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Abstract—Epistemic uncertainty offers alternatives on decision

making and various possibilities of computing the hazard integral.

Generally, the logic tree approach is used while treating the epis-

temic uncertainty. Logic tree weight calculation is a subjective

decision based on the degree of belief of the analyst on the possible

contributors to the epistemic uncertainty and often leads to a dif-

ferent set of values by different researchers. This paper aims to

develop a framework of accounting for the epistemic uncertainty in

probabilistic seismic hazard analysis (PSHA) by minimizing the

subjectivity involved in weight calculation. Guidelines/rules are

developed for the weight calculation at each node of the logic tree.

Recurrence parameters, magnitude and distance probability distri-

butions, maximum magnitude, and selection of ground motion

predictive equations (GMPEs) are considered the possible sources

of epistemic uncertainty. A GMPE rule is proposed to be used with

the PSHA framework to account for the propagation of epistemic

uncertainty. The north-east region of India is chosen for the pur-

pose of illustration. The study region is divided into seven seismic

source zones (five in the active crustal region and two in the sub-

duction zone). Seismic hazard is characterized in terms of the

weighted mean and fractile representation of hazards using the

logic tree approach. Only one sample illustration of the results are

reported in terms of weighted mean and fractile representation of

hazard curves and uniform hazard spectra (UHS). Further illus-

tration of the PSHA results with possible implications from the

epistemic uncertainty is reported in the companion paper.

Keywords: Epistemic uncertainty, PSHA, North-east India,

GMPE rule, earthquake rupture forecast, sub-earthquake rupture

forecast.

List of Symbols

Vs30 Average shear wave velocity in top

30 m

a Gutenberg-Richter recurrence relation

parameter (y-intercept)

b Gutenberg-Richter recurrence relation

parameter (slope)

L Total number of source zones

q qth Source zone

aq Number of possible candidates for

GMPE in qth source zone (finally

selected for PSHA)

bm Number of possible rules used while

defining the maximum magnitude

c Number of possible rules used to define

the probability distribution of

magnitudes

d Number of possible recurrence

relations that may define the seismicity

er Number of possible rules used to define

the probability distribution of source-

to-site distance

N Number of ERFs

u uth SERF

p pth ERF

m Earthquake magnitude (realization)

r Source to site distance (realization)

v vth GMPE

NGMPE Total number of GMPEs considered

NMHC Total number of model hazard curves

T� Specified or conditional time period

Sa Spectral acceleration

Sa� Given hazard level or specified spectral

acceleration

k Mean annual rate

Pð�Þ Probability (CDF)

Rupk kth Causal rupture scenario

ln Natural logarithm

GMPEj jth GMPE
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Nq Number of candidates GMPE for the

qth source zone screened through the

criteria of Bommer et al. (2010)

wiq Associated weight for ith GMPE (out of

Nq) in the qth source zone

wjq Normalized weight for jth GMPE (out

of aq) in the qth source zone

sq Standard deviation of weights

wiq; i ¼ 1;Nq

� �
in the qth source zone

wq Weight assigned to the qth source zone

wSERF Weight associated with any typical

SERF

wERF Weight of the defining ERF

wMHC Weight associated with any typical

MHC

kk kth Realization of the rate

z zth Fractile

Rjb Joyner-Boore distance (source to site)

Repi Epicentral distance (source to site)

Rhypo Hypocentral distance (source to site)

Rrup Rupture distance (source to site)

X Observed sample dataset

xk kth Realization of the observed sample

data set k ¼ 1; nð Þ
Mk Magnitude associated with kth

realization of the observed sample

data set

Rk Source to site distance associated with

kth realization of the observed sample

data set

Tk Time period associated with kth

realization of the observed sample

data set

Yk Median of the intensity measure from

GMPE for kth triplet of (M-R-T)

rk Logarithmic dispersion of the intensity

measure from GMPE for kth triplet of

(M-R-T)

pð�Þ Probability mass function

f ð�Þ Probability density function

p Pi

e Exponential

dx Small interval of x

B Base of the logarithm

logB Logarithm with base B

LLHiq Log-likelihood of ith GMPE (out of Nq)

in the qth source zone

km Mean annual rate of exceedance of

magnitude m

Tc Total period of a catalogue

s Total number of magnitude intervals or

sub-catalogues

Ts
m Completion period in years from recent

associated with sth magnitude interval

Ts Duration of sth sub-catalogue

ms
min Minimum magnitude of completeness

of sth sub-catalogue

ns Total number of events in sth sub-

catalogue

mi
ni

Magnitude of nth event in ith sub-

catalogue

b Gutenberg-Richter recurrence relation

parameter b ¼ b ln 10ð Þ½ �
Lð�Þ Likelihood function

b̂ Estimated Gutenberg-Richter

recurrence relation parameter

mi Mean magnitude of ith sub-catalogue

ri Ratio of number of events in ith sub-

catalogue to the total number of events

in the catalogue ni=Ncð Þ
N̂i Estimated total number of events in ith

sub-catalogue between mi
min to mmax

Nc Total number of events in the catalogue

N̂ Estimated total number of events in the

catalogue

mmin Minimum magnitude of the catalogue

mmax Maximum magnitude of the catalogue

mobs
max Maximum observed magnitude of the

catalogue

k̂mmin
Estimated mean annual rate of

exceedance of minimum magnitude

Nk
m Number of events in kth magnitude

interval, within completion period

Tk
m

� �

kobs Observed mean annual rate of

exceedance

Eq
SL Mean squared error in the estimation of

mean annual rate of exceedance by

straight line fitting method in qth source

zone
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kk;obs Observed mean annual rate of

exceedance in kth magnitude interval

k̂k;SL
m Estimated mean annual rate of

exceedance in kth magnitude interval

by straight line fitting method

Eq
LLh Mean squared error in the estimation of

mean annual rate of exceedance by

Log-likelihood method in qth source

zone

k̂k;LLH
m Estimated mean annual rate of

exceedance in kth magnitude interval

by log-likelihood method

ELLH Mean squared error in the estimation of

mean annual rate of exceedance by log-

likelihood method over all the source

zones

ESL Mean squared error in the estimation of

mean annual rate of exceedance by

straight-line fitting method over all the

source zones

h Slope

WSL Associated weight of straight-line

fitting method

WLLH Associated weight of log-likelihood

method

Mw Moment magnitude

R2 Goodness-of-fit measure

M Earthquake magnitude as random

variable

dmi Small interval (delta) of earthquake

magnitude

Hð�Þ Heaviside step function

dð�Þ Dirac delta function

n Sample data set of events

Wgj
Associated weight of jth recurrence

relation model

m̂max Estimated maximum magnitude

m̂2
max Estimated maximum magnitude by

second method

Lf Fault length

L0 Extended fault length up to

perpendicular line to the fault from

the site

X mð Þ Fault rupture length as a function of the

earthquake magnitude

D Perpendicular distance between source

(fault line) and the site

Rmin Minimum source-to-site distance

Rmax Maximum source-to-site distance

R Source to site distance as random

variable

Nsc Total sample count

Wf rð Þ Weight associated with distance

probability distribution

Cb Normalizing coefficient

pG Gamma distribution parameter

qG Gamma distribution parameter

rb̂ Standard deviation of estimated

Gutenberg-Richter recurrence relation

parameter

L j
f Length of jth fault

m j
max Expected maximum magnitude

associated with jth fault

m0 Factored maximum magnitude

Lmax
f Maximum fault length in a source zone

Lmedian
f Median length of all the faults in a

source zone

Wm̂l
max

Weight associated with lth method of

estimating maximum magnitude

NS Number of potential earthquake

sources in a region around the site

NM Number of discrete magnitude

segments considered

NR Number of discrete distance segments

considered

mi Mean annual rate of exceedance of

events greater than certain magnitude

in ith source

Dm Size of a discrete magnitude segment

g Gravitational acceleration (9.81

m
�
sec2)

Dr Size of a discrete distance segment

kIM Mean annual rate of exceedance

associated with IM- Hazard curve

kRate Mean annual rate of exceedance

associated with Rate- Hazard curve

SaIM Hazard level (Spectral acceleration)

associated with IM- Hazard curve

SaRate Hazard level (Spectral acceleration)

associated with Rate- Hazard curve

PSHA Probabilistic seismic hazard analysis
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GMPE Ground motion predictive equation

UHS Uniform hazard spectra

1D One dimensional

MECE Mutually exclusive and collectively

exhaustive

LLH Log-likelihood

SSHAC Senior Seismic Hazard Analysis

Committee

USNRC United States Nuclear Regulatory

Commission

CBR Center, body, and range

TDI Technically defensible interpretations

MCE Maximum considered earthquake

DBE Design basis earthquake

NEHRP National earthquake hazard reduction

program

ERF Earthquake rupture forecast

SERF Sub-earthquake rupture forecast

MHC Model hazard curve

IM, im Intensity measure

ACR Active crustal region

SZ Subduction zone

SL Straight line

GR Gutenberg-Richter

MB Main and Burton

EDP Engineering demand parameter

CDF Cumulative distribution function

z-UHS Z-fractile representation of uniform

hazard spectrum

10PE50 10% Probability of exceedance in

50 years

2PE50 2% Probability of exceedance in

50 years

GMRotI50 50th percentile (median) orientation or

rotation independent geometric mean

intensity measure

RotD50 50th percentile (median) orientation or

rotation dependent intensity measure

km Kilometer

CFVB15 GMPE by Cauzzi and Faccioli (2015)

SDBK09 GMPE by Sharma et al. (2009)

KNMF06 GMPE by Kanno et al. (2006)

ASB14 GMPE by Akkar et al. (2014)

OZBE04 GMPE by Özbey et al. (2004)

ZHAO16c GMPE by Zhao et al. (2016)

ZHAO06 GMPE by Zhao et al. (2006)

ASK14 GMPE by Abrahamson et al. (2014)

IDRI14 GMPE by Idriss (2014)

BSSA14 GMPE by Boore et al. (2014)

CB14 GMPE by Campbell and Bozorgnia

(2014)

CY14 GMPE by Chiou and Youngs (2014)

MZAS06 GMPE by McVerry et al. (2006)

NATH12 GMPE by Nath et al. (2012)

ANBA13 GMPE by Anbazhagan et al. (2013)

GUPTA10 GMPE by Gupta (2010)

YOUNG97 GMPE by Youngs et al. (1997)

BCHY16 GMPE by Abrahamson et al. (2016)

ZHAO16 GMPE by Zhao et al. (2016)

ATBO03 GMPE by Atkinson and Boore (2003)

LNLE08 GMPE by Lin and Lee (2008)

ARRO10 GMPE by Arroyo et al. (2010)

NDMA10 GMPE from National disaster

management authority report (2010)

SZ2 Second source zone in subduction zone

ACR5 5th source zone in active crustal region

PDF Probability density function

PGA Peak ground acceleration

CS Conditional spectra

GCR Generalized causal rupture

GCIM Generalized conditional intensity

measure

1. Introduction

Uncertainties are generally categorized into two

groups, namely, the aleatory variability and epistemic

uncertainty, though the physical basis of distinction is

somewhat debatable (Bommer & Scherbaum, 2008;

Der Kiureghian & Ditlevsen, 2009). Aleatory vari-

ability refers to the intrinsic/congenital component,

which is irreducible (stems from the Latin ‘alea’

meaning dice). Epistemic uncertainty is subjective,

stemming from incomplete knowledge and, in fact,

reducible with more relevant information. In addition

to the location and magnitude of future earthquakes

and scatter in the GMPEs (precisely the residuals),

several other components can also be considered

under aleatory variability, for example, the focal

depth, and is generally included in the PSHA directly
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through the hazard integral. Sources of epistemic

uncertainty that stems from the decision making can

be categorized into two broad groups, namely, (i) the

decisions pertaining to earthquake rupture prediction,

i.e., seismic source characterization; and (ii) the

decision on ground motion characterization models

(Bradley, 2009; Rodriguez-Marek et al., 2021).

Decision making in seismic source characterization

includes the possible alternatives of source zone

boundaries, recurrence models and their parameters,

assigning maximum magnitude to each fault, rules for

defining magnitude distribution, and distance metrics.

Decision making is also involved in source-to-site

distance characterization whenever fault geometry is

not completely known, such as strike or dip. (Yagh-

maei-Sabegh & Ebrahimi-Aghabagher, 2019).

Decision making on the selection of GMPEs was

detailed by Cotton et al. (2006) and subsequently

revised by Bommer et al. (2010), while Scherbaum

et al. (2009) reported a framework for ranking the

selected GMPEs. Accounting for the effects of local

site amplification also needs decision making and

hence is attributed to the epistemic uncertainty. Most

GMPEs account for this effect in an average sense

through period-dependent site amplification factors

over the prediction at the bedrock level. Average

shear wave velocity in the top 30 m, denoted as Vs30,

is often used as a proxy of the shear wave velocity

profile at the site. Another alternative is to arrive at

the detailed velocity profile through geotechnical and

geophysical investigations followed by a 1D (one

dimensional) site response analysis with reasonable

accuracy (Rodriguez-Marek et al., 2021).

Epistemic uncertainty offers alternatives on deci-

sion making and various possibilities of computing

the hazard integral and subsequently results in a suite

of hazard curves. Generally, the logic tree approach,

derived from the probability tree, is employed while

treating the epistemic uncertainty. Opinion differs in

interpreting the weights assigned to each terminal

branch of the logic/probability tree. While the prob-

ability tree works on the total probability theorem

under the assumption of mutually exclusive and

collectively exhaustive (MECE) events, the weights

associated with each terminal branch represent its

probability of occurrence. Along this line, the

weighted mean representation of the hazard curve is

only recommended to be used in seismic design

(McGuire et al., 2005; Musson, 2005). Logic tree

interpretation was introduced by Kulkarni et al.

(1984) and subsequently defended by Abrahamson

and Bommer (2005) though used by various

researchers. The weights associated with the terminal

branches represent the relative degree of belief of the

analyst on each model instead of frequentist inter-

pretation. Subsequently, these weights are considered

subjective probability of the consequence of each

model and enables a fractile representation of the

hazard curve. Marzocchi et al. (2015) presented a

nice example illustrating the difference of two inter-

pretations. Bommer and Scherbaum (2008)

recommended two possible interpretations of the

fractile/weighted mean representation of a hazard (as

the case may be) from the suite of hazard curves

contingent on the intended application. Bommer et al.

(2005) discussed the implementation of the logic tree

to account for the propagation on epistemic uncer-

tainty through selection and compatibility of GMPEs.

More recent investigation recommends a representa-

tive suite approach for GMPEs instead of multiple

GMPEs with weights (Atkinson et al., 2014), though

the framework is arguably still in its infancy and

requires unmanageable complexity for generaliza-

tion. Finally, populating the nodes of the logic tree

with possible alternatives needs thorough under-

standing on the part of analyst. For example,

providing equal weights should be avoided, corre-

lated alternatives (such as a- and b-values of

recurrence relation) should not be selected as inde-

pendent branches, aleatory variables (alternatives on

focal depth) should not be considered in the logic

tree, etc. Bommer and Scherbaum (2008) discussed

the possible use and misuse of the logic tree in PSHA.

A large number of PSHA studies have been

reported using the logic tree approach in different

parts of the world. In most of the studies, logic tree

weights are taken as either equal or based on degree

of belief from expert/group of experts. For example,

Bradley (2009) and Kalakonas et al. (2020) consid-

ered equal weights for GMPEs. Delavaud et al.

(2012) considered the logic tree weights for GMPEs

as a combination of the log-likelihood (LLH) method

(Scherbaum et al., 2009) and judgement from six

different experts. Anderson (2018) considered the
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equal weights for GMPEs and random/expert judge-

ment-based weights for branches at other nodes of the

logic tree. Grünthal et al. (2018) considered the equal

weights at most of the nodes of a logic tree and expert

judgement at the remaining. Anbazhagan et al. (2019)

considered the logic tree weight by the LLH method

for GMPEs and expert judgement for branches at

other nodes of the logic tree. Tromans et al. (2019)

considered weights based on expert judgement of the

analyst. Epistemic uncertainty in site response anal-

ysis is considered by Rodriguez-Marek et al. (2021)

and logic tree weights are taken as equal and discrete

representations of a log-normal distribution.

Assigning equal weights to different terminal

branches of a logic tree reflects more on the ‘lack of

relevant information’ rather than ‘equal confidence’

on each alternative. Logic tree weight calculation is a

subjective decision based on the degree of belief of

the analyst on the possible contributors to the epis-

temic uncertainty and often leads to a different set of

values by different researchers. However the weight

should be logically deducible in a peer review pro-

cess and, in other words, conform to the terminal goal

of SSHAC (1997): ‘the center, the body, and the

range of technical interpretations that the larger

technical community would have if they were to

conduct the study’ and that of USNRC (2018): ‘the

center, the body, and the range of technically defen-

sible interpretations of the available data, methods

and models (CBR of TDI)’.

This paper aims to develop a framework of

accounting for the epistemic uncertainties in PSHA.

Minimizing the subjectivity involved in weight cal-

culation is another complementary objective. Hence,

guidelines/rules are developed for the weight calcu-

lation at each node of the logic tree. Sources of

epistemic uncertainty considered here are (1) recur-

rence relation parameter, (2) magnitude probability

distribution, (3) distance probability distribution, (4)

maximum magnitude, and (5) selection of GMPEs.

Proposed methodology of accounting for the epis-

temic uncertainty and constructing the weighted

mean and fractile representation of hazards using the

suite of hazard curves (denoted as model hazard

curves; MHCs) as outcome from various branches of

the logic tree is explained under a separate heading.

So North-east India is chosen for the purpose of

illustrating the proposed framework. While one set of

sample results is used in the paper for the purpose of

illustrating the application of proposed framework,

further details on hazard analysis and results are

presented in the companion paper (Gurjar and Basu,

2022).

For example, topography, tectonic setup, earth-

quake catalogue, seismicity, and delineation of

source zones of the study region are reported in the

companion paper. PSHA is then performed in the

companion paper using the logic tree approach and

taking into account the sources of epistemic uncer-

tainties addressed above. Weighted mean and fractile

representation of hazard of the region are estimated at

2% (maximum considered earthquake, MCE) and

10% (design basis earthquake, DBE) probability of

exceedance in 50 years for the NEHRP (National

Earthquake Hazard Reduction Program) soil types of

B, C, and D. Hazard analysis also reports the

weighted mean and fractile representation of uniform

hazard spectra (UHS) for 112 district headquarters

from seven states of North-east India.

2. Proposed Methodology of Accounting

for the Epistemic Uncertainty

and Characterization of Seismic Hazard

A step-by-step framework is proposed here to

enable inclusion of the epistemic uncertainty in

seismic hazard characterization.

2.1. Defining the Sources of Epistemic Uncertainty:

Earthquake Rupture Forecast

Let L be the number of source zones and

q ¼ 1; Lð Þ denotes a typical source zone with aq

number of possible candidates for GMPE using a

standard selection procure, for example, the log-

likelihood method. Further, bm; c; d; and er are the

number of possible rules used to define the maximum

magnitude, probability distribution of magnitude, sets

of recurrence relation parameters, and probability

distribution of source-to-site distance, respectively.

Any possible combination of these four rules consti-

tutes a scenario that is defined here as earthquake

rupture forecast (ERF). Clearly, N ¼ bm:c:d:er is the
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number of ERFs that define the sources of epistemic

uncertainty. Ideally, N is the number of hazard curves

that can be generated to describe the distribution of

seismic hazard at a site.

One single GMPE may not adequately describe

the attenuation of intensity measure for the entire

study area if comprising different source zones. In

such a case, each source zone may be best described

by an individual set of GMPEs. Given this under-

standing, PSHA framework must include the

provision of using multiple GMPEs for the hazard

estimation. The GMPE rule is required to combine

the contribution of applicable GMPEs if the end

objective is to compute the fractile hazard (consid-

ering different sets of GMPEs in different source

zones). However, the GMPE rule is not required if the

end objective is only to compute the weighted mean

rate hazard. Further, it should be noted that any

typical ERF above does not explicitly refer to one

GMPE or a set of GMPEs. One typical ERF should

be assigned with a ‘GMPE rule’ that identifies the

GMPE for each source zone. Hence, any ERF is

further discretized into a set of sub-earthquake

rupture forecasts (SERFs) conforming to the assigned

GMPE rule as described below.

2.2. GMPE Rule and Its Implementation: Sub-

Earthquake Rupture Forecast

The applicable GMPE rule may have multiple

interpretations. For example: (i) considering only one

GMPE from all the source zones and replacing only

one at a time, and (ii) considering one GMPE from

any one source zone and weighted attributes of all

possible GMPEs in other source zones. The former

leads to a large number of MHCs (same as the

multiplication of the number of GMPEs over all the

contributing source zones). In comparison, the latter

leads to the same number of MHCs as the summation

of the number of GMPEs over all the contributing

source zones. However, both the interpretations lead

to a consistent weighted mean hazard.

The first interpretation includes only a single

GMPE from each source zone and hence does not

account for the epistemic uncertainty (due to the

selection of GMPEs) in an MHC. In contrast, the

second interpretation (i.e., the proposed GMPE rule

recommending a single GMPE from one source zone

and weighted attributes of all possible GMPEs in

other source zones) indirectly accounts for the

epistemic uncertainty (due to the selection of

GMPEs) in an MHC. Hence, the second interpreta-

tion is considered in this paper for further processing.

Consider, for example, theuth SERF and thepth

ERF. Note that the GMPE rule is defined for the

SERFs and hence remains the same in all ERFs, i.e.,

regardless of p. The GMPE rule is implemented as

follows:

(a) uth SERF: All ruptures (m � r pair) in qth source

zone will be governed by only vth of the aq

number of possible candidates for GMPE,

whereas other ruptures in any other source zone

(1; L but 6¼ q) will be contributed by the weighted

attributes of all possible GMPEs in the respective

source zone.

(b) Repeat this rule for all the GMPEs in theqth

source zone, i.e., v ¼ 1; aq. This will lead to a

set of aq number of SERFs.

(c) Follow a similar assignment in all source zones

q ¼ 1; L. This will lead to a set of
PL

q¼1 aq ¼
NGMPE number of SERFs. Here, NGMPE denotes

the total number of GMPEs considered provided

no GMPE is common between two zones.

However,
PL

q¼1 aq holds for the number of

SERFs in general.

Therefore, any of the
PL

q¼1 aq number of SERFs

is defined as the qth source zone governed by its vth

GMPE, q ¼ 1;L, and v ¼ 1; aq. Clearly, the number

of possible MHCs contributing to the epistemic

uncertainty with due consideration of the attributes

from GMPEs is given by NMHC ¼ N
PL

q¼1 aq.

2.3. Construction of a Typical Model Hazard Curve

PSHA has been the focus of interdisciplinary

research and is reported by a wide spectrum of

researchers. Contingent on the discipline specific

needs, many often simplified frameworks are adopted

that defy the basic rule of probability. Regardless of

the scenario, the following general assumptions are

made in this paper for an MHC in the absence of

epistemic uncertainty:
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(a) Number of occurrences of an earthquake exceed-

ing a magnitude within a time interval (defined as

the recurrence model) and hence the number of

exceedance of a specific hazard level in a specific

site within a time interval follows Poisson

distribution. By virtue, ‘Poisson’s distribution

generates itself under the addition of independent

random variables’ and hence, under the assump-

tion of mutually exclusive and collectively

exhaustive causal ruptures, the exceedance rate

contributed by all causal ruptures can be added to

calculate that of a specific hazard level in a

specific site.

(b) Given the occurrence of a causal rupture, aleatory

variability of an intensity measure (IM) closely

follows log-normal distribution. This is specified

through GMPEs by predicting the logarithmic

mean and standard deviation of the considered

IM.

Defining the geomean spectral acceleration at any

specified time period T�ð Þ as the IM, Sa T�ð Þ, the rate
of exceedance of a given hazard level Sa� can be

expressed as

k ln Sa T�ð Þ[ ln Sa�ð Þ
¼
X

k

P ln Sa T�ð Þ[ ln Sa� Rupkjð Þk Rupkð Þ: ð1Þ

Here k Rupkð Þ denotes the rate of triggering the kth

rupture.

While accounting for the epistemic uncertainty in

the proposed framework, the contribution of thekth

rupture is reiterated here for better clarity: (i) with

one single GMPE to some SERFs contingent on the

containing source zone; and (ii) with weighted

GMPEs to remaining SERFs. Regardless of these

two scenarios, assuming that the set of considered

GMPEs constitutes a mutually exclusive and collec-

tively exhaustive set, one may write using the

theorem of total probability

P ln Sa T�ð Þ[ ln Sa� Rupkjð Þ ¼
X

PL

q¼1

aq

j¼1

P ln Sa T�ð Þð

[ ln Sa� GMPEj;Rupk

�� �
P GMPEj Rupkj
� �

:

ð2Þ

Equation (2) precisely accounts for the propaga-

tion of epistemic uncertainty through GMPE, which

when substituted into Eq. (1) results in

Here P GMPEj Rupkj
� �

defines, given the triggering of

thekth rupture, the probability that thejth GMPE

would control the propagation of intensity measure

from the source to the site. According to the GMPE

rule, P GMPEj Rupkj
� �

is 1.0 if the kth rupture

contributes to one single GMPE, and otherwise, the

weight should be specified for all GMPEs such that

sum of the weights is unity. Finally, Eq. (3) is the

manifestation of total probability theorem and the

weight discussed here has the ‘frequentist

interpretation’.

2.4. Construction of a Fractile Representation

of Hazard Curve

Prior to describing the construction of a fractile

representation of a hazard curve, a discussion on

assigning weight to each MHC is relevant.

k ln Sa T�ð Þ[ ln Sa�ð Þ

¼
X

k

X

PL

q¼1

aq

j¼1

P ln Sa T�ð Þ[ ln Sa� GMPEj;Rupk

��� �
P GMPEj Rupkj
� �

2

66664

3

77775
k Rupkð Þ:

ð3Þ
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2.4.1 Assigning Weight to MHCs

With respect to the two ‘irreconcilable attitudes’,

namely, the probability tree vs. the logic tree, and the

resulting controversy between the weighted mean vs.

fractile representation of a hazard, this paper stands

by the fractile representation of hazard. In other

words, each terminal branch of the logic tree is

considered as a ‘possible alternative’ without any

‘frequentist interpretation’, and hence the weight

assigned to the resulting MHC reflects merely the

confidence of analyst on that alternative. Neverthe-

less, the weights assigned to each MHC should be

logically deducible in a peer review process and, in

other words, conform to the terminal goal of SSHAC

(1997): ‘the center, the body, and the range of

technical interpretations that the larger technical

community would have if they were to conduct the

study’, and that of USNRC (2018): ‘the center, the

body, and the range of technically defensible inter-

pretations of the available data, methods and models

(CBR of TDI)’.

A typical terminal branch of the logic tree in this

paper comprises five nodes as shown in Fig. 1a.

Referring to Sect. 2.1, the first four nodes represent

the alternative ERFs, and referring to Sect. 2.2, the

fifth node considers the alternative SERFs. Nodes

associated with ERFs are recommended to be pop-

ulated with weights conforming to the standard

practice but in compliance with the CBR of TDI.

Some site-specific information is needed that pre-

cludes further generalization at this stage. However,

the consideration of SERFs representing the propa-

gation of epistemic uncertainty through GMPEs is

somewhat unique in this paper and demands a

generalized discussion on populating and assigning

the weights. First, the candidate GMPEs will be

selected conforming to the selection criteria recom-

mended by Bommer et al. (2010). Next, the selected

GMPEs will be ranked according to the log-likeli-

hood (LLH) as reported by Scherbaum et al. (2009).

The procedure computes the LLH of each GMPE that

passed the selection criteria of Bommer et al. (2010).

The weight is next assigned to each candidate

inversely proportional to the LLH and all GMPEs

with weight higher the ‘uniform weight’ (reciprocal

of the number of candidates) are selected. These two

steps are repeated for each source zone.

To explain it further, let Nq be the number of

candidate GMPEs for the qth source zone screened

through the criteria of Bommer et al. (2010) and wiq

represents the associated weights, i ¼ 1;Nq. Let aq be

the number of GMPEs with weight wiq [ 1
�

Nq and

finally selected for PSHA. The weights assigned to

these selected aq number of GMPEs are rescaled such

that sum of the weights is unity. Let us denote these

final weights as wjq, j ¼ 1; aq.

Further, an additional step is considered to

quantify the confidence in the selected set of GMPEs

(through the criteria of Bommer et al., 2010) in any

source zone. It should be noted that this additional

step is useful only for the estimation of fractile hazard

and does not affect the estimation of weighted mean

hazard. A hypothetical case of equal LLH (or

weights) for all the GMPEs within a source zone is

first considered for further illustration. In other

words, all the GMPEs lead to a nearly identical

exceedance rate and hence do not account for the

epistemic uncertainty effectively. Conversely, the

greater the variation in weights within a source zone,

the better is the effectiveness in capturing the

epistemic uncertainty in that source zone.

Consider, for example, only the qth source zone.

The weight Wq

� �
is a random variable with realiza-

tions, w1q;w2q; � � � ;wNqq, depending on (i) the total

number of GMPEs considered, and (ii) the observed

data set. Parameters of the random variable can be

estimated using the moments of different orders.

Consider the variance r2q

� �
representing the confi-

dence in capturing the epistemic uncertainty (and a

spike representing no epistemic uncertainty). In other

words, confidence in the sets of selected GMPEs

across the source zones in capturing the epistemic

uncertainty can be considered directly proportional to

the variance of weights, which is denoted as the

source zone weightage in this study. For example, the

variance for the qth source zone may be estimated as

s2q ¼ 1

Nq � 1

XNq

i¼1

wiq �
1

Nq

XNq

i¼1

wiq

 !2

: ð4Þ

Rationale behind this assignment is intrinsic to the

motivation of adopting the logic-tree framework.
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Assigning equal weights to all terminal branches of

the logic tree reflects more on the ‘lack of relevant

information’ rather than ‘equal confidence’ (should

not be confused with ‘equally likely’ in the proba-

bility tree) in each alternative. Therefore, the weight

assigned to the qth source zone is proposed to be

wq ¼
s2qPL

q¼1 s2q
: ð5Þ

Finally, the weight associated with any of thePL
q¼1 aq number of SERFs, defined through the qth

source zone governed by its jth GMPE, consists of

(a) Logic tree diagram used for PSHA and assigning weights to MHCs

(b) Sample illustration of MHC from logic tree branch
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Logic tree diagram
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two parts, i.e., within the source zone wjq

� �
and

across the source zone wq

� �
, and is expressed as

wSERF ¼ wqwjq: ð6Þ

Therefore, the weight associated with any typical

MHC is given by

wMHC ¼ wERFwSERF : ð7Þ

where wERF denotes the weight of the defining ERF.

One should not be confused between the (i) seven

total source zones (five for active crustal region,

ACR, and two for subduction zone, SZ) defined

initially (refer Fig. 1 in the companion paper) and (ii)

the only two (one each for ACR and SZ) considered

in Fig. 1a. The reason is the paucity of available

strong motion data for ranking and selection of

GMPEs in the north-east region of India to divide it

into seven source zones. Hence, the entire ACR is

considered for the selection and ranking of one set of

GMPEs, whereas the entire SZ is considered for

another set. Therefore, the GMPE rule is imple-

mented using two source zones, whereas all other

sources of epistemic uncertainty account for the

seven source zones.

One may also argue that the source zones should

not be considered as logic tree branches (Fig. 1a).

However, as per the GMPE rule associated with a

particular SERF, total hazard at the site is governed

by a single GMPE from one source zone (contribu-

tion 1) and the weighted attributes of all the GMPEs

in all other source zones (contribution 2). Hence,

each branch of the GMPE in any of the source zones

(i.e., contribution 1) is further added to the weighted

attributes of all the GMPEs in all other source zones

(i.e., contribution 2). Since the GMPE rule considers

each source zone twice, it is represented by two

branches (SZ ? RACR and ACR ? RSZ; here,

RACR and RSZ represent the weighted attributes of

ACR and SZ, respectively) such that the weighted

sum is unity. This is also consistent with the

estimation of weighted mean hazard. Figure 1b

sequentially represents the steps to be followed in

the logic tree application for performing PSHA: (i)

identification of the site where PSHA is required to

be performed, (ii) identification of the sources in the

surrounding contributing hazard to the site, (iii)

identification of the applicable SERF and ERF based

on the type of source zones, and (iv) computation of

the mean annual rate of exceedance contributed from

all potential sources in the surrounding.

2.4.2 Choice of Dissecting Ensemble MHCs

Consider all the NMHC number of MHCs that are

collectively defined as the ensemble, referring back to

the frequentist interpretation, two possible alterna-

tives for conditional random variable exist contingent

on the possible usage. For example, conditioned to

the exceedance of IM by a specified level, ‘rate’ can

be treated as a random variable if the EDP-haz-

ard (engineering demand parameter-hazard) or loss

computation is the end objective. This is denoted as

the ‘vertical dissection’. Alternatively, conditioned to

a given exceedance rate, IM can be considered a

random variable if the design seismic hazard is the

end objective. This is denoted as the ‘horizontal

dissection’.

With design seismic hazard as the end objective,

consider the ensemble MHC and a rate of excee-

dance, say, k ¼ kk of an IM describing the seismic

hazard. A vector of the IM is constructed with one

element from each MHC. Since the IM vector is

treated as independent, possible alternatives (inde-

pendent random variables) from various terminal

branches of the logic tree with branch factors

indicating their probability of occurrence, referring

to Fig. 2a, the weighted mean representation of

hazard is given by

E IMð Þ ¼ lIM ¼
Z1

�1

im:f imð Þ dim

¼
XNMHC

i¼1

imif imið Þ dimi ¼
XNMHC

i¼1

Wi
MHCimi; ð8Þ

Here, imi i ¼ 1; nð Þ is the realization of the IM vector

from horizontal dissection of all the MHCs and

Wi
MHC i ¼ 1; nð Þ is the branch factor (weight) from

the logic tree associated with ith MHC.

Similarly, the fractile representation of hazard is

given by
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P IM � imp

� �
¼ U imp

� �
¼
Zimp

�1

f imð Þ dim

¼
Ximp

i¼1

Wi
MHC ) imp

¼ U�1
Ximp

i¼1

Wi
MHC

 !

: ð9Þ

Here, imp is the pth fractile estimate of the hazard,

which can be estimated from cumulative distribution

function (CDF) of the IM vector constructed non-

parametrically (Fig. 2b) considering cumulative

branch factors
P

i

Wi
MHC

� 	
as the cumulative prob-

ability. Similar process is repeated for several

discrete realization of rate of exceedance

k ¼ 1; 2; � � �ð Þ and the same z-fractile estimate is

noted. Rate of exceedance when plotted against these

z-fractile estimates leads to a fractile representation

of the hazard curve, which is denoted here for better

clarity as the fractile representation of the IM-hazard

curve. A similar procedure can be adopted with ver-

tical dissection and the resulting fractile hazard curve

is defined here as the fractile representation of rate-

hazard curve.

2.5. Construction of a Fractile Representation

of the Uniform Hazard Spectrum and Design

Seismic Hazard

IM is next considered at several discrete time

periods and the associated z-fractile representation of

IM-hazard curves is constructed. These z-fractile

representations of IM-hazard curves are utilized to

construct the z-fractile representation of the uniform

hazard spectrum (z-UHS) representing a specified

rate of exceedance. While the rate of exceedance is

usually considered 10PE50 (475-year return period,

DBE) or 2PE50 (2475-year return period, MCE), the

design seismic hazard accounting for the epistemic

uncertainty may be characterized by mean or appro-

priate fractile representation of UHS.

Further, there is a dividend in studying this

fractile representation of IM-hazard. The ratio

between the appropriate fractile and weighted mean

representation of hazard (not median!) explains an

alternate viewpoint of the ‘importance factor’ com-

monly used in seismic standards. In such a case, it

would be interesting to see the importance factor as

period- and site-dependent, as opposed to a constant.

Referring to Sect. 2.4, the weight calculation for

a typical MHC wMHCð Þ, resulting from any branch of

the logic tree (Fig. 1a) is given by Eq. (7) which

requires the wSERF and wERF to be calculated. Here

wSERF is given by Eq. (6) and can be calculated if wiq

(associated weights of GMPEs, i ¼ 1;Nq in qth source

zone) are known. Hence, the selection of GMPEs and

their weight calculation (wiq and wjq) are explained in

the next section.

(a) PDF (b) CDF

Figure 2
Weighted mean and fractile representation of hazard
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3. GMPE Selection and Weight Calculation

Proper selection of GMPE is an important step for

evaluating the seismic hazard at any site. A few

GMPEs are reported to date for North-east India

including the Himalayan region due to the limited

recordings of strong ground motion data, such as

Sharma et al. (2009), Nath et al. (2012), Anbazhagan

et al. (2013), and Gupta (2010). However, several

GMPEs have been reported around the world for

similar tectonic features and site characteristics.

Douglas (2020) reported a nice collection of GMPEs

developed all around the world to the date of

publication.

Generally, three to four GMPEs are good enough

for the consideration of epistemic uncertainty due to

selection of GMPEs (Stewart et al., 2013). Selection

criteria recommended by Bommer et al. (2010) is

applied to the database of GMPEs (Douglas, 2020) in

the reverse chronological order (starting from the

recent), to the selection of ten to 15 GMPEs in each

source zone. Hence, a set of 14 and 12 GMPEs are

selected for ACR and SZ, respectively, and summa-

rized in Appendix A. All these screened GMPEs use

different measures of source-to-site distance such as

Joyner-Boore distance Rjb

� �
, epicentral distance

Repi

� �
, hypocentral distance Rhypo

� �
and rupture dis-

tance Rrup

� �
.

Final selection of the GMPEs is based on the

ranking using an information theoretic or log-likeli-

hood (LLH) approach reported by Scherbaum et al.

(2009), and implementation of which in the present

context is briefly described here. Let Nq be the

number of candidates GMPEs for ranking in the qth

source zone after preliminary screening. Recorded

strong motion data at PESMOS (Program for Excel-

lence in Strong Motion Studies) and COSMOS

(Consortium of Organizations for Strong Motion

Observation Systems) stations in the north-east

region with moment magnitude greater than 4 and Rjb

less than 300 km (reduced if GMPE is not applicable)

are considered for log-likelihood estimation. How-

ever, Rjb is not reported in the database. Therefore,

Rhypo and Repi are first computed from the information

of latitude and longitude of the source and station and

focal depth reported in the database. Associated Rjb is

next constructed using the algorithm of Petersen et al.

(2008). Appendix B summarizes the selected data-

base which is used in the ranking process.

The candidate GMPEs use different intensity

measures for the horizontal component of seismic

excitation including GMRotI50, RotD50 and geo-

mean. Five percent damped absolute acceleration

response spectra are constructed using GMRotI50,

RotD50 and geomean as the intensity measure for

each recording. Geomean is defined in this paper over

the ‘as-recorded’ pair (without any rotation for along

and normal to the principal plane). Other intensity

measures such as random, vectorial composition, and

horizontal unspecified, if used in the GMPEs, are

assumed as geomean in this paper. The observed

sample data set for each GMPE is constructed using

the associated spectral ordinates sampled at the per-

iod of 0.005 s over a period range of zero to the

specified maximum.

Let the observed sample data set be defined as

X ¼ xkf g, with k ¼ 1; 2; 3; � � � ; n. Here kth realization

is associated with a given triplet of magnitude Mkð Þ,
source-to-site distance Rkð Þ and the time period Tkð Þ.
Associated with this kth triplet, each GMPE returns

the median Yk

� �
and logarithmic dispersion rkð Þ of

the respective intensity measures that are assumed to

be log normally distributed. Hence, conditioned to a

governing GMPE, the probability of kth observed data

is given by

p X ¼ xk Yk; rk

��� �
¼ f xkð Þdx

¼ 1

rk

ffiffiffiffiffiffi
2p

p e
� ln xkð Þ�ln Ykð Þ½ �2

2r2
k dx: ð10Þ

It should be noted that source-to-site distance for

the observed events is available in Rhypo, Repi and also

in Rjb using the algorithm of Petersen et al. (2008). In

addition, Rrup is also required for some GMPEs and,

in such cases, Rjb is converted into Rrup as recom-

mended by Tavakoli et al. (2018). Average sample

log-likelihood is next given by the negative of the

average of logarithm of joint probability as follows:

LLH ¼ � 1

n

Xn

k¼1

logB f xkð Þf g: ð11Þ

Here B denotes the base of the logarithm which is

taken as 2. Associated weight for the ith(out of Nq)

GMPE in qth source zone is given by
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wiq ¼ B�LLHiq

PNq

i¼1 B�LLHiq

: ð12Þ

Higher the weight better is the ranking and

Table 1 presents the GMPEs according to ranking

for both ACR and SZ. The GMPEs with weight less

than uniform weight, i.e., wiq\1
�

Nq, are rejected

(Anbazhagan et al., 2016). GMPEs are also rejected

based on the exclusive requirements of this paper. For

example, Sharma et al. (2009) is only applicable to

rock and soil sites (NEHRP B and C) and

Rjb � 100 km, and hence is not considered in ACR.

Similarly, some of the GMPEs are rejected in SZ: 1)

Anbazhagan et al. (2013) is applicable to the bedrock

only; 2) Gupta (2010) is developed based on only

three earthquake data and applicable to Intraslab

only; 3) Youngs et al. (1997) is applicable to rock and

soil sites. Finally, a cap of four GMPEs is imposed on

both ACR and SZ and that leads to i) Rank-1, -3, -4

and -5 GMPEs for the ACR; and ii) Rank-4 and -5

GMPEs for the SZ. The GMPEs that are finally

selected for PSHA are highlighted by bold letters in

Table 1 with their rescaled weights (wjq).

4. Earthquake Rupture Forecast (ERF)

The logic tree consists of two parts, ERF and

SERF, as shown in the Fig. 1a. SERF refers to the

GMPE rule comprising two sections, (i) within the

source zone (explained in the Sect. 3), and (ii) across

the source zone (explained in the Sect. 2.4). Hence,

this section is devoted to the ERF only. ERF is pri-

marily contributed from the first four nodes of the

logic tree, namely, (i) distance probability distribu-

tion, (ii) recurrence relation parameters, (iii)

magnitude distribution, and (iv) maximum magni-

tude. Any possible combination from these four

nodes leads to one realization of ERF. The weight

calculations for the first four nodes of the logic tree

(Sect. 2.1, Fig. 1a) are explained in the subsequent

sections. Finally, the weight associated with any

realization of ERF, wERF , is given by the product of

the weights contributed from the constituting nodes

of the logic tree.

It should be noted that the logic tree starts in a

sequence: (i) distance probability distribution, (ii)

recurrence relation parameters, (iii) magnitude dis-

tribution, (iv) maximum magnitude and (v) selection

of GMPEs. However, these sections are explained in

a different sequence. Nevertheless, it is instructive to

note the interdependence of some of these sections.

For example, (i) weight calculation for maximum

Table 1

Ranking and final selection of candidate GMPEs for ACR and SZ

Active crustal region (ACR) Subduction zone (SZ)

Rank GMPE LLH wiq wjq Rank GMPE LLH wiq wjq

1 CFVB15 2.5883 0.0989 0.27 1 ANBA13 1.6415 0.1097 Rejected (Other)

2 SDBK09 2.6459 0.0950 Rejected (Other) 2 GUPTA10 1.7633 0.1008 Rejected (Other)

3 KNMF06 2.6497 0.0948 0.26 3 YOUNG97 1.7877 0.0991 Rejected (Other)

4 ASB14 2.7590 0.0879 0.24 4 BCHY16 1.9403 0.0891 0.51

5 OZBE04 2.8519 0.0824 0.23 5 MZAS06 1.9888 0.0862 0.49

6 ZHAO16c 2.8619 0.0818 Rejected (Cap) 6 ZHAO16 2.0596 0.0821 Rejected (LLH)

7 ZHAO06 2.8916 0.0802 Rejected (Cap) 7 KNMF06 2.0900 0.0804 Rejected (LLH)

8 ASK14 2.9104 0.0791 Rejected (Cap) 8 ZHAO06 2.1132 0.0791 Rejected (LLH)

9 IDRI14 3.0194 0.0734 Rejected (Cap) 9 ATBO03 2.1372 0.0778 Rejected (LLH)

10 BSSA14 3.0212 0.0733 Rejected (Cap) 10 LNLE08 2.2562 0.0716 Rejected (LLH)

11 CB14 3.4281 0.0553 Rejected (LLH) 11 ARRO10 2.3363 0.0678 Rejected (LLH)

12 CY14 3.7508 0.0442 Rejected (LLH) 12 NDMA10 2.5996 0.0564 Rejected (LLH)

13 MZAS06 4.2482 0.0313 Rejected (LLH)

14 NATH12 4.7302 0.0224 Rejected (LLH)
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magnitude depends on the magnitude distribution and

the recurrence relation parameters, and (ii) the weight

calculation for magnitude distribution depends on the

maximum magnitude and the recurrence relation

parameters. Hence, for better clarity, the independent

sections, for example, selection of GMPEs (Sect. 3)

and recurrence relation parameters (Sect. 4.1) are

discussed first. Interdependent sections are explained

next, for example, magnitude distribution (Sect. 4.2),

distance probability distribution (Sect. 4.3), and

maximum magnitude (Sect. 4.4).

4.1. Estimation of Recurrence Relation Parameters

Gutenberg-Richter (1944) recurrence relation is

expressed as log10 kmð Þ ¼ a � bm with a and b as the

recurrence parameters, whereas km is the mean

annual rate of exceedance of magnitude m. Two of

the most widely used methods of computing the

recurrence parameters, namely (i) the least squares

method of fitting a straight line (SL) and (ii) the

maximum log-likelihood (LLH) method (Kijko &

Smit, 2012), are considered in this paper as the

possible contributors to epistemic uncertainty. While

the first method is generally used and a sample

illustration for the first zone of ACR is presented in

Fig. 3, the maximum log-likelihood method requires

some discussion on fundamentals for its implemen-

tation in this paper. This is explained with an

illustration presented in Table 2 for the first zone of

ACR.

Let a catalogue over a period of Tc years be

known for the qth source zone. The catalogue is

discretised into a set of s magnitude intervals and

Stepp’s (Stepp, 1972) method is employed for the

evaluation of associated completion periods

(T1
m; T2

m; T3
m; . . .; Ts

mÞ. With reference to Table 2 (rows

2 and 3), the completion periods of 30, 50, 190 and

220 years from recent (31/07/2020) are obtained for

magnitude intervals of 4–5, 5–6, 6–7 and[ 7,

respectively. The information of completion period

and associated magnitude intervals are recast to

construct a set of sub-catalogues of duration

T1; T2; T3; . . .; Ts with minimum (complete) magni-

tude in each sub-catalogue as

m1
min;m2

min;m3
min; . . .;ms

min, respectively, and total

number of events as n1; n2; n3; . . .; ns, respectively.

Unlike Stepp’s method, here the time is measured

from the oldest, and hence,

m1
min [m2

min [m3
min [ � � � [ms

min. Rows 4 and 5

of Table 2 illustrate this calculation from the results

of Stepp’s method. The complete catalogue is then

reconstructed by compiling all the sub-catalogues
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Figure 3
Frequency magnitude relationship for ACR Zone 1 by straight line

fitting

Table 2

Sub-catalogues for ACR Zone-1

Sub-catalogue ? C1 C2 C3 C4

Starting date 31/7/1800 31/7/1830 31/7/1970 31/7/1990

End date 30/7/1830 30/7/1970 30/7/1990 31/7/2020

Duration of sub-catalogue Tið Þ 30 140 20 30

Minimum magnitude mi
min

� �
7.7 6 5 4

Mean magnitude mið Þ 7.7 6.4093 5.3032 4.5427

Number of events 1 54 125 1222

ri 7:13� 10�4 0.0385 0.0892 0.8716

b̂i Inf 2.4434 3.2982 1.8426
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such that: (i) duration
Ps

i¼1 Ti ¼ Tc; and (ii) number

of events
Ps

i¼1 ni ¼ N.

Let mi
1;mi

2;mi
3; . . .;mi

ni
represent the observed

magnitudes in theith sub-catalogue. Under the

assumption of mutual independency, the joint prob-

ability density function for the ith sub-catalogue

conditioned to b ¼ b ln 10ð Þ is given by

f m bjð Þ ¼ f mi
1 bj

� �
f mi

2 bj
� �

f mi
3 bj

� �
� � � f mi

ni
bj

� �

¼
Yni

j¼1

f mi
j bj

� �
:

ð13Þ

Therefore, likelihood of the entire catalogue may

be constructed as

L bð Þ ¼
Ys

i¼1

Yni

j¼1

f mi
j bj

� �
: ð14Þ

The parameter b can be evaluated by maximizing

the likelihood and, alternatively, the logarithm of

likelihood. Hence, by taking natural logarithm of

Eq. (14) and for the maxima,

ln L bð Þ½ � ¼
Xs

i¼1

Xni

j¼1

ln f mi
j bj

� �h i
! d

db
ln L bð Þ½ � ¼ 0:

ð15Þ

Using the lower bound Gutenberg-Richter recur-

rence relation, one may write,

f mi
j b̂
���

� �
¼ b̂e�b̂ mi

j�mi
minð Þ ! ln f mi

j b̂
���

� �h i

¼ ln b̂
� �

þ b̂ mi
min � mi

j

� �
: ð16Þ

Using Eq. (16) into Eq. (15) and after some

simplifications, one may write

Xs

i¼1

Xni

j¼1

1

b̂
þ
Xs

i¼1

Xni

j¼1
� mi

j � mi
min

� �h i
¼ 0

!
Ps

i¼1 ni

b̂
¼
Xs

i¼1
ni

1

ni

Xni

j¼1
mi

j

� 	
� mi

min

� �
:

ð17Þ

Further, assuming 1
ni

Pni

j¼1 mi
j

� �
� mi

min ¼

mi � mi
min ¼ 1

b̂i

and ri ¼ ni

�Ps

i¼1

ni, Eq. (17) may be

solved for

1

b̂
¼
Xs

i¼1

ri

b̂i

: ð18Þ

Equation (18) is known as the generalized Aki-

Utsu b value estimator and also well explained by

Kijko and Smit (2012).

Estimated mean annual rate of exceedance corre-

sponding to mmin is given by

k̂mmin
¼ N̂

�
Tc: ð19Þ

Here, N̂ ¼
Ps

i¼1

N̂i and N̂i is the total number of

events in theith sub-catalogue between mi
min to mmax,

which can be estimated using the probability distri-

bution of magnitude as follows

N̂i ¼
ni

FM mi
min �m�mmax mmin;mmaxj

� �

¼ ni

1� FM mmin �m�mi
min mmin;mmaxj

� � : ð20Þ

Here, FM mmin �m�mi
min mmin;mmaxj

� �
¼

1�e
�b mi

min
�mminð Þ

1�e�b mmax�mminð Þ is given by the doubly truncated

Gutenberg-Richter recurrence relation with

mmin ¼ 4(events below which can be ignored due to

lack of engineering importance) and mmax ¼ mobs
max

(maximum observed magnitude), and ni is the

number of events in theith sub-catalogue between

mi
min to mmax. Values of a and b can be estimated

using the relations b̂ ¼ b ln 10ð Þ and

k̂mmin
¼ 10a�bmmin .

With reference to Table 2, for the sample

illustration, Nc ¼ 1402 and mobs
max ¼ 8, with

Table 3

Seismicity parameters for the north-east region

Straight line fitting (SL)

method

Log-likelihood (LLH)

method

Zone a value b value a value b value

SZ1 5.96 0.99 4.84 0.80

SZ2 3.82 0.73 3.99 0.78

ACR1 5.70 1.01 4.91 0.84

ACR2 5.14 0.90 4.23 0.74

ACR3 4.38 0.85 3.48 0.72

ACR4 3.74 0.76 3.49 0.70

ACR5 5.23 0.99 3.55 0.71
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mmin ¼ 4. Using Eqs. (18) and (19), one may

calculate b̂ ¼ 1:9386 and k̂mmin
¼ 35:0418, respec-

tively, and finally b ¼ 0:84 and a ¼ 4:91. Recurrence

parameters obtained by both the methods for all the

source zones are reported in Table 3.

4.1.1 Weight Calculation for the Process

of Estimating Recurrence Relation Parameters

Weights associated with each method of estimating

recurrence relation parameters for the logic tree

approach are proposed to be inversely proportional to

mean squared error over all the source zones. For

example, consider one of the source zones, say qth.

Let Tk
m be the completion period of thekth magnitude

interval with Nk
m number of events within the

completion period. Table 4 presents a sample illus-

tration for the first zone of ACR. Recurrence

parameters are estimated using the procedure

described above. Associated mean rate of occurrence

is estimated as km ¼ 10 a�bmð Þ for both the methods

(for example, the last two columns of Table 4). The

observed mean annual rate of exceedance kobs
� �

is

estimated using the cumulative sum of Nk
m

�
Tk

m

starting from the highest magnitude interval (for

example, column 5 of Table 4). Mean squared error

for both the methods, namely, SL and LLH, are given

by Eq
SL ¼ 1

s

Ps

k¼1

kk;obs � k̂k;SL
m

� �2
and Eq

LLH ¼ 1
s

Ps

k¼1

kk;obs � k̂k;LLH
m

� �2
, respectively. Table 5 compares

the mean squared error using both the methods for

each source zone.

Both errors in all source zones are compared and

the best-fit linear relation is constructed with a

constraint of zero intercept, i.e., ELLH ¼ h� ESL

(Fig. 4). The first source zone of SZ is neglected as

an outlier and h is estimated as 0.85. Finally, the

weights are computed as inversely proportional to the

mean squared error as follows:

y = 0.8547x

R² = 0.785

0
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Figure 4
Zero-intercept best-fit straight-line relationship between the mean

squared error of SL and LLH methods

Table 4

Observed and estimated mean annual rate (k) from (a, b values) of SL and LLH method for ACR Zone-1

Magnitude (Mk) Completion period Tk
m

� �
Nk

m Nk
m

�
Tk

m kk;obs k̂k;SL
m k̂k;LLH

m

4 30 1016 33.8667 40.5921 47.0245 35.0418

5 50 319 6.3800 6.7255 4.6253 5.0427

6 190 57 0.3000 0.3455 0.4549 0.7257

7 220 9 0.0409 0.0455 0.0447 0.1044

8 220 1 0.0045 0.0045 0.0044 0.0150

Table 5

Mean squared error between the observed and estimated rates of

SL and LLH methods

Zone Mean squared error

Straight line fitting method

(ESL)

Log-likelihood method

(ELLH)

SZ1 150.47 150.22

SZ2 1.32 2.02

ACR1 9.16 6.76

ACR2 15.86 15.79

ACR3 0.36 5.14

ACR4 0.23 0.35

ACR5 14.29 10.21
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WSL ¼ 1=ESL

1=ESL þ 1=ELLHð Þ ¼
h

1þ h
¼ 0:85

1þ 0:85

¼ 0:46; WLLH ¼ 1=ELLH

1=ESL þ 1=ELLHð Þ ¼
1

1þ h

¼ 1

1þ 0:85
¼ 0:54:

ð21Þ

4.2. Magnitude Distribution/Recurrence Relation

Recurrence relation defines a relation between the

mean annual rate of exceedance and magnitude and

hence the magnitude distribution as well. Since the

study is applied to the north-east region which does

not have any documented characteristic events in any

of the source zones, the characteristic earthquake

model is not included. Therefore, two alternatives of

magnitude distribution are considered in this paper as

the possible contributors to epistemic uncertainty,

namely, (i) bounded Gutenberg-Richter (GR) (1944)

and (ii) Main and Burton (MB) (1984). Associated

magnitude distributions, f1 mið Þ and f2 mið Þ, respec-

tively, are given by

Similarly, the mean annual rate of exceedance,

k1 mið Þ and k2 mið Þrespectively, are given by

k1 mið Þ ¼ m
e�b mi�mminð Þ � e�b mmax�mminð Þ

1� e�b mmax�mminð Þ ð24Þ

(Gutenberg-Richter, 1944)

(a) Probability density function (b) Mean annual rate
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Figure 5
Variation of probability density function and mean annual rate with magnitude for Gutenberg-Richter (1944) and Main and Burton (1984)

recurrence relations [mmin = 4, mmax = 8, a = 4 and b = 1]

p M ¼ mi mmax; b;mmin �mi �mmaxjð Þ ¼ f1 mið Þdmi ¼
be�b mi�mminð Þ

1� e�b mmax�mminð Þ dmi Gutenberg� Richter; 1944ð Þ ð22Þ

p M ¼ mi mmax; b;mmin �mi �mmaxjð Þ ¼ f2 mið Þdmi

¼
b e�b mi�mminð Þ � e�b mmax�mminð Þ �

H mmax � mið Þ þ e�b mi�mminð Þ � e�b mmax�mminð Þ 1þ b mmax � mið Þf g
 �

d mmax � mið Þ
1� e�b mmax�mminð Þ � be�b mmax�mminð Þ mmax � mminð Þ½ � dmi

Main and Burton, 1984ð Þ
ð23Þ
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k2 mið Þ ¼ m e�b mi�mminð Þ � e�b mmax�mminð Þ
h

1þ b mmax � mið Þf g�H mmax � mið Þ
ð25Þ

(Main and Burton 1984) Here, m ¼
e a�bmminð Þ and a ¼ a1n (10).

Probability density function (PDF) (magnitude

distribution) and mean annual rate of exceedance are

plotted against magnitude in Fig. 5a and 5b, respec-

tively, for the purpose of illustration.

4.2.1 Weight Calculation for Magnitude Distribution

Weights associated with each alternative are com-

puted for the logic tree using a log-likelihood

approach similar to that employed in the case of

GMPEs. Let M ¼ mif g, with i ¼ 1; 2; 3; � � � ; n be the

sample data set of observed events (seismic cata-

logue) in any of the source zones, say qth. Since all

the observed events are independent, denoting

g mið Þ ¼ f mið Þdmi as the likelihood of model g[g1 or

g2] for the observed sample mi, the associated joint

probability is given by L g Mjð Þ ¼
Qn

i¼1

g mið Þ. Negative
of the average sample log-likelihood is considered

here to define the log-likelihood (LLH):

LLH gð Þ ¼ � logB L g Mjð Þð Þh i ¼ � 1

n

Xn

i¼1

logB g mið Þð Þ:

ð26Þ

Here, B refers to the base of the logarithm and is

taken as 2 (can also be taken as 10, Scherbaum et al.,

2009). The negative sign is considered here, as the

logarithm of probability is always non-positive.

Clearly, the LLH is superior and is the method of

recurrence relation. Associated weightage of recur-

rence relations is given by

Wgj
¼ B�LLH gjð Þ

,
X2

j¼1

B�LLH gjð Þ: ð27Þ

Since PDFs of both methods are identical at low

magnitudes with a little difference near the maximum

magnitude, none of the observed events (mmin to

mobs
max) should be considered while calculating the

LLH, which would otherwise appear as nearly

identical. It is reasonable to consider events in the

range of [m̂max–1.5 * mobs
max] for the computation of

LLH (Fig. 5a). Weights are calculated in this paper

separately for each source zone by considering the

observed events within magnitude range [m̂max–

1.5 * mobs
max]. Four possible combinations are also

considered for each source zone, for example, two

sets of recurrence parameters [(a1, b1), (a2, b2) or

b1; b2] and two sets of maximum magnitude [m̂1
max

and m̂2
max]. Three alternatives for maximum magni-

tudes are discussed later in Sect. 4.4. However, the

third maximum magnitude is dropped here since it is

dependent on the fault length and, therefore, has an

unreasonably higher order of complexity. Final

weights for both the magnitude distributions are

taken as the weighted average (by number of events)

over all the source zones and all possible

combinations.
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Figure 6
Fault rupture model
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Source-to-site distance probability distribution (arbitrary source

and site, Mw = 6.4)
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4.3. Distance Probability Distribution

Distribution of source-to-site distance also con-

tributes to the epistemic uncertainty. While assuming

all the points on a fault plane are equiprobable to

rupture (Iyengar & Ghosh, 2004), two alternatives are

considered in this paper as the possible contributors

to epistemic uncertainty: the distribution of source-

to-site distance is independent or dependent on

magnitude of the event. Magnitude independent

probability distribution is based on the point-source

model, and hence, rupture length of the fault due to

causal magnitude for the earthquake is ignored. The

magnitude-dependent model accounts for the finite

rupture length, and hence, the distribution is condi-

tioned to the magnitude of event.

All the faults are assumed to be linear with known

length in the study region and Rjb is considered as the

measure of source-to-site distance Rð Þ in this paper.

P RjM ¼ mð Þ due to a rupture segment uniformly

distributed over the fault plane was reported by Der

Kiureghian and Ang (1977) and simplified by Iyengar

and Ghosh (2004) for the hypocentral distance. The

same model is extended in this paper to account for Rjb

as the distance metric. While Fig. 6 illustrates the

conceptual development of CDF for a fault located at

one side of the site, themathematical model is given by

Here, X mð Þ is the rupture length in km given by

Wells and Coppersmith (1994) for different fault

types but not exceeding the fault length:

P R\r M ¼ mjð Þ ¼ 0 for r\ L2
0 þ D2

� �0:5

P R\r M ¼ mjð Þ ¼ r2�D2ð Þ0:5�L0

Lf �X mð Þ for L2
0 þ D2

� �0:5\r\ D2 þ Lf þ L0 � X mð Þ
� �2h i0:5

P R\r M ¼ mjð Þ ¼ 1 for r [ D2 þ Lf þ L0 � X mð Þ
� �2h i0:5

9
>>>>>=

>>>>>;

: ð28Þ

X mð Þ ¼ Min Lf ; 10
�3:22þ0:69m

� �
Min Lf ; 10

�3:55þ0:74m
� �

Min Lf ; 10
�2:01þ0:50m

� �
Min Lf ; 10

�2:86þ0:63m
� �

Undefined Strike - slip Normal Reverse

�
:

ð29Þ
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Other recent recommendations may also be used

in place of Wells and Coppersmith (1994) leading to

another source of epistemic uncertainty, which,

however, is not considered in this paper for

simplicity.

For a general case with the fault located at both

sides of the site, conditional probabilities for the

segments on each side are calculated separately and

added with a weight as the fraction of total fault

length. The same formulation also applies to the

magnitude-independent model with X mð Þ ¼ 0. Sam-

ple comparison of both probability density functions

(PDF), i.e., pðrÞ and pðrjmÞ, is presented in Fig. 7 for

an arbitrary source and site in the study region with

moment magnitude Mw 6.4.

4.3.1 Weight Calculation for the Type of Distance

Probability Distribution

Proposed procedure for weight calculation of distance

probability distribution is slightly complicated. How-

ever, it is also based on the log-likelihood approach.

Let M ¼ mif g, with i ¼ 1; 2; 3; � � � ; n be the sample

data set of observed events (seismic catalogue) in the

magnitude interval Min m̂1
max; m̂2

max

� �
� 1:5�mobs

max in

the complete study region including all the source

zones. Each observed event must be assigned to a

particular source (fault) since the distance probability

distribution depends on relative location of source

and site. With limited information available, one may

assign an event to the nearest fault or a few faults (say

3 or 5) nearby. The former approach is adopted

throughout this paper to avoid subjectivity. It is

desirable to consider only the events occurring within

the area of influence around a particular site to avoid

unnecessary computation. Area of influence is

defined in this paper as the maximum radial distance

of 300 km around a site under the assumption that an

event above certain magnitude mminð Þ triggering

outside it would cause negligible effect to the

structure located at the site.

Each observed event with the source assigned will

have a total of 24 possible combinations of calculat-

ing the PDF: 12 combinations each for gj ri;mið Þ ¼
p rið Þf mið Þdmidri and gj ri;mið Þ ¼ p ri mijð Þf mið Þ
dmidri. For example, three alternatives for maximum

magnitude (Sect. 4.4), two for recurrence parameters

and two for magnitude distribution. Hence, three

probability density functions, namely, p rð Þ and

p r mjð Þ (as above) and f mð Þ(as in Sect. 4.2), are

computed in each of the 24 possible combinations

and evaluated for each observed event with a given

m � r pair within the area of influence for each site

followed by the computation of log-likelihood. This

step is repeated for all the site locations considered

(2302 locations with 0.1� grid spacing) in the study

region followed by an estimate of the sample size

independent average log-likelihood as follows:

Here, nk is the total number of events within the

influence area of kth site, p rð Þ and p r mjð Þ are

magnitude independent and dependent distance prob-

abilities, respectively, and calculated using the CDF

given by Eq. (28), whereas f mð Þ is the magnitude

probability density function as defined in Eqs. (22)

and (23). Further, 1=Nsc is used for a sample size

independent estimate with Nsc as total sample count

2302� 12� nkð Þ and B ¼ 2 is taken as the base of

logarithm. Associated weights are calculated as:

LLHg rð Þ ¼ � 1
Nsc

P2302

k¼1

P12

j¼1

Pnk

i¼1

logB gj ri;mið Þ
� �

" #

with gj ri;mið Þ ¼ p rið Þf mið Þdmidri

LLHg r mjð Þ ¼ � 1
Nsc

P2302

k¼1

P24

j¼13

Pnk

i¼1

logB gj ri;mið Þ
� �

" #

with gj ri;mið Þ ¼ p ri mijð Þf mið Þdmidri

9
>>>>=

>>>>;

: ð30Þ
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Wg rð Þ ¼ B
�LLHg rð Þ

B
�LLHg rð ÞþB

�LLHg r mjð Þ ; Wg r mjð Þ ¼ B
�LLHg r mjð Þ

B
�LLHg rð ÞþB

�LLHg r mjð Þ :

ð31Þ

4.4. Maximum Magnitude

Opinion differs while considering the maximum

magnitude in PSHA, and several terminologies are

interchangeably used in the prior art, for example,

maximum characteristic, expected or possible earth-

quake magnitude. However, writing a simple

terminology such as ‘maximum magnitude’ is often

preferred followed by explaining the way of defining

it (Abrahamson, 2000). Seven possible alternatives

(five alternatives from Gupta, 2002; Kijko & Singh,

2011; and proportional to fault length) are initially

selected for the estimation of maximum magnitude.

Since five alternatives from Kijko and Singh, (2011)

result in nearly identical estimation, the maximum of

these five is considered a single alternative. Finally,

three possible alternatives (maximum of five alterna-

tives from Gupta, 2002; Kijko & Singh, 2011; and

proportional to fault length) are considered in this

paper as the contributors to epistemic uncertainty as

explained below.

A. Maximum of five methods from Kijko and

Singh (2011)

Several procedures for maximum magnitude

estimation (statistically) are well explained and

summarized by Kijko and Singh (2011), out of

which following five methods are selected in this

paper:

(a) Tate–Pisarenko:

m̂max ¼ mobs
max þ

1� e�b̂ m̂max�mminð Þ

N̂b̂e�b̂ mobs
max�mminð Þ : ð32Þ

(b) Kijko–Sellevoll:

m̂max ¼ mobs
max þ

Zmmax

mmin

1� e�b̂ m�mminð Þ

1� e�b̂ m̂max�mminð Þ

" #N̂

dm: ð33Þ

(c) Tate–Pisarenko–Bayes:

m̂max ¼ mobs
max þ

1

N̂b̂Cb

pG

pG þ mobs
max � mmin

� 	� qGþ1ð Þ

Cb ¼ 1

1� pG= pG þ m̂max � mminð Þ½ �qG
; pG

¼ b̂

rb̂

� �2 ; qG ¼ b̂
rb̂

 !2

; rb̂ ¼
b̂
ffiffiffiffi
N

p :

ð34Þ

(d) Kijko–Sellevoll–Bayes:

þ Cb
� �N̂

Zmmax

mmin

1� pG= pG þ m � mminð Þf gqG½ �N̂dm

ð35Þ

(e) Non-parametric with Gaussian kernel

After arranging observed magnitudes in ascending

order,

Table 6

Maximum magnitude for all the source zones by different methods

Zone mobs
max Kijko and Singh (2011) Max (M1:M5) Gupta (2002) Max m̂1

max; m̂2
max

� �

M1 M2 M3 M4 M5 m̂1
max m̂2

max m̂3
max

SZ1 8.20 8.35 8.35 8.35 8.35 8.31 8.35 8.70 8.70

SZ2 8.00 8.85 9.50 8.81 9.32 8.12 9.50 8.50 9.50

ACR1 8.00 8.16 8.16 8.15 8.16 8.12 8.16 8.50 8.50

ACR2 8.60 9.03 9.09 9.02 9.08 8.91 9.09 9.10 9.10

ACR3 8.10 8.66 8.79 8.63 8.74 8.34 8.79 8.60 8.79

ACR4 8.30 8.77 8.84 8.74 8.80 8.49 8.84 8.80 8.84

ACR5 7.50 7.65 7.65 7.64 7.64 7.70 7.70 8.00 8.00
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m̂max ¼ mobs
max þ

XNc�1

i¼1

i=Nc

� �Nc

miþ1 � mið Þ: ð36Þ

Here, b̂ and N̂ are given by Eqs (18) and (20),

respectively, and Nc is the total number of events

observed between minimum magnitude mmin ¼ 4ð Þ to
maximum observed magnitude mobs

max

� �
. Maximum

estimated magnitude m̂maxð Þ appears on both sides of

the governing expression in the first four methods [(a)

to (d)], and hence, an iterative scheme is adopted with

initial guess as m̂max ¼ mobs
max. Care should be exer-

cised while implementing these methods: any one or

even more of these methods may not necessarily

converge owing to the incompleteness or insufficient

number of events in some catalogues leading to

unrealistic estimates of maximum magnitude even

exceeding 10 and such cases should be discarded.

B. Maximum observed magnitude 1 0.5 (Gupta,

2002)

This is the simplest method recommended by

Gupta (2002) for the maximum magnitude of a source

zone:

m̂max ¼ mobs
max þ 0:5 ð37Þ

III. Proportional to fault length

Maximum magnitude of earthquake depends on

fault area (Wyss, 1979) and hence may be considered

proportional to the fault length in some sense.

Maximum magnitude for thejth fault of length L j
f is

proposed in this paper as the third alternative:

m j
max ¼ m̂3

max � m0 1� L j
f

.
Lmax

f

� �
; m0

¼ m̂3
max Lmedian

f

.
Lmax

f

h i
: ð38Þ

Here, m̂3
max is the larger of the above two methods;

Lmax
f and Lmedian

f are maximum and median length of

all the faults in a source zone. Maximum magnitudes

estimated by the first and second methods considered

here are summarized in Table 6 along with larger of

the two. Note that the third method allows different

maximum magnitudes in the faults located even

within the same source zone and hence is not

included in Table 6.

4.4.1 Weight Calculation for Maximum Magnitude

Weight associated with each alternative of maximum

magnitude may be calculated in a similar way as

explained with the distance probability model. A set

of 12 possible combinations (four for each alternative

of maximum magnitude, i.e., two for magnitude

distributions with two for recurrence parameters) are

considered. The framework is applied over the entire

study area considering the events within the magni-

tude interval Min m̂1
max; m̂2

max

� �
� 1:5�mobs

max for

respective source zones. Log-likelihood is estimated

as follows:

LLHf m m̂l
maxjð Þ

¼ � 1

Nsc

X2

j¼1

X2

k¼1

Xne

i¼1

logB fj mi m̂l
max; bk

��� �
dmi

� �
" #

;

with l ¼ 1; 2; 3:

ð39Þ

Here, ne is the number of events within the

magnitude range considered and Nsc ¼ 2� 2� ne

denotes the total sample count. Weights associated

with each alternative of maximum magnitude is given

by

Wm̂l
max

¼ B
�LLH

f m m̂l
maxjð Þ

P3
l¼1 B

�LLH
f m m̂l

maxjð Þ
: ð40Þ

Sample illustration of an MHC contributed from a

typical branch of logic tree and its weight calculation

is explained in the next section.

5. Typical Model Hazard Curve and Weight

Calculation

Construction of a typical model hazard curve with

weight calculation is explained in the Sect. 2. This

section presents one sample illustration for better

clarity.

5.1. Model Hazard Curve

Hazard integral or PSHA computational frame-

work in terms of discrete summations can be

expressed as (Kramer, 1996)
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k ln Sa T�ð Þ[ ln Sa�ð Þ

¼
XNS

i¼1

XNM

j¼1

XNR

k¼1

mi mminð ÞP ln Sa T�ð Þ[ ln Sa� mj; rk

��� �

f mj; rk

� �
DmDr:

ð41Þ

Here, NS represents the number of potential

earthquake sources in a region around the site; NM

and NR are the number of discrete magnitude and

distance segments considered in theith potential

earthquake source; mi mminð Þ is the mean annual rate

of exceedance of events with magnitude greater than

mmin in theith source; P ln Sa T�ð Þ[ ln Sa� mj; rk

��� �
is

given by GMPE for an earthquake of magnitude

(a) Model Hazard curves (b) Weighted mean and fractile representation of IM 

and rate hazard curve
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Figure 8
Hazard curves at Site class B, T = 0 for Champhai (Mizoram)

(a) Variation in the ratio of exceedance frequencies (b) Variation in the ratio of intensity measures
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Difference between weighted mean and fractile representation of hazard curves due to horizontal and vertical dissection at Site class B, T = 0

for Champhai (Mizoram)
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Mw ¼ mj triggered at a distance of Rjb ¼ rk; and

f mj; rk

� �
DmDr is the probability of triggering an

earthquake of magnitude mj at a distance of rk. In the

case of magnitude-independent distance probability

distribution, f mj; rk

� �
¼ f mj

� �
p rkð Þ with f mj

� �
and

p rkð Þ as the probability density functions of magni-

tude and distance, respectively, given by Eq. (22)/

Eq. (23) and Eq. (28) with X mð Þ ¼ 0, respectively. In

the case of magnitude-dependent distance probability

distribution, p rkð Þ is replaced by p rk mj

��� �
, which can

be obtained from the first derivative of Eq. (28).

In this study, North-east India is divided into two

types of source zones, namely, SZ and ACR, which

are further subdivided into two and five source zones,

respectively. Referring to Fig. 1a, one branch of the

logic tree with the following details is considered

here for sample illustration: (i) magnitude-indepen-

dent distance probability distribution; (ii) recurrence

parameters using straight line method; (iii) magnitude

distribution by Gutenberg-Richter (1944); and (iv)

maximum magnitude as m1
max(Table 6). This explains

one alternative for the first four nodes of the logic

tree, which is defined as ERF (Sect. 2.1). The

selected ERF is further divided into a set of SERFs

conforming to the GMPE rule (Sect. 2.2).

Rate of exceedance of an intensity measure given

a threshold, k ln Sa T�ð Þ[ ln Sa�ð Þ (denoted as k
hereafter for brevity) is first computed by summing

up the contributions from all the potential sources in

SZ around a particular site considering (i) ERF as

above and (ii) BCHY16 (Table 1) as the GMPE.

Next, k contributed by the potential sources of ACR

with same ERF and all four GMPEs (in ACR) are

computed separately followed by taking a weighted

(Table 1) sum. Total exceedance rate is given by the

sum of the two computed above. Repeating the same

procedure for different values of threshold intensity

measure ln Sa�ð Þ enables the construction of one

MHC corresponding to a single terminal branch of

the logic tree.

Further, GMPEs considered in this computation if

uses the source-to-site distance other than Rjb, a

conversion of distance metric is performed prior to

using the GMPE: Rjb is converted into (i) Rrup and

Rhypo using the algorithm of Kaklamanos et al.

(2011); and (ii) Repi using the recommendation of

Tavakoli et al. (2018).

5.2. Weight Calculation

Weight associated with each MHC wMHCð Þ is

required for the computation of weighted mean

representation of rate hazard curve. With reference

to Fig. 1, for the same MHC considered above,

wERF ¼ 0:43� 0:46� 0:55� 0:339 ¼ 0:0368 and

wSERF ¼ 0:28� 0:51 ¼ 0:1428. Therefore, weight of

the MHC is computed as

wMHC ¼ 0:0368� 0:1428 ¼ 5:266� 10�3.

(a) Model UHS (b) Weighted mean and fractile representation of UHS
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Uniform hazard spectra (UHS) at Site class B, 2%PE in 50 years, for Champhai (Mizoram)
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6. Results and Discussion

PSHA is performed in the companion paper using

the logic tree approach to consider the possible

effects of epistemic uncertainty. The sources of

epistemic uncertainty considered are the (i) recur-

rence parameters, (ii) magnitude distribution, (iii)

distance probability distribution, (iv) maximum

magnitude and (v) selection of GMPEs. PSHA is

carried out for three NEHRP soil sites of class B

(Vs30 760–1500 m/s), C (Vs30 360–760 m/s) and D

(Vs30 180–360 m/s) with an average shear wave

velocity of 1100, 550 and 250 m/s, respectively. Only

one sample illustration of PSHA results out of 112

district headquarters of seven states in North-east

India is reported in this paper in terms of the

weighted mean and fractile representation of hazard

curves and UHS for brevity (50th, 84.13th and

99.86th percentile). Computation of weighted mean

and fractile representation of hazards may lead to an

alternate perspective of ‘importance factor’ used in

seismic design. As opposed to a structure specific

decision, importance factor is likely to be dependent

on the natural period and seismicity of the location as

well. Further exploration of PSHA results and the

‘importance factor’ is reported in the companion

paper.

6.1. Weighted Mean and Fractile Representation

of Hazard Curves

A typical MHC represents the mean annual rate of

exceedance of a selected intensity measure at a

particular site. Several MHCs can be generated from

various terminal branches of the logic tree as a

possible alternative. A sample illustration of the

MHCs (peak ground acceleration, PGA, T = 0) at site

class B for Champhai district in Mizoram is presented

in Fig. 8a as an outcome from different branches of

the logic tree. Thick outer lines indicate the spread of

the hazard curves. Figure 8b represents the weighted

mean and different fractile estimates of the hazard

curves illustrated in Fig. 8a. Both IM and rate hazard

curves resulting from horizontal and vertical dissec-

tions, respectively, are included in Fig. 8b.

Variation in the ratio of mean annual rate of

exceedance of IM to rate hazard curves (Fig. 8b) with

respect to IM is presented in Fig. 9a. Similarly,

Fig. 9b presents the variation in the ratio of intensity

measures from IM to rate hazard curves (Fig. 8b)

with respect to the mean annual rate of exceedance.

As evident from the Figs. 9a and b, the choice of IM

or rate hazard does not affect the fractile represen-

tation of MHC. Similar comparison is also included

in Fig. 9 for the weighted mean representation of

MHC which is somewhat sensitive to the definition of

IM vs. rate hazard. Hence, care should be exercised

while selecting and adopting the weighted mean

representation of hazard, which is governed by the

end objective such as characterization of seismic

hazard and estimation of collapse fragility.

The end objective in this paper is to estimate the

design seismic hazard, and hence, the horizontal

dissection is chosen with IM as a random variable

conditioned to a mean annual rate of exceedance.

Therefore, weighted mean and any percentile/fractile

representation of IM will be referred to as weighted

mean and percentile/fractile representation of hazard

(dropping IM) hereafter for brevity.

6.2. Uniform Hazard Spectra

Given one terminal branch of the logic tree, the

hazard curves are constructed using spectral ordinates

at different periods as the IM. The spectral ordinates,

when plotted against the time periods conditioned to

a mean annual rate of exceedance, result in the UHS

associated with the considered terminal branch of the

logic tree. Similarly, UHS associated with all

branches of the logic tree are constructed. Figure 10a

presents a sample illustration of 2475 years UHS for

the Champhai district in Mizoram with site class B

while thick outer lines indicate the spread. Figure 10b

presents the associated weighted mean and different

fractile estimates (by vertical dissection) of the UHS.

Similar studies are carried out in the companion

paper for all of North-east India for all three site

classes (B, C and D) and at both MCE and DBE

levels.

6.3. Results Presented in the Companion Paper

This paper presents the framework for conducting

PSHA considering possible sources of epistemic
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uncertainty using the logic tree approach. The

framework is implemented over the north-east region

of India. Only one sample illustration is presented

here to explain the application of the proposed

framework. Detailed comparison of results with

previous studies and Indian standard recommenda-

tions, in terms of weighted mean representation of

PGA hazard and UHS for NEHRP soil types B, C and

D at DBE are presented in the companion paper.

Further, a hazard map of the complete region is

prepared by dividing the area in a grid spacing of 0.1�
(about 10 km). Two return periods (MCE and DBE)

with three soil types are considered and maps are

presented in Appendix 2 of the companion paper.

Ratio of fractile-to-weighted mean representation of

hazard is presented as an alternative viewpoint of

importance factor used in the seismic design.

Weighted mean and fractile representation of target

conditional spectra (CS) with different conditional

time periods (0.2–1.6 s in increments of 0.2 s) are

also estimated by two methods (GCR-CS and GCIM-

CS, considering GMPE specific generalized causal

rupture and all contributing causal ruptures, respec-

tively) using the logic tree approach and results are

compared. Weighted mean representation of target

CS (mean and standard deviation) are calculated at

112 district headquarters, but only mean spectra

(without standard deviation) are reported in the

Appendix 3 of the companion paper.

7. Conclusion

A framework is developed for PSHA to account

for the contribution from possible sources of epis-

temic uncertainty that includes (i) recurrence

parameters, (ii) magnitude distribution, (iii) distance

probability distribution, (iv) maximum magnitude

and (v) selection of GMPEs. The log-likelihood

approach is employed to arrive at the weights asso-

ciated with various contributors of epistemic

uncertainty. A somewhat different approach is

applied for the recurrence parameters and weights are

assumed to be inversely proportional to the mean

squared error. A GMPE rule is proposed to be used

with the PSHA framework to account for the propa-

gation of epistemic uncertainty. A procedure is also

developed for computing the weights associated with

the MHCs. The weighted mean representation of

hazard is calculated by taking weighted sum of IM as

outcome from various branches of the logic tree.

Similarly, fractile estimate is used to construct the

fractile representation of hazard.

Following are the key contributions/conclusions

of this paper based on the limited investigation car-

ried out:

1. Relevant guidelines are proposed for the weight

calculation at each node of the logic tree (except

for GMPEs) to minimize the subjectivity based on

the degree of belief of the analyst.

2. A GMPE rule is proposed to account for the

propagation of epistemic uncertainty.

3. Characterization of seismic hazard in terms of

weighted mean and fractile representation of

hazard with a new interpretation of importance

factor in seismic design is envisioned.

4. Horizontal or vertical dissection of the hazard

curves should be determined based on the end

objective. While the fractile representation of

hazard remains insensitive, weighted mean repre-

sentation of hazard is somewhat sensitive to the

choice of dissection.

Some of the contributors of epistemic uncertainty

such as Vs30 and fault rupture characteristics are not

included in the proposed framework.
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