

visually inspected the diffferent estimated models

and chose the set of weights which estimated the true

S-velocity model most adequately. This results in

a ¼ 5:0, b ¼ 2:5, k ¼ 1:5 and l ¼ 0:5 to recover the

best-fitting models, while surpassing the effect of

over-parameterisation in the depths where the S-wave

velocity gradient is small (see 2.3.2 for more details).

It should be noted that we normalise the equations by

dividing them by the number of observations for RFR,

VS,app and the number of layers, thus, these factors

represent the absolute effect of each equation on the

estimated model.

2.3.2 Definition of Model Layer Parameterisation

One of the most important and novel aspects of our

approach is the model parameterisation in terms of

setup of layer boundaries. The model properties are

often described in terms of a layered medium with

each layer having a density, S-and P-wave velocity. It

can be shown that the P-wave velocity and density

variations only have a minor effect on the RFR and

VS,app (Ammon et al., 1990). Therefore, the remain-

ing two parameters (i.e., S-wave velocities and layer

thicknesses) are chosen as unknown model properties

in the joint inversion core algorithm. Uncertainty and

the occurrence of artefacts in the output model can

arise from the choice of the number and depth of the

layers used in the linearised joint inversion (Eq. 7). In

principle, increasing the number of layers or in other

words, increasing the degree of freedom of the

inverse problem results in a better fit to the data with

the cost of more potentially unrealistic fluctuations in

the estimated S-wave velocities of adjacent layers in

order to exactly fit the data. Imposing damping and

smoothing constraints can reduce these fluctuations.

However, a very strong smoothing or damping

constraint (large values of k and l in Eq. 7), limiting

the change of S-wave velocity of each layer in

consecutive iterations and may also remove small-

scale structure. A practical way to parameterise the

joint inversion of RFR and VS,app is to increase the

number of layers in different steps (Motaghi et al.,

2015; Schiffer et al., 2015). We have implemented

this method in our joint inversion core algorithm that
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aims to estimate S-wave velocity and layers setup.

Assuming an arbitrary initial model, we estimate the

S-wave velocity by finding the model that generates

the lowest residual among different models estimated

by Eq. 7 utilising initial model parameterised into

different layer setups. Thus, the joint inversion core

algorithm includes several linearised joint inversions

of initial model stratified in different layers setup.

The delay time thicknesses of the initial model

remain constant throughout all of the following

linearised joint inversions, while the spatial layer

thicknesses are changed according to S-wave veloc-

ities at each iteration of linearised joint inversions

with different layer setups (see 2.3.1 for more detail).

This process (joint inversion core algorithm) exam-

ines different layer interface depths which allows the

linearised joint inversion to map the primary and

multiple phase arrival into appropriate depth ranges.

We have also increased the smoothing and damping

constraint by a small amount to dampen the fluctu-

ation in the over-parameterised section of the model

when we invert the data with finer resolution. The

initial smoothing and damping constraint and the

amount of increment are calculated by a trial-and-

error process. The final output model for this

procedure is the model (i.e., S-wave velocity and

layer thickness) with the smallest objective function

according to Eq. 7 (Fig. 1a).

2.4. Joint Inversion Framework

2.4.1 Inversion Stage 1—Pseudo-Initial Model

Estimation

The procedure explained above aims to estimate the

S-wave velocity and layers thickness for the initial

model used in the inversion. We assume that the

linear term of the Taylor expansion about this initial

model can adequately express the relation between

observed RFR, VS,app and S-wave velocity (Eqs. 5 and

6). However, even with a model stratified with delay

times thicknesses, this assumption is only valid near

the initial S-wave velocity model used in the

Jacobians computation. Thus, the initial layer delay

time thicknesses which were used in the Jacobians

calculation should be optimised to adequately repre-

sent the Earth’s crustal structure. A synthetic test was

implemented in order to demonstrate the impact of

errors in delay time thickness in the initial model on

the inversion performance (Sect. 3.1). This experi-

ment compares the results of linearised joint

inversion using initial models with delay time

thicknesses matching the synthetic models, against

various initial models with random variations in

delay time thicknesses, not matching the synthetic

model. Our analysis demonstrates that one of the

crucial steps in our inverse approach is to find a well-

suited pseudo-initial model. To address this issue, we

propose a stochastic optimisation scheme to find the

pseudo-initial model. In addition, we implemented a

modified random model search of Schiffer et al.

(2022) in our joint inversion core algorithm instead of

preconditioning interfaces depth according to RFR

observation. The pseudo-initial model prevents map-

ping multiples into separate, artefactual layers. This

is done by defining a pseudo-initial model that

enables the linearised joint inversion to fit multiples

and primary conversion arrivals simultaneously. Our

analysis confirms that the delay time thickness of

initial models in the deeper part of the layered

medium can significantly affect the accuracy of the

final S-wave velocity model. Thus, it is essential to

find major discontinuities in the observed data to

improve the reliability of the joint inversion.

Schiffer et al. (2022) attempted to generate a

similar effect by placing a random fraction of the

overall layer boundaries at positive and negative

peaks observed in the first 5–8 s of the RFR

waveforms. Furthermore, they had a random number

and depth position of layers in general with lower and

upper limits for number of sedimentary, crustal and

upper mantle layers to investigate both finely and

coarsely sampled models. Their final S-wave velocity

model was defined as the maximum model density of

the weighted velocity model population computed

from 1000 individual inversion runs.

The need for well-conditioned initial models

motivates us to present a new scheme for estimating

the pseudo-initial model by using the Particle Swarm

Optimization (PSO) algorithm (Kennedy & Eberhart,

1995). The PSO algorithm is a stochastic search

method that was originally developed for solving

continuous optimisation problems. It operates by

employing a population of particles, each
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representing a random model, to explore a model

space with the same dimensions as the number of

unknown parameters. Within each iteration, the

particles generate a cost function, which evaluates

their fit to the data. The algorithm aims to identify the

particle with the lowest cost function by iteratively

changing all particles’ unknown parameters accord-

ing to the model space. In the initial step of the PSO

Figure 1
a Flowchart of the joint inversion core algorithm for an arbitrary initial model to estimate S-wave velocity and the best layers setup (see

Sect. 2.3). b Flowchart of the two-stage joint inversion framework used in this study (see Sect. 2.4)
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algorithm, each particle represents a randomly

selected initial model from the available model

space. These particles are then updated in each

iteration, taking into account their current state, the

best state they have experienced so far, and the best

overall cost function. This iterative process allows the

algorithm to find the unknown parameters (in this

study, the major depth discontinuities) that minimise

the cost function.

The objective of this optimisation is to find the

depth of the Moho and other major intra-crustal

discontinuities that may exist in the study area. The

first step of optimisation is to define an initial model

space. We initiate a model with two major discon-

tinuities at the depths proposed by the global standard

model IASP91 (Kennett & Engdahl, 1991) and use an

approximate S-wave velocity model according to the

observed VS,app curve. This approximation ensures

that the difference between the initial and the true

S-wave velocity is small enough so that the assump-

tion of linearisation in the process of calculating RFR

and VS,app Jacobians is valid. To approximate S-wave

velocity for an assumed depth range, we first

determine the filter periods that are significantly

affected by the S-wave velocity of the assumed depth

range according to the apparent velocity Jacobian.

The VS,app observations at these filter periods will

then be used to approximate the S-wave velocity of

this depth range. This process is repeated from the

surface to the bottom of the model to approximate the

S-wave velocities of the initial model.

In the following step, we create an initial model

space by specifying the permissible depth ranges for

the main intra-crustal discontinuities. We then use

these boundaries to define the PSO particles, where

each particle represents a set of randomly generated

depths for the primary intra-crustal discontinuities.

Additionally, we correct the initial approximate S-

wave velocity for every distinct model (particles) by

recalculating it according to particles discontinuities

depths. This approach helps us determine a set of

well-suited starting models by applying minor

changes to the presumed global model (i.e., IASP91

or previous studies model). The PSO algorithm

searches through model space by utilising these

particles (initial models) in the joint inversion of the

dataset and evaluating their cost function according

to their estimated model residuals (Eq. 8).

PSO CF ¼ jjRFRO � RFRCjj þ jjVs;appO � Vs;appCjj
ð8Þ

The pseudo-initial model is the model which

generates the lowest cost function and will be used in

the joint inversion of RFR and VS,app dataset in stage

2.

Using the PSO algorithm enables us to choose a

specific cost function, a preferable initial model

space, and control the speed of convergence while

estimating the pseudo-initial model. However, the

computational cost of this method is very high.

Considering our computational power, we chose 30

particles and 11 iterations for the PSO algorithm.

Increasing the number of particles and iterations

would improve the suitability and data misfit of the

pseudo-initial model. However, our approach still

shows at least a 30% error reduction when using the

estimated pseudo-initial model compared to defining

the initial S-wave velocity model from reference

studies or standard global models. The jrfapp package

also provides the possibility for a modified random

model search scheme (RMS, e.g., Schiffer et al.,

2022), which obtains almost equally good results as

PSO (see below). Adopting the RMS method as the

pseudo-initial model estimator facilitates a compre-

hensive assessment of the reference initial model’s

goodness and provides an indication of how well the

output S-wave velocity model fits the datasets.

Additionally, this method offers flexibility in select-

ing the maximum and minimum values of S-wave

velocity for the pseudo-initial model estimation .

2.4.2 Inversion Stage 2—Joint Inversion Procedure

The pseudo-initial model forms the basis of Stage 2

of the inverse algorithm, which will derive a detailed

S-wave velocity model. The pseudo-initial model can

be generated either by the RMS or PSO method. The

user may decide which pre-conditioning method to

use. Our synthetic experiment illustrates that the

output S-wave velocity model from both methods is

comparable and the difference between the S-wave

velocity model generated by two methods is smaller

than the error (see Figs. 3 and 4).
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Through the inversion stage 2, the RFR and VS,app

are inverted applying a joint inversion core algorithm

described in 2.3 using the pseudo-initial model

(Fig. 1a) estimated either by RMS or PSO method.

The model with the minimum value of the objective

function according to Eq. 7 is then selected as the

final model of the joint inversion framework

(Fig. 1b).

3. Synthetic Tests

To assess the performance and reliability of our

inversion algorithm we performed three synthetic

tests. For all tests, we generate a synthetic model by

perturbing a two-layer reference model that extends

to a depth of 70 km. The unperturbed reference

model consists of two layers at depths of 0–40 km

and 40–70 km, with S-wave velocities of 3.0 km/s

and 4.1 km/s, respectively. In the first experiment, we

analyse the effect of the initial delay time thickness

errors, the second experiment focuses on estimating

the S-wave velocity error using noise-free synthetic

data, and in the third synthetic test, we investigate the

effect of noise and stacking of the receiver functions

for different ray parameters for both random model

search and PSO method.

3.1. The Effect of the Initial Time Thickness Errors

This experiment is designed to test the sensitivity

of the linearised joint inversion approach with

deviations in spatial layers thicknesses and initial S-

wave velocity so that the actual delay time thick-

nesses of the synthetic model are not matched any

longer. We generated a synthetic model by perturbing

the reference model by 0.4 km/s in four depth ranges

and parameterised the perturbed model into 32 layers.

The delay time thicknesses of these layers were

calculated according to the time difference between

the Ps and Pp arrivals (Jacobsen & Svenningsen,

2008; Zhu & Kanamori, 2000) expressed by Eq. 9:

DtPsj
¼ Dzjð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVsj

�2 � p2Þ
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVPj

�2 � p2Þ
q

Þ ð9Þ

where DtPsj
represent the delay time thicknesses, Dzj

is the spatial layer thicknesses, Vsj
and VPj

represents

S- and P-wave velocities and p is the ray parameter.

We then inverted the calculated RFR and VS,app of

the synthetic model using 4 sets of 250 random initial

models parameterised into 32 layers. The random

initial models in all sets were generated by perturbing

the reference model employing the Cubic Legendre

Polynomial (Ammon et al., 1990; Jacobsen &

Svenningsen, 2008). The first set uses the actual

delay time thicknesses of the synthetic model calcu-

lated from Eq. 9, and the subsequent three tests

contain a maximum 10, 30, and 60 percent random

error in the synthetic delay time thicknesses (Fig. 2a–

d respectively).

Figure 2a demonstrates the linearised joint inver-

sion results for a set of 250 initial models with

synthetic initial delay time thicknesses. The grey and

black lines in the subpanel entitled initial models

shows randomly generated initial and synthetic

models respectively. Grey lines in the estimated

models subpanel represent the estimated S-wave

velocities for each initial model interpolated on a

32-layer setup. The mean estimated S-wave velocity

of each layer is calculated by averaging the estimated

S-wave velocities resulting from the linearised joint

inversion of all initial models and represented by the

red line in the estimated models’ panel. The mean

difference subpanel is depicted according to the

difference between mean estimated and synthetic

S-wave velocities. The estimated RFs and estimated

apparent velocities subpanel show the calculated RFR

and apparent velocity curves of estimated S-wave

velocity models. The objective function evolution

subpanel illustrates the reduction of the objective

function for each initial model in the linearised joint

inversion iterations colour-coded according to the

objective function value.

Our first synthetic test shows that even with a

large difference between initial and synthetic S-wave

velocities, the linearised joint inversion was able to

estimate an accurate model when the delay time

thicknesses of the model are known (Fig. 2a). The

difference between the mean estimated and synthetic

S-wave velocity in Fig. 2a is smaller than 0.05 km/s

for the majority of the depth ranges. However, this
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Figure 2
Results of linearised joint inversion for initial models with different delay time thickness errors. The S-wave velocity of reference model

perturbed by Cubic Legendre Polynomial for each initial model. The synthetic delay times with different perturbation values are then used to

calculate spatial layer thickness of each layer in initial models. a synthetic delay times, b synthetic delay times with a 10% perturbation,

c synthetic delay times with a 30% perturbation, and d synthetic delay times with a 60% perturbation. The initial models subpanel represents

the initial models (grey line) and synthetic model (black line). The subpanels of estimated models show the estimated models (grey line) and

the synthetic model (black line), while the red line represents the mean estimated model. The mean difference subpanel illustrates the

difference between mean estimated and synthetic model. Estimated RFR and apparent velocities are depicted in the Estimated RFs and

Estimated Apparent velocities subpanels. Last subpanel shows the evolution of the objective function of each initial model coloured according

to their final objective function
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value increases to a maximum of 0.25 km/s near the

sharp boundaries and dampens again within * 4 km

of these boundaries. These variations are character-

istic of our linearised joint inversion approach and

caused by the imposed smoothing constraint (Eq. 7).

The average difference between mean estimated and

synthetic S-wave velocities increase to * 0.1 km/s

as the error in the initial time thicknesses amplifies to

a maximum of 60% (Fig. 2d). These results illustrate

the usefulness of estimating a pseudo-initial model

with optimised delay time thickness to reduce the

estimated errors when dealing with real datasets and

Figure 2
continued
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consequently unknown delay time thicknesses. Con-

sidering the sensitivity of the VS,app inversion, we

expect a good resolution in the first 20 km of the

model. However, the mean difference of the esti-

mated velocities in the first layer (0–1.25 km) of the

inversion is slightly larger than the expected value for

the first 5 km of the model. This increase in the mean

difference arose as a result of choosing the Gaussian

filter width, which reduces sensitivity in the first

shallow layer according to the frequency content.

Wang et al. (2022) illustrated the effect of choosing

Gaussian filter width on the joint inversion of VS,app

and RFs. They used variable Gaussian factor ranging

from 1.0 to 5.0 in their receiver function calculation,

which in the case of using high-quality data, can

improve the near-surface velocity estimation. Never-

theless, considering the general quality of available

datasets, we chose a lower Gaussian width filter

(Gaussian factor of 3.5, corresponding to a vertical

resolution of * 0.6 km for a velocity of for example

4 km/s) to reduce the effect of noise in receiver

function computation with the cost of a slight

reduction in the near-surfaces resolving power.

3.2. Joint Inversion of Noise-Free Data

In this experiment, we assumed that the initial

delay time thicknesses are unknown and applied two-

stage joint inversion procedures to estimate the

S-wave velocity of the noise-free synthetic dataset

using both random model search (Fig. 3a) and PSO

(Fig. 3b) as the pseudo-initial model estimator. The

synthetic dataset is generated by perturbing the two-

layer reference model in 4 different depth ranges by

0.6 km/s (light blue line in Fig. 3a estimated models

subpanel). We chose to increase the perturbation by

0.2 relative to the previous experiments to test the

joint inversion capability of estimating S-wave

velocities in the absence of good initial models.

The random model search method starts with

generating a series of correlated random 10-layer

models with fixed spatial layer thickness according to

the Cubic Legendre Polynomial (grey lines in Fig. 3a

initial models subpanel). The variations in the initial

models’ S-wave velocities lead to different delay

time thicknesses for each initial model and ensure

searching through the delay time thickness search

space. Our joint inversion core algorithm estimates

eight S-wave velocity models for each initial model

(Fig. 1a; see Sect. 2.3.2). The final output model is

the model among the eight estimated models that

generates the minimum objective function according

to Eq. 7. The estimated S-wave velocity model, RFR,

and VS,app for each initial model are presented in

Fig. 3a. The mean S-wave velocity model was

calculated by finding the average S-wave velocity

of all estimated models (red line in Fig. 3a Estimated

models subpanel) interpolated on a 40-layer param-

eterisation. In the final step, we chose the initial

model that produces a S-wave velocity similar to the

mean S-wave velocity as the pseudo-initial model of

the random model search method.

Figure 3b illustrates the joint inversion results

employing the PSO algorithm in estimating the

pseudo-initial model. The red line in the estimated

models subpanels in Fig. 3b shows the estimated

cFigure 3
a Two-stage joint inversion of noise-free data using random model

search method to find the pseudo-initial model. The initial models

subpanel represents the unperturbed reference model (light blue

line) and random initial models (grey lines). The estimated models

subpanel represents the best estimated S-wave velocity of each

initial model coloured according to their objective function, a thick

red line illustrates the average S-wave velocity of all estimated

models interpolated on a 40-layer setup, and the light blue line

shows the synthetic model. The mean difference subpanel shows

the difference between average and synthetic S-wave velocity.

estimated RFs and estimated apparent velocities subpanels demon-

strate the calculated RFR and VS,app curves for each estimated

model coloured according to their objective function. The light

blue line in these subpanels represents the synthetic RFR and VS,app

curve. The rightmost panel shows the objective function evolution

of each initial model coloured according to their objective function.

b Two-stage joint inversion of noise-free data using the PSO

method to find the pseudo-initial model. The estimated pseudo-

initial models are shown by the grey line in the initial models’

subpanel. The estimated S-wave velocity model generated by the

pseudo-initial model, interpolated S-wave velocity calculated by

averaging estimated S-wave velocity on a 40-layer setup, and

synthetic S-wave velocity are depicted in the estimated models

subpanel by navy blue, light blue and red line respectively. The

difference between the interpolated model and synthetic S-wave

velocities is illustrated in the interpolated difference subpanel. The

estimated and synthetic RFR and VS,app curves are demonstrated in

the estimated RFs and the estimated apparent velocities subpanels.

The cost function evolution panel depicted the cost function of the

global best minimum particle in each iteration through the pseudo-

initial model estimation using PSO
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S-wave velocities using the pseudo-initial model

resulting from the PSO algorithm interpolated on a

40-layer setup. The difference between the interpo-

lated and synthetic S-wave velocities is less than

0.15 km/s for the majority of depth ranges, however,

the mean difference exceeds this value in several

parts of the model in both algorithms. In general, due

to the low sensitivity of apparent velocity in depth

greater than * 50 km, the resolving power of our

inversion approach deteriorates in the deeper part of

the model. Figure 3 also represents an increase in
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error near the major boundaries due to the smoothing

constraint discussed in the previous synthetic test.

3.3. Effects of Data Noise and Stacking

This experiment is designed to simulate the joint

inversion framework for a real dataset. We used the

ray parameters and back azimuths of the teleseismic

events recorded by the permanent station CHBR in

southeast Iran (see data section below) to create

seismograms with a maximum 50% noise level from

a synthetic S-wave velocity model with the pertur-

bation of 0.6 km/s in different depth ranges (light

blue line in estimated models subpanel in Fig. 4). The

RFs for each seismogram are then calculated,

stacked, and used to determine the synthetic VS,app

curve observation. We then perform the joint inver-

sion framework using both random model search

(Fig. 4a) and PSO (Fig. 4b) as the pseudo-initial

model estimator to retrieve the S-wave velocity

model.

Figure 4 illustrates the resolution and reliability of

our joint inversion procedures. The mean estimated

S-wave velocities of the random model search

method to the depth of 40 km are resolved with an

error of less than 0.2 km/s. The PSO optimizer also

generated a pseudo-initial model (grey line in initial

models’ subpanel in Fig. 4b) that estimated a S-wave

velocity model with an average error of less than

0.2 km/s in the upper 40 km of the model. However,

the initial models used in the random model search

were generated according to the reference model with

a maximum of 0.6 km/s difference from the synthetic

S-wave velocity model. Thus, we can conclude that

in the absence of any estimate of the S-wave velocity

model for the real dataset inversion, the PSO

optimiser estimates a more reliable S-wave velocity

model.

The mean error of the estimated S-wave veloci-

ties, nonetheless, increased in the deeper part of the

model. The 40 km sharp change of the S-wave

velocities and the low sensitivity of the VS,app to the

deeper part of the model along with the imposed

noise level in seismograms and stacking of RFs could

be causative sources for the increment of errors in the

deeper part of our model. The sharp increase in error

at the depth of * 60 km in both methods could be a

result of imposed noise in the dataset. The joint

inversion of RFR and VS,app is often used to image the

upper crustal S-wave velocities (e.g., Park & Ishii,

2018; Wang et al., 2022). Our synthetic tests also

show that the estimated S-wave velocities in the

shallow part of the model (\ 50 km) are more

reliable than in the deeper part of the model.

However, the resolving power of our joint inversion

approach in the deeper part of the model ([ 50 km)

demonstrates that our proposed framework can be

used to infer the general S-wave velocity structures of

these depth ranges.

4. Real Data Application

We applied our joint inversion framework on a

dataset collected by a permanent station in the

southeast Iran in Makran subduction zone (Fig. 5).

We chose 377 teleseismic events with distances of

30� to 90� and magnitudes greater than five.

We resampled the raw data to 20 samples per

second and applied a 0.05–2.5 Hz bandpass filter to

remove noise outside this frequency range. We

computed the RFs using the iterative deconvolution

method of Ligorrı́a and Ammon (1990) and a Gaus-

sian filter with a width of 3.5 s (full width at half

maximum (FWHM) = 0.557 Hz, equivalent to a cut-

off frequency of 1.74 Hz). We used a series of cosine

low-pass filters with widths from 0 to 25 s to deter-

mine the apparent velocity of the RFs (Fig. 6d). We

then selected the RFR with the maximum amplitude

at the P-arrival and apparent velocities above 1.5 km/

s at all filter widths which resulted in a dataset that

contains 124 RFR time series (Fig. 6c). We stacked

the selected RFs for station CHBR to mitigate the

influence of noise, anisotropy, and structural hetero-

geneity (Fig. 6a). We illustrate the stacks of RFs for

station HYB and CAD in the supplementary materials

Figs. S3 and S8 respectively. Several stacking

methods are available in the jrfapp package. To cal-

culate different stacking of RFs, we first divide all the

calculated RFR into 24 bins according to their back-

azimuth and stack all the RFR in each bin linearly.

Then we applied several stacking methods. These

stacking methods include weighted stack according to

the number of RFR in 24 back-azimuth bins, phase
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weighted stack, K0 stack (e.g., Bianchi et al., 2010;

Dashti et al., 2020) and linear stack of the stacked

RFR in each bin (see Figs. S2 and S7 of

supplementary).

Figure 4
Two-stage joint inversion of data with 50% noise level. a Using random model search with 200 initial models. b Using the PSO optimization

method. Subpanels are the same as Fig. 3
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We used the linear stacking method for stacking

RFR recorded in all back azimuth for CHBR station.

Thus, each sample of stacked RFR is calculated by

finding the mean value of the corresponding sample

of all RFR that passes the apparent velocity criteria.

Then, we computed the apparent velocity of the

stacked receiver function (Fig. 6b) and performed a

joint inversion of the stacked RFR and its VS,app curve

for the CHBR station. The ray parameter of the

stacked RFR is the average of all ray parameters

included in the stacking process. Figure 7 shows

eight estimated S-wave velocity models for CHBR

with different numbers of layers, constant, and vari-

able smoothing-damping factors resulting from joint

inversion core algorithm using the estimated pseudo-

initial model from PSO method (output of stage-2 of

framework). The highlighted model produced a

minimum objective function according to Eq. 7

(Fig. 7; inversion outputs of HYB and CAD stations

presented in Figs. S3 and S8). Our estimated S-wave

velocity model points to a sharp decrease in velocity

at the depth of 2 km. The S-wave velocity then

increases sharply at the depth of 6–8 km. The S-wave

velocity for the depth ranges of 10 to 18 km is almost

constant around a value of 3.0 km/s. The S-wave

velocity slightly reduces at a depth of * 18 km

before it increases at another velocity interface at the

depth of * 24–30 km. The S-wave velocity for the

depth ranges greater than 30 km is estimated at about

4.0 km/s.

4.1. Result and Discussion

The station CHBR is located in the Makran

accretionary wedge (MAW) which is an active

subduction in southeast Iran and south Pakistan

(Fig. 5). It was previously used in several studies to

infer the MAW structures using joint inversion of

RFR and surface wave dispersion curve (Irandoust

et al., 2022; Motaghi et al., 2020; Penney et al., 2017;

Priestley et al., 2022; Taghizadeh-Farahmand et al.,

2015). Additionally, Haberland et al. (2021) presents

a P-wave velocity model for MAW across three deep

seismic sounding profiles. These studies allow us to

compare the results of our approach with different

Figure 5
Topography map of the Makran subduction zone in southeast Iran. The red triangle shows the location of CHBR station
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methods used to infer the subsurface structure from

the RFR time series and controlled seismic sources.

Figure 8 compares the S-wave velocity model

estimated for CHBR by this study with those from

Priestley et al. (2022), Motaghi et al. (2020), Penney

et al. (2017), Irandoust et al. (2022), and Haberland

et al. (2021). The S-wave velocity model of Haber-

land et al. (2021) deduced from their P-wave velocity

model using a constant VP/VS = 1.8. Our velocity

model is consistent with different models at the depth

ranges of 10–50 km. However, compared to other RF

studies this research has much lower velocities in the

shallow part of the model. Interestingly, Haberland

et al. (2021) model shows a similar decreased S-wave

velocity at the shallow part of the model (translated

from P-wave velocity in the original model). The

higher sensitivity of apparent velocity to these depth

ranges allows us to resolve a shallow low velocity

structure that was not detectable by the joint inver-

sion of RFR and surface wave dispersion. Surface

waves from earthquakes have very limited or no

resolution in the upper crust. The S-wave velocity

decrease at the depth of 2 km in our model is a result

of the decrease in the RFR amplitude observed

at * 1 s after the P onset (light blue line in Fig. 8b).

This peak manifests itself as a decrease in the

otherwise increasing trend of VS,app at the periods of

0–2 s (light blue line in Fig. 8c) which is mapped as a

Figure 6
Receiver functions and apparent velocities data which obtained for CHBR station. a Stacked RFR, b apparent velocity curve (VS,app) of stacked

RFR. c Radial receiver function time series stacked for different back-azimuths within 24 bins. The back-azimuth and number of RFR included

in each bin depicted at the left and right side of the stacked RFR, respectively. d Apparent velocities (VS,app) of the stacked RFR shown in panel

(c). Red line represents the average of all apparent velocity curves
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shallow low velocity in the estimated S-wave veloc-

ity model. This low velocity anomaly represents the

shallow sediments (Makran Sand) that overlaid the

older sediments (Himalayan Turbidite) with higher

S-wave velocities (Grando & McClay, 2007; Pajang

et al., 2021).

The S-wave velocity increment at the depth of

26–30 km is in agreement with the other models

shown in Fig. 8. This boundary marks the location of

the oceanic Moho discontinuity and is the result of a

sharp Ps at * 4 s in the stacked RFR. The similarity

between S-wave velocity generated by our proposed

method and those deduced from joint inversion of

RFR and surface wave dispersion is an indication that

the RFs alone can provide a good estimation of

S-wave velocity beneath a seismic station.

The difference between our model and the

previous studies represented in Fig. 8 increases at a

depth greater than 50 km. We again point out the

better sensitivity to S-wave velocity of the VS,app

compared to the surface wave studies in shallow

depth ranges, however, this relationship is flipped at

greater depth. A comparison of estimated S-wave

velocity of HYB and CAD stations is presented in

Figs. S5, S6 and S10 of the supplementary materials.

5. Conclusion

We presented a new framework for joint inversion

of the RFR and VS,app curve and a Python package

(jrfapp) which implements this framework. We show

Figure 7
The estimated S-wave velocity, receiver function, and apparent velocity for different layers setup using the estimated pseudo-initial model

from PSO method (output of joint inversion stage-2). The delay time thickness of pseudo-initial model stratified into 9 layers is divided into 2,

3, 4, and 5 in each subplot. The resulting delay time thickness used to calculate spatial layer thickness assuming the S-wave velocity of each

layer of pseudo-initial model. These 4 initial models are used in the linearised joint inversion (Eq. 7) with initial damping and smoothing

constraint (upper subplots) and increased damping and smoothing (lower subplots). The highlighted model is the model that generates lowest

objective function according to Eq. 7. The objective function (norm) of each linearised joint inversion is reported in the upper part of each

subpanel
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that this method can be used to estimate a high-res-

olution absolute S-wave velocity in crustal depth

ranges by using different synthetic tests. In our

approach, we simultaneously estimate S-wave

velocity and find best layer setups. In addition, a

pseudo-initial model is estimated using two individ-

ual methods, which helps us overcome the inherent

non-uniqueness of the joint inversion of receiver

function and apparent velocity curve. To test the

ability of the method for resolving the crustal struc-

ture, we estimated S-wave velocity model beneath

station CHBR located in the Makran subduction zone

in southeast Iran. The comparison of our estimated

model with previous research shows consistent

models in depth range of 10–50 km while the shal-

lower features are more consistent with the model

resolved by an active source deep sounding in the

region. Our tests confirm that the method can recover

general velocity structures at depth greater than

50 km due to the low sensitivity of the VS,app to these

depth ranges. The main advantage of this method is

the superior sensitivity to absolute velocities, at upper

crustal depth compared to surface wave dispersion, as

well as the fact that both datasets are entirely con-

sistent, as they are derived from the same raw data,

the teleseismic P-wave recording. The fact that no

pre-existing, complementary datasets (such as dis-

persion curves) are required makes this method

extremely easy to apply to any recorded teleseismic

P-wave data. Surface wave dispersion curves are

derived from an entirely different part of the earth-

quake waveform, require entirely different processing

and have much lower resolution in general, and

limited or no resolution on upper-crustal scale and

thereby provide a more regional representation of the

structure of the structure around the station,

Figure 8
a A comparison of the estimated S-wave velocity of this research (black line) with Penny et al. (2017; green line), Priestley et al., (2022; blue

line), Irandoust et al., (2022; red line), Motaghi et al., (2020; purple line), and Haberland et al., (2021; orange line). b Receiver functions

calculated from models shown in (a), light blue line represents observed RFR. All RFRs are normalised for consistency in illustration.

c Apparent velocity curves calculated from models shown in (a), light blue line represents observed VS,app curve
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depending on the setup and station distribution of the

tomography model.
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