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Abstract—Suspended sediment load modeling through

advanced computational algorithms is of major importance and a

challenging topic for developing highly accurate hydrological

models. To model the suspended sediment load in the Rampur

watershed station in the Mahanadi River Basin, Chhattisgarh State,

India, unique integrated computational intelligence regression

models with an optimizer are proposed in this study. For the first

time in the literature, the isotonic regression (ISO) and sequential

minimal optimization regression (SMOR) models and their hybrid

versions with an iterative classifier optimizer (ICO) are applied for

suspended sediment load modeling. The research is based on daily

discharge and suspended sediment data collected over a 38-year

period (1976–2014). Root mean square error (RMSE), relative root

mean square error (RRMSE), coefficient of determination (R2), and

Nash–Sutcliffe efficiency (NSE) were employed to evaluate the

performance of the standalone ISO and SMOR, as well as the

proposed ICO–ISO and ICO–SMOR hybrid models. Ten different

scenarios were considered for modeling to investigate the perfor-

mance of the models using different input combinations. The

proposed new models were found to be more reliable than stan-

dalone ISO and SMOR models. Results revealed that the

performance of the hybrid model was mostly attributable to the

basic algorithm for the model development, where both SMOR and

ICO–SMOR models were superior to their ISO and ICO–ISO

counterparts in terms of accurate computation. Overall, the ICO–

SMOR models outperformed the other models in terms of accu-

racy, with RMSE, RRMSE, R2, and NSE of 5495.1 tons/day, 2.77,

0.90, and 0.86, respectively. The current study’s findings support

the applicability of the proposed methodology for modeling of

suspended sediment load and encourage the use of these methods in

alternative hydrological modeling.

Keywords: Isotonic regression, iterative classifier optimizer,

Mahanadi River, suspended sediment, sequential minimal opti-

mization regression.

1. Introduction

Because of (a) the huge regional diversity of

catchment characteristics and precipitation patterns,

and (b) the number of variables involved in physical

process modeling, runoff–sediment yield is one of the

most difficult hydrological phenomena to compre-

hend. The amount of runoff and sediment yield

produced by a particular rainfall is mostly determined

by the rate, length, and distribution of the rainfall, as

well as initial soil moisture, land use, catchment

geomorphology, and other factors.

Runoff determination is essential to many tasks,

including constructing flood control systems, pre-

serving agricultural land, and storing and releasing

water. Rainfall and runoff both cause sediment

overflow, which reduces the holding capacity of riv-

ers and other hydraulic systems. It has also been

blamed for transporting contaminants such as dan-

gerous materials, herbicides, and fertilizers. Since the

1930s, a number of models have been created for

simulating rainfall–runoff, runoff–sediment yield,

and rainfall–runoff–sediment yield processes in river

catchment systems, and they are widely classified

into regression, stochastic, conceptual or parametric,

and (dynamic) system models.
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Investigating the sediment load in rivers is

important for addressing water scarcity and water

quality problems (Sharafati et al., 2020a). With a

major role in sediment transport in hydrological sci-

ence, soil erosion poses a significant threat to

sustainable farming and the climate. It has become an

extreme issue because of an insufficient understand-

ing of the bearing capacity of soil. Extensive soil

erosion and related issues have deteriorated the soil

and water resources of the world. The presence of

multiple, frequently interrelated climatic and phys-

iographic factors makes the phase of rainfall-

sediment not only very complicated to understand but

often extremely difficult to simulate (Abebe &

Gebremariam, 2019; Christanto et al., 2019; Gudino-

Elizondo et al., 2019; Meshram et al. 2020; Tuset

et al., 2015). Because sediment load plays a crucial

role in any decision-making process about water

availability, precise simulation of sediment load is

important for sustainable water supply and environ-

mental systems. The use of data-driven modeling

techniques to improve sediment yield rating curves

has attracted considerable attention in recent years

(Ampomah et al., 2020; Yadav et al., 2018). Multiple

sediment prediction models have been developed by

hydrology researchers, ranging from empirical, such

as the Universal Soil Loss Equation (USLE)/Revised

USLE (RUSLE) (Arekhi et al., 2012; Borrelli et al.,

2017), to mathematical, such as kinematic/diffusion

wave theory (Liu et al. 2004; Schneider, 2018) or

linear/nonlinear programming optimization (Nicklow

& Mays, 2000) and physical process-based models

such as the Soil & Water Assessment Tool (SWAT)

(Asres & Awulachew, 2010; Chandra et al., 2014;

Dutta and Sen, 2018; Liu & Jiang, 2019) and Water

Erosion Prediction Project (WEPP) (Ahmadi et al.,

2020; Singh et al., 2017), and these and many others

have contributed to a better understanding of sedi-

ment yield modeling, but they are often data-hungry.

As a result, alternate approaches for forecasting

runoff and sediment yield must be sought. One way

of resolving such issues is to use artificial

intelligence.

Linked to robustness of artificial intelligence (AI)

algorithms, various types of AI can be applied for

sediment transport modeling (Safari & Shirzad, 2019;

Safari, 2020; Achite et al., 2021; Larson et al., 2021;

Meshram et al., 2019; 2021; Harun et al., 2021;

Mohammadei et al., 2021; Vaheddoost et al., 2022;

Samadianfard et al., 2022; Essam et al., 2022).

Effective sediment yield or load predictions have

been made using AI algorithms such as support

vector machine (SVM) (Buyukyildiz & Kumcu,

2017; Cimen, 2008; Misra et al., 2009; Samantaray

et al., 2020), least-squares SVM (LSSVM) (Kisi,

2012; Kisi & Ozkan, 2017) and artificial neural net-

works (ANN) (Bouzeria et al., 2017; Jothiprakash &

Garg, 2009; Talebizadeh et al., 2010). Despite the

high prediction accuracy obtained by SVM, its value

is diminished by the need to evaluate four kernel

functions to decide best. It also needs a number of

parameters to determine optimum values. Although

the ANN is the most widely used AI method, it has

certain flaws, such as low prediction power when the

range of test data exceeds the range of training data

and when the datasets are small (Khosravi et al.,

2018). To tackle these issues, researchers combined

the ANN model with a fuzzy logic and adaptive

neuro-fuzzy inference method (ANFIS). Flood fore-

casting (Kim et al., 2019; Patel & Parekh, 2014;

Ullaha & Choudhury, 2010), crop yield prediction

(Naderloo et al., 2012), and water quality prediction

(Naderloo et al., 2012) all used ANFIS algorithms

(Tiwari et al., 2018). Yuan et al. (2018) applied the

long short-term memory neural network–antlion

optimizer (LSTM–ALO) model for monthly runoff

forecasting. The simulation results by the LSTM–

ALO were compared with those of the LSTM and

LSTM–particle swarm optimization (LSTM–PSO).

The comparisons show that the ALO could increase

the accuracy of the LSTM model in forecasting

monthly runoff with different model inputs. Sharafati

et al. (2020b) predicted suspended sediment load

(SSL) using gradient boost regression (GBR), Ada-

Boost regression (ABR) and random forest regression

(RFR) models. Based on performance metrics and

visualization, the RFR model shows a slight lead in

prediction performance. Doroudi et al. (2021) pre-

dicted SSL using a new hybrid support vector

regression–observer-teacher-learner-based optimiza-

tion (SVR-OTLBO) model. The results indicated that

the SVR-OTLBO model performed better than stan-

dalone SVR models. Adnan et al. (2021) predicted

stream flow using a new hybrid extreme learning
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machine (ELM) model combined with hybrid PSO

and grey wolf optimization (GWO). The PSO- and

GWO-based ELM models also performed better than

standalone ELM models, with an improvement in the

root mean square error (RMSE) by 19.9 and 20.3%,

respectively. Adnan et al. (2022) predicted sediment

load using a fuzzy c-means-based neuro-fuzzy system

using the hybrid particle swarm optimization-gravi-

tational search algorithm (ANFIS–FCM–PSOGSA).

Based on the results, ANFIS–FCM–PSOGSA was

able to improve the prediction performance of the

ANFIS–FCM–PSO (or ANFIS–FCM) models.

Although ANFIS is a powerful algorithm, it is

hampered by internal parameters and the need to

accurately hybridize ANFIS with a meta-heuristic

method to tackle this problem. Meta-heuristic algo-

rithms find the ideal mass on their own. Because

hybrids are more adaptable and hence more robust

with noisy data than standalone algorithms, they can

more easily characterize the non-linearity of input

and output variables. While this constraint is over-

come, hybridization increases the model’s

complexity and time consumption by requiring a

time-consuming search for the best meta-heuristic

method among a large number of meta-heuristic

models with various topologies. Researchers are still

striving to develop AI methods that are simple,

scalable, adaptable, and dependable.

A new form of AI algorithm has recently been

developed to solve regression problems and reduce

the AI disadvantages. In order to quantify hydrology,

climatology, and hydraulics, new algorithms such as

random forest (RF), pace regression (PR), isotonic

regression (ISO), sequential minimal optimization

regression (SMOR). and iterative classifier optimizer

(ICO) have been used to quantify landslide suscep-

tibility mapping (Pham et al., 2019), stratigraphic

data modeling (Polucci et al., 2020), software

development (Veni & Srinivasan, 2020), and envi-

ronmental analysis (Hussian et al., 2005). The lack of

hidden layers and transparency modeling in AI

algorithms (i.e., RF, PR, ISO, SMOR, ICO, and

others) allows better modeling performance than

ANN and ANFIS.

The main objective of this study is to predict the

suspended sediment load using two standalone algo-

rithms (ISO and SMOR) and two hybrid algorithms

(ICO–ISO and ICO–SMOR). Although standalone

algorithms can predict suspended sediment load sat-

isfactorily, and their predictive power has been

demonstrated in applications to other hydrological

phenomena, combining them with classifier algo-

rithms can improve predictive accuracy and eliminate

the inherent flaws of each model. To this end, the

major novelties of this study are as follows:

i. While there are a variety of artificial intelligence

techniques for suspended sediment load modeling,

the accuracy of standalone models is not as high as

that of hybrid models. Therefore, for the first time

in the literature, this study recommends advanced

and novel hybrid algorithms, ICO–ISO and ICO–

SMOR, for suspended sediment load modeling.

ii. Because of the complexity and difficulty in

suspended sediment load modeling, defining an

appropriate scenario for model development is a

challenging task. Therefore, this study applied ten

different scenarios for suspended sediment load

modeling.

iii. There was no recorded work for the ISO and

SMOR models integrated with ICO for suspended

sediment forecasting in the relevant literature.

2. Materials and Methods

2.1. Study Area and Modeling Data

The Rampur watershed originates from the Jonk

River catchment (Mahanadi basin), India. The largest

watershed area includes the Chhattisgarh state dis-

tricts of Raipur and Mahasamund, and the minor area

lies in the Odisha state districts of Nuapada and

Bargarh. The watershed extends over an area of 3424

km2 and ranges from 81.28� 160 0000 to 83.18� 420 0000

east longitude and 20.27� 530 0000 to 21.47� 490 0000

north latitude. In this area, the climate is mostly

tropical wet and dry, and the average temperature

varies between 15 and 35 �C. While temperature

remains moderate throughout the year, months such

as April and May can be exceptionally hot, where

temperatures can often rise above 48 �C. Average
annual rainfall in the area varies between 800 and

1200 mm. About 50% of the watershed area

Vol. 179, (2022) Suspended Sediment Modeling Using Sequential Minimal Optimization Regression 3753



comprises forest and agricultural land. The region’s

main cultivated crop is paddy. Watershed elevation

varies from 205 to 875 m. The watershed is com-

posed of three types of soil, i.e., clay, loam and sandy

loam (Fig. 1).

For the period 1976 to 2014, daily rates of

discharge (m3/s) and suspended sediment load (tons/-

day) from the Rampur station were used; 75% of the

data were used for model development/calibration,

while the remaining 25% were used to test and

evaluate the model’s performance. The time series of

the whole dataset that was applied for the Rampur

station is shown in Fig. 2. The statistical parameters

for the results are listed in Table 1.

2.2. Sequential Minimal Optimization Regression

(SMOR)

Sequential minimal optimization regression

(SMOR) is an efficient algorithm for training the

conventional support vector regression (SVR)

method. Due to large size in the objective function

for the optimization problem in SVR:

Max W að Þ ¼
Xn

i¼1
a1 �

1

2

Xn

i¼1
aiajyiyjK X i;X j

� �
:

ð1Þ

Subject to
Xn

i¼1
a1yi ¼ 0ð2Þ0� ai � C; i ¼ 1; 2; . . .e; ð2Þ

where K X i;X j

� �
denotes the kernel function, the

quadratic problem arising from SVRs cannot be

efficiently handled using typical numerical quadratic

issue (QP) methodologies, especially when the

problem is large in size. Numerous algorithms are

presented for resolving the dual function problem.

Platt (1999) introduced a sequential minimum opti-

mization technique for classification problems that

iteratively selects a working set of size two and

optimizes the objective function using analytical

solutions to subproblems (Platt, 1999). The technique

is continued iteratively until all training instances

satisfy the Karush–Kuhn–Tucker (KKT) require-

ments. Smola and Schölkopf enhance the SMOR

algorithm’s capability to solve regression problems

(Smola and Scholkopf, 2004).

Figure 1
Index map of the Rampur watershed (study area)
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2.3. Isotonic Regression (ISO)

Isotonic regression is a popular nonparametric

regression technique. We will quickly describe iso-

tonic regression in the following section where the

parameters have simple order relations. Consider p

populations, with li denoting an important scalar

parameter for group i ¼ 1; 2; . . .; p and

l ¼ l1; . . .; lp

� �
. It is assumed that there is simple

order among li, such as l1 � � � � � lp.

Let (l̂1) denote an estimator of li for i ¼
1; 2; . . .; p and l̂ ¼ cl1 ; . . .;clp

� �
. To satisfy

l1 � � � � � lp, the isotonic regression of bl;, denoted
by l̂IR ¼ cl1IR; . . .;clp

IR
� �

; was provided by Nagat-

suka et al. (2012).

l̂IR ¼ arg min
l w

Xp

i¼1
bli � lið Þ2wi; l1 � � � � lp;

ð3Þ

where wi; i ¼ 1; 2; . . .; p are given or suitably

chosen weights. Usually, the weights wi are chosen

such that w1 ¼ w2 ¼ � � � ¼ wp.

2.4. Iterative Classifier Optimizer (ICO)

The iterative classifier optimizer (ICO) employs

cross-validation and optimizes the number of itera-

tions for a given classifier; it is capable of handling

missing, nominal, and binary classes and character-

istics such as numeric, nominal, binary, and empty

nominal (Omondi & Rajapakse, 2010). After con-

structing the model and comparing it with observed

and measured values, the model’s performance is

Figure 2
Time series of observed data (discharge and sediment) used for training and testing stages

Table 1

Statistics of the data

Dataset Data type Data no. Mean STD CV Max Min

Training Discharge (m3/s) 8938 42.57039 173.2609 406.9987 4100 0

Sediment load (tons/day) 1542.86 11,793.35 764.3823 391,611.8 0

Testing Discharge (m3/s) 3823 48.09995 169.4996 352.3905 3380 0

Sediment load (tons/day) 1985.985 14,903.71 750.444 350,438.4 0
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evaluated using the ICO algorithm’s optimization

technique. The information gained is then used to

tune the model’s outputs.

2.5. Determination of Input Parameters

Using correlation coefficients calculated for var-

ious time lags between input variables and suspended

sediment load (S), the most efficient independent

parameters for the computation of suspended sedi-

ment load were identified as shown in Fig. 3. In this

study, as shown in Table 2, ten scenarios of input

parameters were considered using (i) discharge data

(Q); (ii) Q, Q-1; (iii) Q, Q-1, Q-2; (iv) Q, Q-1, Q-2,

Q-3; (v) S-1; (vi) S-1, S-2; (vii) S-1, S-2, S-3; (viii) Q,

S-1; (ix) Q, Q-1, S-1; and (x) Q, Q-1, Q-2, Q-3, S-1,

S-2, S-3. According to Fig. 3, discharge influences

suspended sediment load (S) most significantly,

which is in agreement with results reported by

Chiang and Tsai (2011) and Kisi et al. (2012). The

above models were trained with different input

combinations and then used to compute S in the

Rampur watershed, Mahanadi River. The RMSE

criterion is considered to determine the best input

combination. This step used the default operator for

each model (e.g., Kisi et al., 2012).

2.6. Model Setup

Determination of the best model structure is an

essential step in the model development procedure. It

can be achieved by training the models using

different input combinations together with determin-

ing the best hyperparameters. To search for the best

model hyperparameters, the WEKA package was

used. At the first step of the modeling procedure, the

default values of the packages were applied, and

subsequently, through a trial-and-error procedure, the

best parameters were determined. The performance

criterion for the RMSE was utilized to evaluate the

developed model performance for best hyperparam-

eter selection. Hyperparameters for the studied

models are given in Table 3.

2.7. Performance Criteria

There were four statistical indexes used in this

study to assess the accuracy of stand-alone ISO and

SMOR as well as the hybrid ICO-SMOR and ICO-

ISO models for modeling suspended sediment load,

including root mean square error (RMSE), relative

root mean square error (RRMSE), determination

coefficient (R2) and Nash–Sutcliffe efficiency

(NSE). The formulation can be expressed as follows:

R2 ¼ 1

n
�
P

xi � xð Þ yi � yð Þ
rxð Þ ry

� �
 !2

ð4Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi � yið Þ2

n

s

ð5Þ

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Q

Q-1

Q-2

Q-3S-1

S-2

S-3

Pearson's correlation coefficient

Figure 3
Pearson correlation coefficient (PCC) for studied scenarios

Table 2

Various considered scenarios

Combination no. Scenarios

1 Q

2 Q, Q-1

3 Q, Q-1, Q-2

4 Q, Q-1, Q-2, Q-3

5 S-1

6 S-1, S-2

7 S-1, S-2, S-3

8 Q, S-1

9 Q, S-1, Q-1

10 Q, Q-1, Q-2, Q-3, S-1, S-2, S-3
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RRMSE ¼ RMSE
1
n

Pn
i¼1 yi

ð6Þ

NSE ¼ 1 �
Pn

i¼1 xi � yið Þ2

Pn
i¼1 xi � xið Þ2

ð7Þ

where n is the number of data, x and y are

observed and estimated values, and rx and ry are the

standard deviation of the observed and estimated

data. It should be mentioned that low value (closer to

zero) for the RRMSE and RMSE while for NSE

indicator as well as R2, a high value (closer to the

unity) signify that there is a good agreement between

observed and modeled estimation data.

3. Results and Discussion

This study used daily discharge and suspended

sediment load data from the Rampur watershed,

Mahanadi River in India. As stated earlier, four

models, i.e., ISO, SMOR, ICO–ISO, and ICO–

SMOR, were developed for discharge and suspended

sediment load modeling. An overview of the study is

given in Fig. 4.

3.1. Statistical Analysis of Data

Initially, daily discharge and sediment load data

were divided into two parts, calibration/training and

testing, with 70% selected for calibration and the

remaining 30% for testing the developed models. The

statistical parameters for calibration/training and

testing of discharge and sediment load datasets were

calculated as shown in Table 1.

The coefficient of variation (CV) and standard

deviation (STD) values for the discharge training

datasets were higher than those for the testing, but the

mean and standard deviation values for sediment

training datasets were lower than those for the testing

(Table 1). Furthermore, the maximum value of the

discharge variable is higher during the training

dataset. The maximum values for the sediment load

training dataset were higher than those for the testing.

3.2. Model Performance and Validation

In this study, input selection using the Pearson

correlation coefficient (PCC) was conducted on the

entire dataset to determine the best input parameters

with the best correlation with suspended sediment

load. Results showed that daily runoff data had the

highest correlation coefficient with runoff of the

previous day (Fig. 3). The PCC approaches were

used to choose the most important driving variable

among the input variables (Chiang & Tsai, 2011; Kisi

et al. 2012; Khosravi et al., 2018). Discharge has the

greatest effect on suspended sediment load (PCC =

0.72), followed by S-1 (PCC = 0.45), Q-1 (PCC =

Table 3

Optimal values of model hyperparameters

Model hyperparameters Optimum value

ISO ICO SMOR

Batch size 100 100 100

C – – 1

Number of decimal places – 2 2

Do not check capabilities – No No

Debug No No No

Number of folds – 10 –

Filter type – – Normalize training data

Kernel – – Poly kernel

Regression optimizer – – Regression SMOR improved

Look-ahead iteration – 50 –

Number of decimal places – 2 –

Pool size – 1 –
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0.32), S-2 (PCC = 0.24), S-3 (PCC = 0.19), and Q-3

(PCC = 0.10), according to the PCC values in Fig. 3.

Table 2 shows ten different combinations that

were developed and investigated based on particular

PCC values. For each of the several sets of input

parameters, all of the models created in this work

(ISO, SMOR, ICO–ISO, and ICO–SMOR) use the

same datasets. The model efficiency was assessed

using the RMSE (as shown in Fig. 5) and various

input parameters. As shown in Fig. 5, modeling of

the suspended sediment load by incorporating only

discharge and its lags up to 3 days yielded no

significant improvement in the performance of the

developed ISO, SMOR, ICO–ISO, and ICO–SMOR.

The RMSE lines shown in Fig. 5 for four developed

models tend to be a straight line from one input

parameter of Q to the four input parameters of Q, Q-

1, Q-2, and Q-3. This result indicates that for the

current case study, suspended sediment load cannot

be modeled considering only the discharge and its

lags as input parameters. The accuracy of all the

developed models remains almost the same when

only lags of suspended sediment load parameters are

considered for modeling the current suspended sed-

iment load, although slight improvement and

worsening are shown for ISO-based and SMOR-

Figure 4
Flowchart of the modeling procedure
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based models, respectively. Simultaneously incorpo-

rating the discharge and its lags as well as the

suspended sediment load lags significantly enhanced

the performance of the SMOR-based standalone

SMOR and hybrid ICO–SMOR models. Two scenar-

ios of Q, S-1, Q-1, and Q, Q-1, Q-2, Q-3, S-1, S-2,

and S-3 provide better results for the SMOR and d

ICO–SMOR models.

Among the applied artificial intelligence methods,

best scenarios from each model (ISO, SMOR,

ICO–ISO, and ICO–SMOR) were selected for

discussion. It can be seen from Table 4 that ICO–

SMOR has the highest values of R2 and NSE of

0.90 and 0.86, respectively, and the lowest RMSE

and RRMSE of 5495.1 tons/day and 2.77, respec-

tively. The ICO–SMOR-based model

outperformed the R2 (NSE) accuracy of ICO–ISO,

ISO, and SMOR by 4.44% (0%), 14.44%

(17.44%), and 22.22% (29.07%), respectively;

also, ICO–SMOR outperformed the RMSE

(RRMSE) accuracy of ICO–ISO, ISO, and SMOR

by 2.04% (1.77%), 31.63% (31.60%), and 41.09%

(41.06), respectively.

Figure 6 shows the model performance for the

estimated and observed suspended sediment by

SMOR, ISO, ICO–SMOR, and ICO–ISO, and it can

be seen that all four models underestimated the peak

observed values, which is similar to the findings of

Adnan et al. (2019) and Kişi (2004). When compared

with the other models, the estimated values of ICO–

SMOR are closer to the observed values with the

least scattered estimated values and highest R2. The

closeness of the estimated suspended sediment to the

observed one and highest R2 values of the models are

9000

10000

11000

12000

13000

14000

RM
SE

(to
n/

da
y)

Scenario

SMOR ISO ICO-SMOR ICO-ISO

Figure 5
Performance of SMOR, ISO, ICO–SMOR, and ICO–ISO models for different scenarios in terms of RMSE

Table 4

Comparison of SMOR, ISO, ICO–SMOR, and ICO–ISO models in terms of RMSE, RRMSE, R2 and NSE

Model RMSE (tons/day) RRMSE R2 NSE

SMOR 9328.4 4.70 0.70 0.61

ISO 8037.6 4.05 0.77 0.71

ICO–SMOR 5495.1 2.77 0.90 0.86

ICO–ISO 5609.3 2.82 0.86 0.86

Bold values indicate based model as lowest RMSE, highest R2 and NSE compared to other model
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in the order ICO–SMOR[ ICO–

ISO[ ISO[ SMOR.

As an alternative visual model performance

evaluation criterion, violin plots given in Fig. 7 are

used. Violin plots have a feature in which the

probability distribution of the developed model

results can be compared with the corresponding

observed values. It is seen in Fig. 7 that the ICO–

SMOR and ICO–ISO models provide better perfor-

mance than SMOR and ISO standalone models. It

must be noted that in terms of probability distribu-

tion, ICO–ISO gives better results than ICO–SMOR,

where its violin shape is mostly similar to the

observed counterpart. Furthermore, the performance

of the developed models is investigated using a

Taylor diagram as shown in Fig. 8. The main

advantage of a Taylor diagram is that it uses three

statistical performance criteria simultaneously; there-

fore, reliable justification can be produced. The

observed or reference point is located in the X-axis.

A model that is closest to the reference point is

considered as a best model. The outcomes obtained

based on the Taylor diagram are in agreement with

findings obtained in previous sections where ICO–

SMOR outperforms its alternatives in suspended

sediment load estimation.

As a complex hydrological problem, suspended

sediment load causes serious uncertainties in the

hydrological properties of a river. Suspended sedi-

ment load has a direct impact on the design of

hydraulic structures, ecosystem, water quality, and

pollution control. Therefore, accurate estimation of

the suspended sediment load of a river is of

importance in both theory and practice. Owing to

the clarification above, developing robust artificial

intelligence models may facilitate dealing with

sediment load problems in the rivers. This study first

investigates the importance of parameters involved in

the modeling where discharge is found as the most

Figure 6
Comparison of SMOR, ISO, ICO–SMOR, and ICO–ISO model

performance in terms of observed and computed suspended

sediment load

b

Figure 7
Violin plot for model performance evaluation
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important parameter in suspended sediment load

modeling. Applying novel types of AI techniques,

standalone SMOR and ISO models are first devel-

oped and then hybridized with ICO to develop ICO–

SMOR and ICO–ISO models. Results illustrate that

hybrid ICO–SMOR and ICO–ISO models outperform

standalone SMOR and ISO models in terms of

different visual and mathematical performance

indices. It is found that the performance of ICO–

SMOR is better in terms of error, while the ICO–ISO

model, by means of probability distribution, provides

better results. Consequently, the models developed in

this study can be applied for suspended sediment load

calculation in rivers. It is worth mentioning that the

efficiency of the developed scenarios and recom-

mended modeling techniques must be further

examined in regions with different climate

conditions.

4. Conclusions

The main goal of this study was to model the

suspended sediment load in the Rampur watershed

(Mahanadi basin), India, by employing four artificial

intelligent techniques, i.e., SMOR, ISO (standalone

models) and ICO–SMOR, ICO–ISO (hybrid models).

Statistical metrics and graphical evaluation were used

to quantify the predictive accuracy of these models.

The simulation is based on daily discharge and sed-

iment load data from 1 to 2 years ahead of historical

records. Different input combinations were tested on

all of the models in order to choose the optimal

scenario for further investigation. The hybrid models

outperformed the standalone models in estimating the

daily sediment load, and were ranked first (ICO–

SMOR) and second (ICO–ISO), respectively, in a

comparison of the models produced based on a

number of statistical error measurement indicators.

As a limitation, the models and scenarios developed

in this study can be applied for rivers with similar

climate conditions, but further evaluation is needed

before their application can be recommended in

regions with different climate conditions. In this

study, suspended sediment load and discharge

parameters were used for model development.

Incorporating more hydrometeorological parameters

for suspended sediment load modeling can be con-

sidered as a future research direction.
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