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Abstract—Given a distribution of earthquake-induced seafloor

elevations, we present a method to compute the probability of the

resulting tsunamis reaching a certain size on shore. Instead of

sampling, the proposed method relies on optimization to compute

the most likely fault slips that result in a seafloor deformation

inducing a large tsunami wave. We model tsunamis induced by

bathymetry change using the shallow water equations on an ide-

alized slice through the sea. The earthquake slip model is based on

a sum of multivariate log-normal distributions, and follows the

Gutenberg-Richter law for seismic moment magnitudes ranging

from 7 to 9. For a model problem inspired by the Tohoku-Oki 2011

earthquake and tsunami, we quantify annual probabilities of dif-

ferently sized tsunami waves. Our method also identifies the most

effective tsunami mechanisms. These mechanisms have smoothly

varying fault slip patches that lead to an expansive but moderately

large bathymetry change. The resulting tsunami waves are com-

pressed as they approach shore and reach close-to-vertical leading

wave edge close to shore.

Keywords: Tsunami hazard, probability estimation, shallow

water equations, PDE-constrained optimization, adjoint equations.

1. Introduction

Among all potential sources, megathrust earth-

quakes are likely to cause the most extreme tsunami

hazards for coastal regions (Grezio et al., 2017;

Behrens et al., 2021). Recent work has focused on

defining megathrust tsunami source scenarios for

simulations to evaluate a quantity of interest (QoI)

such as the maximal wave height (Gao et al., 2018).

Since earthquake fault slip patterns are unpredictable,

a probabilistic study of these QoIs is needed. In

LeVeque et al. (2016) and Williamson et al. (2020),

the authors construct realistic tsunami source distri-

butions and use simulations based on samples from

that distribution to obtain hazard curves for maxi-

mum water depth, i.e., the annual probabilities of the

water depth exceeding certain values. Typically,

estimating small probabilities requires a large number

of Monte Carlo simulations to find samples corre-

sponding to probability tails. Importance sampling

(IS) can be an improvement, but requires a properly

chosen proposal density and, typically, still a large

number of samples (Liu, 2001). In this paper, we

present a sampling-free method for computing annual

probabilities of tsunamis on shore with uncertainty

from fault slips using ideas from optimization and

applied probability. The approach uses a probabilistic

model of earthquake fault slips, adapting ideas from

LeVeque et al. (2016) and Gao et al. (2018), and

simulates tsunami waves using the one-dimensional

nonlinear shallow water equations. Our target is not

an online tsunami warning system, but offline hazard

estimation that is capable of accurately computing

very small probabilities. The proposed method is

most efficient for scalar QoIs, e.g., to compute tsu-

nami size probabilities in a single location on shore.

This paper builds on the approach proposed in

Dematteis et al. (2019) for extreme event probability

estimation and extends our recent work (Tong et al.,

2021) on tsunami prediction in multiple directions.

First, it considers fault slip events that take into

account the physics constraints such as slip orienta-

tion and magnitude and whose distribution fits the

Gutenberg-Richter law for earthquake moment mag-

nitudes between 7 and 9. To obtain a realistic fault

slip model distribution, we use a sum of weighted

multivariate log-normals. Additionally, we study the
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most effective fault mechanisms for obtaining a tsu-

nami of a certain height on shore. These optimizers

are a side products of the proposed method which

uses a sequence of optimization problems for prob-

ability estimation.

The proposed approach for probability estimation

is not specific to tsunamis. Rather, it is applicable to a

wide class of problems involving complex systems

(e.g., governed by partial differential equations) with

high-dimensional parameters. The method assumes

some regularity of the functions involved and that

certain optimization problems have a unique solution.

Additionally, it requires access to derivatives of the

map from parameters to the QoI, which typically can

be computed efficiently using adjoint methods. The

tsunami issue discussed in this paper assumes that the

main uncertainty stems from the fault slips, and slips

are of the buried rupture type, but the method can be

also applied to other types (splay-faulting, trench-

breaching) by choosing different slip distribution

means.

2. Sampling-Free Estimation of Small Probabilities

We briefly present our approach to estimate

probabilities of outputs (QoIs) arising from complex

systems that depend on potentially high-dimensional

uncertainties. We summarize the method for multi-

variate Gaussian parameter distributions. For the

tsunami problem discussed in the next section, the

approach is adapted for a sum of log-normal

distributions.

We assume a random variable vector h 2 Rn with

h�N ðl;CÞ, i.e., h follows a multivariate Gaussian

distribution with mean l 2 Rn and a symmetric,

positive definite covariance matrix C 2 Rn�n. The

negative log-probability density function for this

distribution is IðhÞ :¼ 1
2
ðh� lÞT C�1ðh� lÞ. This

quadratic is, at the same time, the so-called rate

function in large deviation theory, which allows

generalization of the approach to non-Gaussian dis-

tributions (Dematteis et al., 2019). However, for

Gaussians, log-normals and their sums as considered

here, it is sufficient to consider Ið�Þ. The parameter

vectors h are the inputs into the parameter-to-QoI

map F discussed next.

We assume a sufficiently regular, possibly com-

plicated map F : Rn!R, which maps the parameter

vector to a scalar QoI FðhÞ 2 R. We are interested in

approximating the probability

PðzÞ :¼ PðFðhÞ� zÞ; ð1Þ

where z is a large value and thus PðzÞ � 1. While

such a probability can be estimated using Monte-

Carlo sampling, the performance of these samplers

typically degrades for large z and thus small proba-

bilities P(z), since random samples are unlikely to

lead to large QoIs. Using geometric arguments and

results from probability, in particular large deviation

theory (LDT), shows that the following optimization

problem plays an important role for the estimation of

(1):

hHðzÞ ¼ argmin
FðhÞ¼z

IðhÞ: ð2Þ

The LDT-minimizer hH ¼ hHðzÞ is the most likely

point in the set XðzÞ ¼ fh : FðhÞ� zg, i.e., the ran-

dom parameters that correspond to a QoI of size z or

larger. Under reasonable assumptions, in particular

the uniqueness of the solution of (2) [for details see

Tong et al. (2021), Dematteis et al. (2019)], one can

show that for large z, the probability measure is

concentrated around the optimizer hH. Moreover, the

probability can be well approximated using local

derivative information of F and I at hH. Namely,

provided sufficient smoothness of F, we can

approximate the nonlinear equation FðhÞ ¼ z using a

Taylor expansion about hH truncated after the quad-

ratic term:

FSOðhÞ :¼ FðhHÞ þ hrFðhHÞ; h� hHi

þ 1

2
hh� hH;r2FðhHÞðh� hHÞi:

ð3Þ

Replacing the boundary of the extreme QoI set, i.e.,

fh : FðhÞ ¼ zg with the quadratic approximation of

the boundary, i.e., fh : FSOðhÞ ¼ zg allows to com-

pute the integration (1) analytically, resulting in an

estimate of the form PðzÞ � D0ðzÞe�IðhHÞ, where the

prefactor D0ðzÞ can be computed using local curva-

ture information of F at hH. Here, randomized linear

algebra methods can be used to only compute the

eigenvalues that are important for D0ðzÞ. The number

of such eigenvalues depends on the geometry of
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FSOðhÞ and the underlying multivariate Gaussian, and

is typically small.

The most important step for probability estima-

tion using the LDT approach is to solve the

optimization problem (2); see also Dematteis et al.

(2018, 2019). After obtaining the optimizer hHðzÞ, we
can integrate the probability measure of the set

bounded by the second-order Taylor expansion (3) to

obtain an approximation of the probability (1), as

shown in Fig. 1. For computing the prefactor D0ðzÞ in
the estimate PðzÞ � D0ðzÞe�IðhHÞ, we use local

derivative information of F and I at hHðzÞ. The

resulting expression for D0ðzÞ is given by

D0ðzÞ :¼
ð2pÞ�

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2IðhHÞ
q

Y

n�1

i¼1

1� krIðhHÞk
krFðhHÞk

ki P>
PrC

1
2r2FðhHÞC1

2PPr

� �

" #�1
2

:

Here, for brevity, we write hH instead of hHðzÞ. The
operator PPr is the projection onto the orthogonal

space of the gradient rFðhHÞ. Moreover, kið�Þ rep-

resents the ith eigenvalue of a matrix. This estimation

is equivalent to the Second Order Reliability Method

(SORM) in engineering (Rackwitz, 2001). However,

we use an formulation lending itself to higher

dimensions, since it only requires the application of

the second derivative matrix r2Fðh	Þ to vectors,

rather than building this matrix explicitly. We use

finite differences of gradients to approximate these

Hessian-vector products. Such gradients are com-

puted using adjoints, as summarized in Sect. 4. The

estimation then uses randomized linear algebra

methods to compute the dominating eigenvalues

efficiently (Halko et al., 2011); details can be found

in Tong et al. (2021).

3. Earthquake-Induced Tsunamis

Next, we present the tsunami model. We describe

how we model the distribution of uncertain fault slips

corresponding to the random parameter h and the

forward model F, which involves the solution of the

shallow water equation. We use a model setup sket-

ched in Fig. 2, which is inspired by the 2011 Tohoku-

Oki earthquake and tsunami (Fujiwara et al., 2011;

Dao and Tkalich, 2007). The geometry represents a

two-dimensional slice with a bathymetry that models

the continental shelf and the pacific ocean to the east

of Japan. The fault location and dip angle are taken

from Zhan et al. (2012). We generate random slips as

discussed in the next section. In Fig. 3, we show

snapshots of tsunami waves traveling towards shore,

which is located on the left side of the domain.

3.1. Modeling Bathymetry Change as Random Field

We model earthquake-induced bathymetry change

as a random variable to account for its uncertainty.

More precisely, we model fault slips along patches in

the subduction fault using a multivariate log-normal

distribution. Random fault slips are propagated to the

seafloor bathymetry change using the Okada model

(Okada, 1985), which assumes a linear elastic crust.

The use of a log-normal distribution ensures that fault

slips have a uniform sign as is realistic when stress in

the overriding plate is released through slip along the

fault. We assume that slip at the ith patch has the

form si ¼ expðhiÞ, where hi is a component of a

multivariate Gaussian distribution for the random

vector h. The choice of a mean l̂ and covariance Ĉ

for the log-normal slip vector s corresponds to slip

events leading by earthquakes around a certain

Gutenberg-Richter moment magnitude Mw. The slips

Figure 1
Two-dimensional illustration of the second-order approximation of

the set XðzÞ for given z. These approximations exploit properties of

the minimizer hH, the normal direction nH :¼
rFðhHÞ=krFðhHÞk ¼ rIðhHÞ=krIðhHÞk and the curvature of

oXðzÞ at hH
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s ¼ expðhÞ follow log-normal distributions, where h
is a multivariate Gaussian random parameter with

mean l and covariance matrix C. The mean l and

covariance matrix C for h are given in terms of l̂ and

Ĉ as follows:

Cij ¼ logðĈij=l̂il̂j þ 1Þ;

li ¼ logðl̂iÞ �
1

2
Cii:

ð4Þ

We next show how we choose the mean l̂ and

covariance Ĉ such that samples of the distribution

correspond to earthquaked with a certain magnitude.

We use four pairs of ðl̂; ĈÞ and compute a weighted

sum of multivariate log-normal distributions such that

the corresponding earthquakes follow the Gutenberg-

Richter scale. The mean l̂ is defined as the multiple

of the taper proposed in Gao et al. (2018),

l̂i :¼ SMw
sððxt � xiÞ=ðxt � xbÞÞ; ð5Þ

where SMw
is a constant multiple determined by the

moment magnitude discussed later. The value xi is

the horizontal location of the center in the ith sub-

fault, and xt and xb are the horizontal location of the

top and the bottom of the fault, respectively. The

function s is the taper from Gao et al. (2018):

sðx0Þ ¼dðx0Þð1þ sinðpdðx0ÞbÞÞ; ð6Þ

dðx0Þ ¼
6
q3
ðx0Þ2 q

2
� x0

3

� �

; 0
 x0 
 q;

6

ð1�qÞ3 ð1� x0Þ2 1�q
2

� 1�x0

3

� �

; q
 x0 
 1:

8

<

:

ð7Þ

We use the values b ¼ 0:25, q ¼ 0:65. The covari-

ance is defined similarly as in LeVeque et al. (2016),

namely as

Figure 2
Problem setup inspired by Tohoku-Oki 2011 earthquake/tsunami. Bathymetry changes (area in purple) are modeled as resulting from 20

randomly slipping patches in the fault region (in green, with end points ð120 km;�19:64 kmÞ and ð180 km;�9:75 kmÞ), using the Okada

model. The tsunami event QoI is the average wave height in the interval [34 km,35 km] close to shore (shaded in red), where the water depth

at rest is 20 m

Figure 3
Snapshots of tsunami waves generated by the optimizer with z ¼ 4 (dashed line in Fig. 7B) at different times t. The seafloor deformation

generates waves in both directions, but we focus on the waves traveling towards the shore on the left. The region where we measure average

tsunami height at time tmax is shaded in red. Note that the tsunami wave is compressed as it travels towards shore, its height increases and its

leading wave edge steepens
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Ĉij ¼ ð3=4Þ2l̂il̂j expð�jxi � xjj=ð0:4jxt � xbjÞÞ:
ð8Þ

The only thing left is to choose SMw
such that l̂

produce to an earthquake with moment magnitude

Mw, by solving the relation

Mw ¼ 2

3
ðlog10 M0 � 9:05Þ; ð9Þ

where the seismic moment M0 ¼ A� (average slip) �
(rigidity). Following Murotani et al. (2008), the area

A is defined as

A ¼ 1:48 � 10�10þ9:05�2=3þ6þMw ½m2�: ð10Þ

The average overall slip is computed as the average

of (5). The rigidity is 35� 109N=m2, as suggested in

Hashima et al. (2016).

The framework summarized in Sect. 2 uses the

multivariate Gaussian variable h underlying the log-

normal variable s. We use four mean slips and

covariances for earthquakes of moment magnitude

Mw ¼ 7:5; 8; 8:5; 9. These mean slips, as well as

random draws from the four log-normal distributions

are shown in Fig. 4A. Note that this distribution

assumes that the faults are of buried type, i.e., there is

no slip close to the seafloor. By changing the means,

other scenarios such as trench-breaking earthquakes

can be modeled (Gao et al., 2018). The bathymetry

changes induced by mean and random fault slips are

shown in Fig. 4B.

Note that the proposed method for estimating the

probability of the tsunami height on shore is not

limited to the slip distributions used in this section

(i.e., log-normal distributions for slips means and the

exponential covariance function (8) as suggested in

LeVeque et al. (2016)). The approach is generic and

can be modified to other settings that have been

proposed in the literature. For example, it is straight-

forward to change the exponential dependency of the

covariance (8) from the distance jxi � xjj to the von

Karman distribution (Mai and Beroza, 2002; Crem-

pien et al., 2020). This will only impact the

definitions for mean and covariance in (4), but all

other steps remain unchanged. Also heavy-tailed

distributions built by discrete Fourier transformations

and power law dependency of the spectrum (Lavallée

Figure 4
Shown in (A) are random slip patterns (solid and dashed lines) from the log-normal distributions whose means (faded solid lines) generate

earthquake with moment magnitudes Mw ¼ 7:5; 8; 8:5; 9. Different colors indicate slips originating from distributions with different means.

Shown in (B) are the vertical seafloor deformation induced by the slip samples and means shown in (A). These seafloor deformations are

computed using the Okada model. Shown in (C) are the tsunami waves close to shore generated by the solid line samples and the mean

seafloor deformations in (B). The tsunami waves are shown at the time when they maximize the objective (13), i.e., their average wave height

is maximal in the measurement interval (red shaded area)
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and Archuleta, 2003; Lavallée et al., 2006) could be

used. This would require to incorporate the discrete

Fourier functions into the map F, similar to the way

we incorporate the exponential transformation into

F to obtain log-normal distributions.

3.2. Governing Nonlinear Shallow Water Equations

We model tsunami waves using the one-dimen-

sional shallow water equations, describing the

conservation of mass and momentum for points x in

space and times t 2 ½0; T �, T [ 0. These nonlinear

hyperbolic equations, written in terms of the water

height h and the momentum variable v are:

ht þ vx ¼ 0; ð11aÞ

vt þ
v2

h
þ 1

2
gh2

� �

x

þghBx ¼ 0: ð11bÞ

Here, v :¼ hu with u being the velocity, g is the

gravitational constant, and B the earthquake-induced

bathymetry change, which enters through its spatial

derivative Bx. The sea is assumed to be in rest at

initial time t ¼ 0 for the given bathymetry B0, i.e.,

vðx; 0Þ ¼ 0 and hðx; 0Þ ¼ �B0ðxÞ for all x. Together

with these initial conditions, we assume suit-

able boundary conditions that are sufficiently far

away from the observation interval and the source

such they do not interact with the solution in the

considered time interval. The shallow water model

equations (11) do not take into account a horizontal

bathymetry change. Any non-zero vertical bathy-

metry change resulting from a fault slip lifts the water

column and thus leads to waves traveling in both

directions, towards and away from shore; see Fig. 3.

Next, we describe our measure of tsunami size on

shore.

3.3. Parameter-to-QoI Map and Combining

Gaussians

We use the average tsunami wave height in a

small interval [c, d] close to shore to measure the

tsunami size. This interval is indicated in red in Fig. 3

and in Fig. 2. Since we cannot exactly predict how

long after the bathymetry change the largest tsunami

wave reaches shore, we approximate the maximum

average wave height using a smoothing parameter

c[ 0, resulting in

12

Here, h is considered a function of B through the

solution of the shallow water equations (11). More-

over, h þ B0 is the water height above the resting

state, and denotes the average integral over [c, d]. It

can be shown that

13

i.e., for large c, (12) approximately measures the

largest average wave height in [c, d] over all times in

[0, T].

We apply the approach summarized in Sect. 2

individually to the multivariate Gaussians underlying

the sum of log-normal distributions used to model the

distribution of fault slips. The parameter-to-QoI map

F includes the transformation from Gaussian to log-

normal parameters, the map from slip patches to

bathymetry change B governed by the Okada model,

and the solution of the shallow water equations to

map the bathymetry change to the average wave

height close to shore (12), i.e., F is defined as:

F : h 7! expðhÞ7!B 7!GcðBÞ: ð14Þ

Components of this map are illustrated in Fig. 4. Note

that all samples from the bathymetry change distri-

bution are negative on the left, i.e., closer to shore,

and positive on the right. This is a consequence of

only using positive slips reflecting the mechanisms

behind plate subduction, i.e., the overriding plate

releases stress during fault slip events. Due to the

structure of these random slip-induced bathymetry

changes, the trough of a tsunami wave reaches the

shore first, followed by the wave crest as seen in

Fig. 4C.

The distribution is the sum of four log normals

with different means, which are combined such that

the resulting distribution of earthquakes follows the

Gutenberg-Richert (GR) law for earthquakes with

moment magnitude ranging from 7 to 9. The previous

sections detail the probability distribution for h with a

1592 S. Tong et al. Pure Appl. Geophys.



fixed mean corresponding to moment magnitude Mw.

We denote this multivariate Gaussian distribution as

pMw
. For this setup, we apply the methods discussed

in Sect. 2 to estimate PpMw
ðFðhÞ� zÞ, for the prob-

ability of observing an average wave height of z or

higher from random slips from the distribution with

moment magnitude Mw mean. To obtain the annual

assessment of this probability PanðzÞ, i.e., the annual

probability of wave higher than z, we use a weighted

sum similar to Williamson et al. (2020)

PanðzÞ ¼
X

Mw2f7:5;8;8:5;9g
wMw

PpMw
ðFðhÞ� zÞ; ð15Þ

where the weight wMw
¼ 106:456�Mw is the annual

probability of a moment magnitude Mw earthquake

following the Gutenberg-Richter (GR) law. The

Gutenberg-Richter (GR) law describes the return

period of certain magnitude earthquakes. We choose

350 years as the return period for the Tohoku area

from the study in Kagan & Jackson (2013), so the

annual probability of occurring earthquakes with

moment magnitude larger than Mw is 106:456�Mw .

Using these weights and the distribution pMw
, we

compute the annual probability for earthquakes with

magnitude larger than Mw when samples are from

pMw
. Their sum fits the annual probability curve

106:456�Mw from the GR law, as shown in Fig. 5.

4. Numerical and Optimization Methods

Our approach for probability estimation requires

to solve a sequence of optimization problems of the

form (2) with the parameter-to-event map F specified

above. Since F involves solution of the shallow water

equations for given B (and thus h), this is a PDE-

constrained optimization problem (Borzi & Schulz,

2011; Hinze et al., 2009; De Los Reyes, 2015). For

solving the one-dimensional shallow water equations,

we use the discontinuous Galerkin finite element

method (DG-FEM) with linear interpolating polyno-

mials and a global Lax-Friedrichs flux to discretize

the equations in space, and the strong stability-pre-

serving second-order Runge–Kutta (SSP-RK2)

method to discretize the equations in time (Hesthaven

& Warburton, 2007). We use adjoint methods to

efficiently compute gradients for this optimization

problem, and a descent algorithm that approximates

second-order derivative information using the BFGS

method (Nocedal & Wright, 2006). After finding the

optimizer, we use finite differences of gradients to

approximate the application of Hessians to vectors as

required to find the dominating curvature directions;

for details we refer to Tong et al. (2021). Numerical

values used in the discretization the problem is

summarized in Table 1.

As we have seen, solutions of nonlinear hyper-

bolic equations such as the shallow water equations

can develop steep slopes or shocks, which play an

important role for the dynamics of the system. These

phenomena are challenging for numerical simula-

tions. To prevent infinite slopes, in our simulations

we use artificial viscosity, which decreases upon

mesh refinement, thus retaining important aspects of

the dynamics, details can be found in Tong et al.

(2021).

Figure 5
Annual probabilities of earthquakes magnitude larger than Mw

caused by samples generated from pMw
whose means correspond to

moment magnitude Mw ¼ 7:5; 8; 8:5; 9. The sum of the four

probability distributions provides the annual probabilities of

observing an earthquake with magnitude from 7 to 9. We compare

it with the probability distribution 106:456�M from the Gutenberg-

Richter law. It can be seen that our model fits the distribution of

earthquakes for magnitude from 7 to 9

Table 1

Numerical values used for problem setup and discretization

Number of elements using in DG-FEM 5000

Final time T 1800

Time step size 0.0714

Smoothing parameter c 0.03
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5. Results

First, we compare the estimation of tsunami wave

height probabilities from the optimization-based

method with the probability estimation from Monte

Carlo sampling. In Fig. 6 it can be seen that the

sampling-based and the LDT-based probability esti-

mates are visually indistinguishable. In this figure we

also illustrate how the log-normal distributions

around the four different slip means (corresponding

to earthquakes of different magnitude) contribute to

the overall probability. Note that for large tsunami

waves, the distribution centered at magnitude Mw ¼ 9

event dominates the probability. While typically

Monte Carlo requires a large number of samples to

estimate low probabilities, this effect is mitigated

here by the fact that the small probabilities are

dominated by the events in the distribution around the

magnitude 9 earthquake mean.

The fault slips dominating the probabilities for

z ¼ 1; . . .; 5 meters, which are computed as mini-

mizers of (2), are labeled in Fig. 6. These correspond

to the most likely slip mechanism that results in a

tsunami on shore of size z. These slips, the

corresponding seafloor deformation and the resulting

tsunami waves on shore are shown in Fig. 7. In

Fig. 7A it can be seen that the slips that dominate the

probability vary smoothly. To explain this, note that

the map from slip patches to seafloor deformation,

given by the Okada model, is smoothing. That is,

smooth slip patch patterns can lead to similar seafloor

deformations as less smooth patterns, which are less

likely in our slip patch model. Figure 7C shows the

tsunami waves at shore induced by the seafloor ele-

vation changes shown in Fig. 7B. The tsunami waves

are shown at times tmax when they have maximal

average height in [c, d], i.e., they maximize the right

hand side in (13). In particular the largest waves have

a steep gradient or a shock at their leading edge.

To further study this behavior, in Fig. 3 we show

snapshots of the wave corresponding to the z ¼ 4 QoI

as it travels towards shore. The wave trough and crest

initially stretches over about 80 km. As approaching

shore, the wave is compressed to a few kilometers.

The wave’s crest leading edge steepens towards a

shock as it approaches the observation region close to

shore. We postulate that reaching a shocked state

further away from shore would be a less efficient

mechanism and, hence, is not found by the LDT-

optimization.

To study this further, in Fig. 8, we compare

snapshots of waves computed by the shallow water

equations and their linearization, both driven by the

same bathymetry change profiles shown in Fig. 7B.

First, it can be seen that the differences between the

nonlinear and linearized equations are more sub-

stantial for larger initial conditions, i.e., larger z. That

is, the nonlinearity is more important for larger

bathymetry changes, i.e., when the linearization

around the rest state is a poorer approximation to the

nonlinear problem. This observation also coincides

with results from other studies on earthquake-induced

tsunamis (An et al., 2014). It can also be seen that

waves from the linearized equations are generally

higher and less steep, while the waves from the

shallow water equations have steep leading edge

crests, which are caused by the nonlinearity in the

equations. Since shocks (or, correspondingly, the

steep regions in our numerical simulations in com-

bination with the artificial viscosity) introduce

dissipation at the wave crests, in Fig. 8 the snapshots

Figure 6
Comparison of the annual probability of FðhÞ� z, i.e., tsunami

waves on shore of size z or larger between Monte Carlo sampling

(dashed lines) and LDT approximation (solid lines). Shown in color

are the contribution of the log-normal distributions centered at

magnitude 7.5, 8, 8.5 and 9 to the overall probability as discussed

in Sect. 3.3. The points for z ¼ 1; . . .; 5, labeled with (a)–(e),

correspond to the optimized fault slips shown in Fig. 7A and

represent the dominant contribution to the overall probability.

Monte Carlo sampling uses 104 samples for each of the four

earthquake magnitudes
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for the linearized system are slightly higher. While

the linearized problem uses the same amount of

artificial viscosity, it plays little role as the wave’s

slopes are significantly smaller. This again illustrates

the importance of the nonlinearity in the equations for

the dynamics and thus the tsunami probabilities on

shore.

6. Discussion

Using a tsunami model and a realistic distribution

of random earthquake slips, we study the probability

of large tsunamis occurring close to shore. We use an

earthquake slip distribution that reflects a realistic

distribution of seismic moment magnitude from 7 to

9 on the Gutenberg-Richter scale. We show that

tsunami height probabilities on shore can be esti-

mated accurately by solving a series of optimization

problems and verify these probabilities by compar-

ison with direct but more costly Monte Carlo

sampling. These optimization problems identify the

most likely and thus most effective mechanism that

result in tsunamis of a certain size. We find that the

most effective earthquake mechanisms have

smoothly varying slip patches. These lead to waves

with a steepening gradient as the crest travels towards

shore, typically resulting in an approximate shock

right around the region close to shore. This indicates

that the nonlinearity in the shallow water equations,

which are used to model tsunami waves, plays an

Figure 8
Comparison of waves on shore modeled by the shallow water

equations and their linearization about the rest state. The waves are

initialized by the bathymetry change corresponding to the

optimizers from Fig. 7. Snapshots show the waves when their

average is largest in the observation interval. The gray waves,

shown for reference, are the same as in Fig. 7C). The waves shown

in color are obtained by solving the linearized equations using the

same initializations

Figure 7
Shown in (A) are the slips corresponding to the LDT-optimizers that contributes most to the overall probability. These probabilities are

indicated by the solid colored spheres in Fig. 6. The dominant contributions for z ¼ 1 is from the log-normal distribution with mean

Mw ¼ 7:5, for z ¼ 2 from the distribution with mean Mw ¼ 8:5 and for z ¼ 3; 4; 5 from the distribution with mean Mw ¼ 9. Shown in the

middle are the corresponding vertical seafloor deformations. Shown in (C) are the tsunami waves close to shore generated by the seafloor

deformations in (B). Snapshots of the waves are shown when (12), i.e., the average wave height is largest in the measurement interval (red

shaded area)
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important role for the generation of tsunami waves.

We find that tsunamis with average wave height of

z� 3 correspond to slips from the log-normal distri-

bution with mean corresponding to the Mw ¼ 9

earthquake.

Note that in Fig. 6, the probability curve bends

upwards. That is, tsunami size probabilities do not

decay exponentially with earthquake moment mag-

nitude, i.e., the Gutenberg-Richter law (see also

Fig. 5). Thus, model predicts a higher rate of large

tsunamis than of large earthquakes. The onset of a

similar behavior can also be seen in Williamson et al.

(2020).

A limitation of the presented results is that they

are based on a one-dimensional tsunami model and

use one-dimensional slip patches to model random

bathymetry changes. From the methodology per-

spective, an identical approach applies to two-

dimensional shallow water models and fault slips, but

would require access to efficiently computed gradi-

ents of the parameter-to-QoI map (14). Further, while

the proposed optimization-based technique provides

an approximation to the true probability, it can be

combined with importance sampling to find the exact

probabilities (Tong et al., 2021). Finally, note that the

optimization-based method employed here looses its

computational advantage over Monte Carlo sampling

if one aims at computing hazard probabilities at many

different points and for many different probability

thresholds z.
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et al. (2017). Probabilistic tsunami hazard analysis: Multiple

sources and global applications. Reviews of Geophysics, 55(4),

1158–1198.

Halko, N., Martinsson, P. G., & Tropp, J. A. (2011). Finding

structure with randomness: Probabilistic algorithms for con-

structing approximate matrix decompositions. SIAM Review,

53(2), 217–288.

Hashima, A., Becker, T. W., Freed, A. M., Sato, H., & Okaya, D.

A. (2016). Coseismic deformation due to the 2011 Tohoku-oki

earthquake: Influence of 3-D elastic structure around Japan.

Earth, Planets and Space, 68(1), 1–15.

Hesthaven, J. S., & Warburton, T. (2007). Nodal discontinuous

Galerkin methods: Algorithms, analysis, and applications.

Springer.

Hinze, M., Pinnau, R., Ulbrich, M., & Ulbrich, S. (2009). Opti-

mization with PDE constraints. Springer.

Kagan, Y. Y., & Jackson, D. D. (2013). Tohoku earthquake: A

surprise? Bulletin of the Seismological Society of America,

103(2B), 1181–1194.

Lavallée, D., & Archuleta, R. J. (2003). Stochastic modeling of slip

spatial complexities for the 1979 Imperial Valley, California,

earthquake. Geophysical Research Letters, 30(5), 622–640.

Lavallée, D., Liu, P., & Archuleta, R. J. (2006). Stochastic model

of heterogeneity in earthquake slip spatial distributions. Geo-

physical Journal International, 165(2), 622–640.

LeVeque, R. J., Waagan, K., González, F. I., Rim, D. & Lin, G.
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