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Abstract—A trend in the development of geophysics is to seek

wave theory closer to the physical reality and derive corresponding

wave equations to achieve highly accurate forward modeling,

imaging, and inversion of complex structures. The generalized

continuum mechanics (GCM) theory enriches the context of the

conventional continuum mechanics theory by introducing the

additional characteristic length scale parameters to represent the

microstructural properties of the medium, and the asymmetric

elastic wave equations derived from GCM theory can handle the

influence of heterogeneity of a medium caused by the microstruc-

tural interactions on the propagation of seismic waves. To date,

there are few studies on the numerical and analytical solutions of the

elastic wave equations derived from the GCM theory, especially in

the frequency band of seismic exploration. In addition, there are few

studies in the existing literature that incorporate multiple theories

and methods of the GCM theory into an integrated frame. In this

paper, we introduce the concept of the multi-scale microstructural

interactions and construct the quantitative relationship between the

characteristic length scale parameter of the medium and the char-

acteristic length scale parameter of the micro-pore reflecting the

micro-pore structures, and then integrate the modified couple stress

theory and the one-parameter second strain gradient theory into a

unified framework for numerical modeling and analysis.

Keywords: Asymmetric seismology, generalized continuum

mechanics theory, asymmetric elastic wave equations, numerical

modeling.

1. Introduction

The great advantage in the establishment of

elastic mechanics that is the basis of classical

seismology lies in the introduction of a ‘‘set system of

free particles,’’ nested within the framework of con-

ventional continuum mechanics theory, then

obtaining the widely used elastic wave equation

without the independent free term of rotational

motion. Although the wave equation derived from

conventional continuum mechanics theory has made

immense contributions to humankind, anyone

engaged in actual work, such as the operators of data

processing and interpretation from petroleum com-

panies and oil service technology companies, know

its huge unknown and unknowable factors. Scholars

have been deepening exploration of the field of for-

ward modeling, imaging, and inversion (Li et al.,

2022; Liu, 2019; Liu et al., 2020; Wang et al., 2022),

especially the study of wave theory in rock and soil

media which affects the propagation of seismic

waves. A trend in the development of geophysics is to

seek wave theory closer to the physical reality and

derive corresponding wave equations to achieve

highly accurate imaging and inversion of complex

structures.

Classical seismology is based on the framework

of conventional continuum mechanics theory, which

is considered a local theory, meaning that the stress at

a material point depends only on the strain at that

material point. Additionally, it is assumed that the

strain energy density function for the medium con-

tains only the classical strain (the first-order

derivative of the displacements). It requires an ide-

alized model and assumes that the materials making

up the medium are uniformly and continuously dis-

tributed. In other words, the material is represented

by a continuous mass rather than as discrete particles

(Zhu et al., 2020). In reality, complicated internal

micro-defects/microstructures commonly exist for
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both natural rock and soil media and human-made

materials. In rock and soil media, micro-defects/mi-

crostructures generally refer to the structures

characterized by the micro-pores, micro-cracks, and

micro-voids, while for metal, the micro-defects/mi-

crostructures refer to the crystal dislocations. It is

difficult to describe the complex microstructural

interactions by the conventional continuum mechan-

ics theory under its continuity assumption. One

feasible solution is to consider every microstructure

separately with conventional continuum theory.

However, this may compromise the efficiency and

accuracy in such a model. For some complex struc-

tures, ill-conditioned problems may occur, especially

for the localized deformation and fracture and long-

range interactions. The conventional continuum

mechanics theory is never capable of adequately

handling these problems (Askes & Gutierrez, 2006;

Bonnell & Shao, 2003). It is worth emphasizing that

the scale of micro-defects/microstructures varies with

the observation target, and it is a relative concept.

Although the different scales of observation have

straightforward boundaries, shorter scales of obser-

vation (e.g., microscale, nanoscale) have an influence

on longer scales of observation (e.g., macro-scale)

and vice versa, resulting in heterogeneous responses

(Askes & Metrikine, 2005). For rock and soil media,

microscale differences in the pore and grain geometry

of rocks result in macro-scale differences in wave

responses and characteristics.

The generalized continuum mechanics (GCM)

theory enriches the context of the conventional con-

tinuum mechanics theory by introducing additional

higher than first-order displacement gradients and

first-order rotation gradients (de Borst & Muhlhaus,

1992; Chang & Ma, 1992; Chang et al., 1998; De

Domenico et al., 2019; Karparvarfard et al., 2015;

Kong et al., 2009; Lam et al., 2003; Peerlings et al.,

1996; Yang et al., 2002), increasing the degrees of

freedom of the material point (Eringen,

1966, 1967, 1990), or taking the non-local effects into

account (Ari & Eringen, 1983; Eringen, 1999, 2002;

Eringen et al., 1977), which are usually accompanied

by additional characteristic length scale parameters

(or higher-order constants) to represent the

microstructural properties of the medium. Moreover,

the elastic wave equations derived from GCM theory

can handle the influence of heterogeneity of a med-

ium caused by the microstructural interactions on

propagation of seismic waves. The term ‘‘general-

ized’’ in GCM theory refers to the further relaxation

of the basic assumptions and principles of the con-

ventional continuum mechanics theory. Therefore,

these two theories are not mutually contradictory, but

rather complementary. In contrast to conventional

continuum mechanics theory, the GCM theory

imparts volume properties to the material point,

allowing it to be driven by forces and couples (a force

drives the material point to translate and a couple

drives the material point to rotate). Due to the inter-

actions between the material points, the body couple

and the surface couple are introduced, leading to the

asymmetry of the stress tensors. If the volume of the

material point vanishes, the GCM theory becomes the

conventional continuum mechanics theory.

The history of GCM theory development can be

traced back to the end of the nineteenth century,

when the existence of the body couple and the surface

couple in a medium was originally postulated by

Voigt (1887). Since then, numerous theories and

approaches have been proposed as extensions of the

conventional continuum mechanics theory. Among

them, the couple stress theory (Toupin, 1962), strain

gradient theory (Toupin, 1964), second strain gradi-

ent theory (Mindlin, 1965), micro-polar theory and

micro-stretch theory (Eringen, 1966, 1990), and non-

local theory (Eringen, 1983; Eringen & Edelen, 1972)

are relatively successful and widely used. These

theories accurately describe the underlying

microstructure by introducing factors of certain

characteristic length scale parameters that represent

the lower scales, while effectively saving computing

resources compared with the conventional theory.

Despite being short of the universally acknowledged

physical interpretation and unified understanding of

the characteristic length scale parameters with dif-

ferent definitions and numbers, it faces some

difficulties in large-scale applications. In 1964,

Mindlin (1964) proposed a more generalized theory

containing 903 characteristic length scale parameters.

In order to further promote the practical application

of theories and approaches, pioneering researchers

have for decades explored a variety of methods to

reduce the number of characteristic length scale
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parameters while effectively describing microstruc-

tural interactions. Aifantis (1999) proposed one-

parameter second strain gradient theory, in which the

second-order strain gradients are considered as an

additional effect of strain energy density. However,

the Aifantis theory is phenomenological, rather than

derived from the microstructure. Yang et al. (2002)

introduced an additional equilibrium relation to

govern the behavior of the couples and presented a

modified couple stress theory with one characteristic

length scale parameter. Chakraborty (2008) also

presented a non-local extension of Biot’s theory of

poroelasticity, which has only one characteristic

length scale parameter. This parameter can be esti-

mated by comparing the theoretical dispersion rate

with experimental observation, and Chakraborty’s

theory has been successfully applied to the diagnosis

of osteoporosis. Wang et al. (2020) derived the

asymmetric wave equations based on the modified

couple stress theory (Yang et al., 2002) and per-

formed numerical modeling for seismic wave

propagation in a viaduct system. The coefficient

reflecting the connection between the characteristic

length scale parameter of the medium and the char-

acteristic length scale parameter of the micro-pore

was obtained through the analysis of field data and

synthetic data.

To date, relatively few studies have been con-

ducted to derive the elastic wave equations in the

frame of GCM theory with numerical modeling or

analytical solutions, especially in the frequency band

of seismic exploration. In addition, there are few

studies in the existing literature that incorporate

multiple theories and methods of the GCM theory

into an integrated frame. In this work, we introduce

the concept of the multi-scale microstructural inter-

actions and consider the characteristic length scale

parameter as a comprehensive parameter affected by

multiple factors, including the localized deformation

phenomenon, stress concentration effect, and the

geometric characteristics of the material that make up

the medium. We incorporate the modified couple

stress theory and the one-parameter second strain

gradient theory into a unified framework to describe

microstructural interactions at different scales, and

analyze the influence of multi-scale microstructural

characteristics on seismic waves. Specifically, we

first derive asymmetric elastic wave equations based

on modified couple stress and one-parameter second

strain gradient theory under the same definition of the

characteristic length scale parameter of the medium.

Second, we perform numerical modeling for a lay-

ered model and salt model using three different wave

equations and analyze the influence on the propaga-

tion of seismic waves caused by the complex

microstructural interactions in the medium under

different theories. Finally, we draw conclusions based

on the findings.

2. Asymmetric Elastic Wave Equations

In the frame of the GCM theory, the characteristic

length scale parameter l of the medium along with the

high-order spatial derivative terms of the state vari-

ables (strain or stress) is used to describe the

influence of the microstructural interactions in the

medium on the propagation of seismic waves. In

general, the characteristic length scale parameter of

the medium is affected by multiple factors, such as

localized deformation phenomenon, stress concen-

tration effect in the medium, and the geometric

characteristics of the materials. In ideal conditions,

that is, without considering the influence of other

factors, the characteristic length scale parameter lm of

the micro-pore can be regarded as the characteristic

length scale of the medium, and the coefficient c
between the l and the lm can be calculated by com-

paring the field data with synthetic data (Wang et al.,

2020).

In this section, we first define the characteristic

length scale parameter lm of the micro-pore as the

mean particle diameter; through the quantitative

relationship l ¼ clm; c� 1, the characteristic length

scale parameter l of the medium can be expressed,

and then under the same characteristic length scale

parameter l, we derive the asymmetric elastic wave

equations based on the modified couple stress theory

and one-parameter second strain gradient theory.
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2.1. Asymmetric Elastic Wave Equations Based

on the Modified Couple Stress Theory

According to the couple stress theory (Koiter,

1964), the interaction between the material micro-

elements is transmitted through the surface stress p
nð Þ

i

and the surface force couple m
nð Þ

i , which can be

expressed by the stress tensor rij and couple stress

tensor lij:

p
nð Þ

i ¼ rjinj; ð1Þ

m
nð Þ

i ¼ ljinj; ð2Þ

where nj is the unit normal vector.

At the same time, the stress tensor and the couple

stress tensor both satisfy the equilibrium equation of

linear momentum and the equilibrium equation of

angular momentum:

d

dt

Z

Va

Vidv ¼
I

Sa

p
nð Þ

i ds þ
Z

Va

Fidv ¼ 0 ¼ q
o2ui

ot2

� �
;

ð3Þ

d

dt

Z

Va

Xidv ¼
I

Sa

eijkrjp
nð Þ

k þ m
nð Þ

i

h i
ds

þ
Z

Va

eijkrjFk þ Mi

� �
dv

¼ 0; ð4Þ

where Va is the volume of the material and Sa is the

boundary; Vi;Xi are the linear momentum and

angular momentum, respectively; Fi;Mi are the body

force and body couple; eijk is the permutation symbol,

rj is the position vector, ui is the displacement vector,

and q is the density.

Applying the divergence theorem, transforming

from surface integral to volume fraction, and ignoring

high-order traces, the differential expression of the

equilibrium equations can be obtained:

rji;j þ Fi ¼ q
o2ui

ot2
; ð5Þ

lji;j þ eistrst þ Mi ¼ 0: ð6Þ

Decomposing the stress tensor into the sum of the

symmetric stress tensor and the antisymmetric stress

tensor (Yang et al., 2002), we obtain

rij ¼ sij þ rij;

sij ¼
1

2
rij þ rji

� �
;

rij ¼
1

2
rij � rji

� �
:

ð7Þ

Thus, the equilibrium equations can be expressed

as follows:

sji;j þ rji;j þ Fi ¼ q
o2ui

ot2
; ð8Þ

lji;j þ eistrst þ Mi ¼ 0: ð9Þ

According to Eq. (9), we can derive the relation-

ship between the antisymmetric stress tensor and the

couple stress tensor:

rst ¼
1

2
lji;j þ Mi

� �
eits: ð10Þ

Now, the couple stress tensor is decomposed into

the sum of the deflection part and the spherical part

(Yang et al., 2002):

lij ¼ mij þ
1

3
lkkdij: ð11Þ

Taking the divergence of Eq. (10), and substitut-

ing Eq. (11), we have

rts;t ¼
1

2
mji;jt þ Mi;t

� �
eist: ð12Þ

Substituting Eqs. (7) and 12) into Eq. (8), to

eliminate the antisymmetric stress tensor, the equi-

librium equation containing the symmetric stress

tensor and the deflection part of the couple stress

tensor has the following relationship:

sji;j þ
1

2
eiktmst;sk þ

1

2
eistMt;s þ Fi ¼ q

o2ui

ot2
: ð13Þ

Further, we consider the boundary conditions in

the frame of couple stress theory.

Then, applying the principle of virtual work, we

derive the constitutive relations of the modified

couple stress theory (Yang et al, 2002). The work

done by the external loads through the virtual

displacement dui and the virtual rotation dxi is

expressed as follows (Hadjesfandiari & Dargush,

2011):
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Z

Va

rji;j þ Fi

� �
duidv ¼ 0; ð14Þ

Z

Va

lji;jþeistrst þ Mi

� �
dxidv ¼ 0: ð15Þ

According to the principle of virtual work, the

change in the deformation energy is equal to the work

done by the external loads through the virtual

displacement and the virtual rotation.
Z

Va

rjideijdv þ
Z

Va

ljidxi;jdv ¼
Z

Va

dwdv

¼
Z

Sa

p
nð Þ

i duids þ
Z

Sa

m
nð Þ

i dxids

þ
Z

Va

Fiduidv þ
Z

Va

Midxidv

¼
Z

Va

Fidui þ Midxið Þdv

þ
Z

Va

rji;jdui þ rjidui;j þ mji;jdxi þ mjidxi;j

� �
dv

¼
Z

Va

dui rji;j þ Fi

� �
þ dxi mji;j þ Mi

� �
þ rjidui;j þ mjidxi;j

� �
dv;

ð16Þ

where w is the deformation energy density.

Under the assumption of small deformation, the

relative displacement between two points in a Carte-

sian coordinate system is expressed as follows (Aki &

Richards, 2002):

dui ¼ ui;jdxj; ð17Þ

where ui;j is the displacement gradient tensor and can

be decomposed into the sum of the symmetric strain

tensor eij and antisymmetric rotation tensor xij.

eij ¼
1

2
ui;j þ uj;i

� �
;

xij ¼
1

2
ui;j � uj;i

� �
:

ð18Þ

The rotation vector xi corresponding to the

antisymmetric rotation tensor xij is defined as

xi ¼
1

2
eijkuk;j ¼ � 1

2
eijkxjk: ð19Þ

In the frame of couple stress theory, the rotation

gradient tensor xi;j is introduced to describe the

torsional and bending deformation of the material.

We define the symmetric curvature tensor vij and the

antisymmetric curvature tensor jij, respectively, as

follows (Yang et al., 2002):

vij ¼
1

2
xi;j þ xj;i

� �
¼ 1

2

1

2
ejklul;ki þ

1

2
eiklul;kj

� �
;

jij ¼
1

2
xi;j � xj;i

� �
¼ 1

2

1

2
ejklul;ki �

1

2
eiklul;kj

� �
:

ð20Þ

Substituting the equilibrium equation (Eq. (13))

and Eq. (18), (20) into Eq. (16), we obtain
Z

Va

dwdv

¼
Z

Va

dui rji;j þ Fi

� �
þ dxi lji;j þ Mi

� �
þ rjidui;j þ mjidxi;j

� �
dv

¼
Z

Va

deijsij þ dvijmij

� �
dv:

ð21Þ

Then we derive the conjugate relationship

between the deformation energy density and the

displacement and the torsional and bending defor-

mation. The deformation energy density depends

only on the symmetric strain tensor and the symmet-

ric curvature tensor.

sij ¼
ow

oeij
;

mij ¼
ow

ovij

:

ð22Þ

As for the isotropic medium, the deformation

energy density can be written as follows:

w ¼ 1

2
k eiið Þ2þleijeij þ ll2vijvij

¼ 1

2
k eiið Þ2þleijeij þ gvijvij;

ð23Þ

where k; l are the Lamé constants, g is a parameter

reflecting the characteristics of the medium’s rota-

tional movement, g ¼ ll2, and l is the characteristic

length scale parameter of the medium.

Then we derive the constitutive relations for the

isotropic medium.
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sij ¼ kdijekk þ 2leij;

mij ¼ 2ll2vij ¼ 2gvij:
ð24Þ

Substituting the constitutive relations (Eq. (24))

into the equilibrium equation (Eq. (13)), the elastic

wave equations based on the modified couple stress

theory (Yang et al., 2002) are given as follows

(without consideration of body force and body force

couple):

kþ lð Þuj;ji þ lui;jj

þ 1

2
eijkg

1

2
ekmnun;mllj þ

1

2
elmnun;mklj

� �

¼ q
o2ui

ot2
: ð25Þ

2.2. Asymmetric Elastic Wave Equations Based

on the One-Parameter Second Strain Gradient

Theory

According to the non-local theory, the state

variables of a point are weighted by the state

variables of all points in its neighborhood (Eringen,

1972).

~A xð Þ ¼ 1

V

Z

V

h nð ÞA xþ nð ÞdV; ð26Þ

where V is the volume of the neighborhood, and for a

spherical neighborhood, we consider the characteris-

tic length scale parameter l of the medium as the

radius of the spherical neighborhood, V ¼ 4
3
pl3, ~A xð Þ

is an equivalent state variable of a point, A xþ nð Þ is
the state variable of each point in the neighborhood,

h nð Þ is an empirical weighting function subject to the

normalization condition
R
V

h nð ÞdV ¼ V, and when

A xþ nð Þ is constant, ~A xð Þ ¼ A xþ nð Þ. Assuming

h nð Þ ¼ 1, Eq. (26) can be rewritten as

~A xð Þ ¼ 1

V

Z

V

A xþ nð ÞdV: ð27Þ

Applying the Taylor series expansion algorithm,

keeping the derivative term below the second order,

and substituting the volume of the neighborhood, we

derive

~A xð Þ ¼ A xð Þ þ l2

10
r2A xð Þ ¼ 1þ l2

10
r2

� �
A xð Þ:

ð28Þ

According to the generalized Hooke’s law, the

expression of the constitutive equation is as follows:

rij ¼ Cijklekl; ð29Þ

where rij is the stress tensor, ekl is the strain tensor,

and Cijkl is the elastic coefficient tensor.

Thus, we define the non-local strain tensor as

(Voyiadjis & Dorgan, 2004):

~e ¼ 1þ l2

10
r2

� �
e ¼ 1þ cr2

� �
e; ð30Þ

where c is the coefficient of the second-order gradient

tensor, c ¼ l2
�
10.

Substituting the non-local strain tensor and the

non-local stress tensor for the strain tensor and the

stress tensor, respectively, we obtain

~rij ¼ Cijkl~ekl ¼ Cijklðekl þ cr2eklÞ: ð31Þ

As for isotropic medium, the constitutive equation

can be rewritten as

~rij ¼ k ekk þ cr2ekk

� �
dij þ 2l eij þ cr2eij

� �
¼ 1þ cr2

� �
kdijekk þ 2leij

� �
: ð32Þ

The equilibrium equation is given as

rji;j þ Fi ¼ q
o2ui

ot2
: ð33Þ

In the case of equivalent stress, the equilibrium

equation can be rewritten as

~rji;j þ Fi ¼ q
o2ui

ot2
: ð34Þ

Substituting the constitutive equation based on the

non-local theory into the equilibrium equation, we

derive the asymmetric elastic wave equations based

on the one-parameter second strain gradient theory

(without consideration of body force):

1þ cr2
� �

kþ lð Þuj;ij þ lui;jj

� �
¼ q

o2ui

ot2
: ð35Þ

According to Eqs. (25) and (35), it is worth noting

that the independent free terms in the asymmetric wave

equations derived from the two different theories are

2724 W. Bai et al. Pure Appl. Geophys.



not exactly the same. For Eq. (25), the independent

free term is 1
2

eijkg 1
2

ekmnun;mllj þ 1
2

elmnun;mklj

� �
, whereas

for Eq. (35), the independent free term is

cr2 kþ lð Þuj;ij þ lui;jj

� �
. The independent free term

is used to describe the internal microstructural inter-

actions. Compared with the modified couple stress

theory, the one-parameter second strain gradient

theory in which the strain energy density function

contains a higher-order spatial derivative of strain can

describe the heterogeneity of a medium caused by

smaller-scale microstructural interactions. Assuming

that the scale of the internal microstructure of the

medium is the characteristic length scale parameter l of

the medium, the asymmetric elastic wave equation

based on the modified couple stress theory can

represent the microstructural interactions with scale l,

and the asymmetric elastic wave equation based on the

one-parameter second strain gradient can represent the

smaller-scale microstructural interactions inside the

spherical neighborhood with scale l as the radius.

Therefore, the concept of multi-scale microstructural

interactions can be introduced.

In the next section, by setting the same charac-

teristic length scale parameter for the micro-pore, we

perform numerical modeling for the layered model

and salt model using the conventional elastic wave

equations and the asymmetric elastic wave equations

based on the modified couple stress theory and one-

parameter second strain gradient theory, and we

analyze the influence of the microstructural interac-

tions described by the different theories on the

propagation of seismic waves. Compared with the

conventional elastic wave equations, the asymmetric

elastic wave equations only introduce an additional

characteristic length scale parameter of the medium

and an independent free term describing the

microstructural interactions in the medium. As a

result, the demand for computing resources is not

greatly increased. In addition, to avoid the influence

of numerical dispersion and boundary reflections on

the modeling results, we use a higher-order optimized

finite-difference operator and optimized perfectly

matched layer (PML) boundary conditions for

numerical modeling.

3. Numerical Modeling

3.1. Layered Model

First, we perform numerical modeling of the two-

layered model, as shown in Fig. 1. Both the horizon-

tal and vertical sizes of the model are 3.2 km, and the

grid interval is dx = dz = 8 m. For the first layer of

the model, the P-wave velocity, S-wave velocity, and

density are 2.4 km/s, 1.3856 km/s, and 1400 kg/m3,

and for the second layer they are 4.2 km/s,

2.4249 km/s, and 2600 kg/m3, respectively. The

characteristic length scale of the micro-pore of the

first layer is set to 700 lm, and the second layer is set

to 300 lm. A Ricker wavelet with a dominant

frequency of 25 Hz is located at (1.6 km, 0 km), as

shown in the red pentacle in Fig. 1. The time interval

is 0.001 s, and the record length is 3 s.

We perform numerical modeling for the two-

layered model using the conventional elastic wave

equations and the asymmetric elastic wave equations

based on the modified couple stress theory. Figure 2

shows the snapshots generated by different elastic

wave equations at a moment of 1.25 s. Figure 2a and

d are the snapshots (x and z component) generated by

the conventional elastic wave equations, Fig. 2b and

e are the snapshots (x and z component) generated by

the asymmetric elastic wave equations based on the

modified couple stress theory, and Fig. 2c and f are

Figure 1
Two-layered model used for numerical modeling. The thickness of

the first layer is 1.6 km. The source position is shown by the red

pentacle
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the difference between Fig. 2a and b and between

Fig. 2d and e, respectively.

As shown in Fig. 2, due to the addition of an

independent free term containing the characteristic

length scale parameters of the medium to the

asymmetric elastic wave equation based on the

modified couple stress theory, some new components

of wavefields appear in both the x and z components

of the synthetic snapshots, which can be regarded as

the displacement disturbance caused by the hetero-

geneity of the medium. In Fig. 2c and f, the changes

in wavefields can be observed more clearly. How-

ever, the changes are only reflected in the propagation

of S-waves and have no effect on the propagation of

P-waves.

The numerical modeling results of the layered

model show that the elastic wave equation derived

from the modified couple stress theory, containing the

independent free term embedded in the characteristic

length scale parameter of the medium, can describe

the propagation of displacement disturbances gener-

ated by considering the microstructural interactions

in the medium. The propagation of displacement

disturbances can be clearly observed in the synthetic

snapshots. At the same time, the heterogeneity of the

medium caused by the microstructural interaction

described by the modified couple stress theory has no

effect on the propagation of the P-wave; however, it

will cause new components to appear in the wave-

fields of the S-wave, causing the S-wave to propagate

in a dispersive manner.

Next, a comparison of the synthetic snapshots

generated by the conventional elastic wave equation

and the asymmetric elastic wave equation based on

the one-parameter second strain gradient theory is

shown in Fig. 3. Similarly, all the snapshots are

Figure 2
a Snapshots generated by the conventional elastic wave equations (x component); b snapshots generated by the elastic wave equations based

on the modified couple stress theory (x component); c the difference between a and b; d snapshots generated by the conventional elastic wave

equations (z component); e snapshots generated by the elastic wave equations based on the modified couple stress theory (z component); f the

difference between d and e
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computed at 1.25 s. Figure 3a and d present the

snapshots (x and z component) generated by the

conventional elastic wave equations, Fig. 3b and e

show the snapshots (x and z component) generated by

the asymmetric elastic wave equations based on the

one-parameter second strain gradient theory, and

Fig. 3c and f show the difference between Fig. 3a and

b and between Fig. 3d and e, respectively.

As shown in Fig. 3, whether in the x component

or the z component of the synthetic snapshots, the

influence of displacement disturbance caused by the

heterogeneity of the medium described by the

second-order strain gradient on the propagation of

seismic waves can be clearly observed. That is, new

components of wavefields appear in the synthetic

snapshots. Comparing the differences in the snap-

shots as shown in Fig. 3c and f, we can more clearly

observe the changes in the wavefields. The changes

are reflected not only in the propagation of the

S-wave, but also in the propagation of the P-wave,

and the P-wave and S-wave both propagate in a

dispersive manner. At the same time, under the

framework of the one-parameter second strain gradi-

ent theory, the influence of microstructural

interactions in the medium on the S-wave is signif-

icantly greater than that on the P-wave.

Further, we extract single-trace synthetic seismo-

grams at the position (x, z) = (0.8 km, 0.4 km) for

analysis, as shown in Fig. 4. Figure 4a–c depicts the

x component and Fig. 4d–f the z component of

single-trace synthetic seismograms. The blue, red,

and green lines represent the seismograms generated

by the conventional elastic wave equations, the

elastic wave equations based on the modified couple

stress theory, and the one-parameter second strain

gradient theory, respectively.

Figure 3
a Snapshots generated by the conventional elastic wave equations (x component); b snapshots generated by the elastic wave equations based

on the one-parameter second strain gradient theory (x component); c the difference between a and b; d snapshots generated by the

conventional elastic wave equations (z component); e snapshots generated by the elastic wave equations based on the one-parameter second

strain gradient theory (z component); f the difference between d and e
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In order to facilitate comparison, the single-trace

synthetic seismograms generated by different elastic

wave equations are shown together in Fig. 4d and h.

Figure 4d indicates that the spatial derivative term of

rotation introduced by the modified couple stress

theory only affects the S-wave and converted wave,

new information appears in the S-wave and converted

wave, and both the amplitudes and the travel time

have changed. While the second-order gradient of

strain introduced by the one-parameter second strain

gradient theory affects the S-wave, P-wave, and

converted wave, although the changes in seismo-

grams are weaker, the changes in the amplitudes and

the travel time of the S-wave, P-wave, and converted

wave can still be observed in Fig. 4h.

In addition, we note that even though the char-

acteristic length scale parameters of the micro-pore

are set the same, the heterogeneity of the medium

described by the modified couple stress theory has a

larger influence on the seismograms, which also

shows that the modified couple stress theory and the

one-parameter second strain gradient theory derived

from the non-local theory describe the heterogeneity

with different scales. Compared with the modified

couple stress theory, the one-parameter second strain

gradient theory can reflect the heterogeneity at

smaller scale; however, the influence on seismic

waves is weaker.

We capture seven regions (black dotted bordered

rectangle) of Fig. 4d and h to zoom in, respectively,

as shown in Fig. 5b–f and Fig. 6b–f. The influence of

the heterogeneity of the medium caused by the

microstructural interactions on the propagation of

seismic waves can be observed more clearly, and the

conclusions drawn are consistent with the above

analysis.

3.2. Salt Model

We then perform additional numerical modeling

of the SEG/EAGE (Society of Exploration

Geophysicists/European Association of Geoscientists

and Engineers) salt model to further examine the

different elastic wave equations. The grid dimensions

of the salt model are nx = 676, nz = 201, and the grid

spacing is 8 m in both the x- and z-axis. The P-wave

velocity model is shown in Fig. 7. The S-wave

velocity is a scaled version of the P-wave velocity,

with vS ¼ vP

� ffiffiffi
3

p
:. The seismic source is a Ricker

wavelet with a dominant frequency of 25 Hz, located

at the red pentacle in Fig. 7. The record length is 5 s

with a time step of 0.001 s. The characteristic length

scale parameter of the micro-pore of the salt model is

set to 700 lm.

Figure 8 shows the x and z components of the

synthetic shot records for the salt model generated by

the conventional elastic wave equation and the

asymmetric elastic wave equation based on the

modified couple stress theory. Figure 8c is the record

of Fig. 8a subtracted from Fig. 8b, and Fig. 8f is the

record of Fig. 8d subtracted from Fig. 8e.

We noted that even when the model is more

complex, the displacement disturbance caused by the

heterogeneity of the medium described by the spatial

derivative of rotation still has an obvious influence on

the propagation of seismic waves, as shown in Fig. 8.

Compared with the shot records generated by the

conventional elastic wave equation, the shot records

generated by the asymmetric elastic wave equation

have obvious differences in some regions, marked

with the red arrows. It is easier to observe from the

results of the subtraction, that is, as shown in Fig. 8c

and f, new components appear in the records of the

S-wave and surface wave. These new components are

generated by considering the heterogeneity of the

medium caused by the microstructural interactions.

Figure 9 shows the x and z components of the

synthetic shot records for the salt model generated by

the conventional elastic wave equation and the

asymmetric elastic wave equation based on the one-

parameter second strain gradient theory. Figure 9c is

the record of Fig. 9a subtracted from Fig. 9b, and

Fig. 9f is the record of Fig. 9d subtracted from

Fig. 9e.

Similarly, for complex models, the displacement

disturbance described by the second-order gradient of

strain also has an obvious influence on the propaga-

tion of seismic waves (see the regions marked by the

bFigure 4

Seismograms generated by different elastic wave equations: a-

d x component; e–h z component
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red arrows in Fig. 9). If the shot records generated by

the two elastic wave equations are subtracted, as

shown in Fig. 9c and f, new components appear not

only in the records of the S-wave and the surface

wave, but also the records of the P-wave, which

shows that the smaller-scale heterogeneity of the

medium has an influence on the P-wave.

In summary, whether for the layered model or

more complex salt model, compared with the numer-

ical modeling results generated by the conventional

Figure 5
Magnification of seismograms generated by different elastic wave equations (x component). a Seismograms generated by different elastic

wave equations; b–h zoomed-in views of blocks 1–7, respectively

Figure 6
Magnification of seismograms generated by different elastic wave equations (z component). a Seismograms generated by different elastic

wave equations; b–h zoomed-in views of blocks 1–7, respectively
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elastic wave equations, the results generated by the

asymmetric elastic wave equations contain new

components which are very closely related to the

characteristic length scale parameter of the medium.

It is worth noting that in the frequency band of

seismic exploration, the wavefield responses caused

by the multiple-scale heterogeneity of the medium

can still be clearly observed.

4. Conclusions

Complicated internal micro-defects/microstruc-

tures exist in both natural earth media and human-

made materials. However, it is difficult to describe

the complex microstructural interactions by the con-

ventional continuum mechanics theory under its

continuity assumption. In addition, it is worth

emphasizing that the scale of micro-defects/

Figure 7
The SEG/EAGE salt P-wave velocity model

Figure 8
Synthetic shot records of the SEG/EAGE salt model, generated by the different elastic wave equations. a Synthetic shot records generated by

the conventional elastic wave equations (x component); b synthetic shot records generated by the elastic wave equations based on the modified

couple stress theory (x component); c the difference between a and b; d synthetic shot records generated by the conventional elastic wave

equations (z component); e synthetic shot records generated by the elastic wave equations based on the modified couple stress theory

(z component); f the difference between d and e
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microstructures varies with the observation target,

and it is a relative concept. In this paper, we integrate

the modified couple stress theory and the one-pa-

rameter second strain gradient theory into a unified

framework for analyzing the complex microstructural

interactions in the medium. Then we derive the

asymmetric elastic wave equations based on the

modified couple stress theory and the one-parameter

second strain gradient theory under the same char-

acteristic length scale parameter and perform

numerical modeling. We can draw the following

conclusions.

1. The complex microstructural interactions in the

medium have an influence on the propagation of

seismic waves. In the frequency band of seismic

exploration, the influence of the microstructural

interactions on the propagation of seismic waves

can be obviously observed in seismic wave

responses.

2. For the modified couple stress theory, the spatial

derivative of rotation is introduced to describe the

complex microstructural interactions, which

causes the S-wave to propagate in a dispersive

manner and has no effect on the P-wave

propagation.

3. For the one-parameter second strain gradient

theory, the second-order gradient of strain is

introduced, which can represent smaller-scale

microstructural interactions in the medium. New

components appear in the P-wave and S-wave

Figure 9
Synthetic shot records of the SEG/EAGE salt model, generated by the different elastic wave equations. a Synthetic shot records generated by

the conventional elastic wave equations (x component); b synthetic shot records generated by the elastic wave equations based on the one-

parameter second strain gradient theory (x component); c the difference between a and b; d synthetic shot records generated by the

conventional elastic wave equations (z component); e synthetic shot records generated by the elastic wave equations based on the one-

parameter second strain gradient theory (z component); f the difference between d and e
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responses, while the amplitude and travel time

also change.

4. The influence of the microstructural interactions

described by the one-parameter second strain

gradient theory on the propagation of seismic

waves is weaker, and smaller microscale differ-

ences in the pore and grain geometry of rocks

result in smaller macro-scale differences in wave

responses and characteristics.
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