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Abstract—The time-dependent mild-slope equation (MSE) is a

second-order hyperbolic equation, which is adopted to consider the

irregularity of waves. For the difficulty of directly solving the

partial derivative terms and the second-order time derivative term,

a novel mesh-free numerical scheme, based on the generalized

finite difference method (GFDM) and the Houbolt finite difference

method (HFDM), is developed to promote the precision and effi-

ciency of the solution to time-dependent MSE. Based on the local

characteristics of the GFDM, as a new domain-type meshless

method, the linear combinations of nearby function values can be

straightforwardly and efficiently implemented to compute the

partial derivative term. It is worth noting that the application of the

HFDM, an unconditionally stable finite difference time marching

scheme, to solve the second-order time derivative term is critical.

The results obtained from four examples show that the propagation

of waves can be successfully simulated by the proposed numerical

scheme in complex seabed terrain. In addition, the energy con-

version of waves in long-distance wave propagation can be

accurately captured using fast Fourier transform (FFT) analysis,

which investigates the energy conservation in wave shoaling

problems.

Keywords: Time-dependent mild-slope equation, generalized

finite difference method, meshless method, combined refraction

and diffraction, Houbolt finite difference method.

1. Introduction

With the propagation of the wave train from a

deep water to a shallow water region, various wave

transformations including reflection, resonance,

shoaling, combined refraction and diffraction, and

wave breaking occur due to the changes in the seabed

topography. In the field of hydraulic and coastal

engineering, as well as for the calculation of sediment

transport, applying the above transformations during

wave propagation is essential. Therefore, various

forms of the mild-slope equation (MSE) have been

widely applied to simulate the above combined

effects. By supposing linear harmonic waves and

overlooking rotation, bottom friction, and wave

breaking, Berkhoff (1972) first derived the original

MSE with the consideration of the combined influ-

ence of refraction, reflection, and diffraction for

linear surface waves. Later, Smith and Sprinks (1975)

formally deduced time-dependent MSE with asymp-

totic theory. For monochromatic waves with single

frequency, it can be simplified to the original MSE,

and they utilized it to study the problem of surface

waves scattered by a conical island. Since three-di-

mensional problems are simplified to two-

dimensional problems, combining the reliable

description of refraction and diffraction, MSE has

been universally used to handle coastal engineering

problems.

As mentioned above, since the original MSE is

derived from linear wave theory, it does not consider

the effects of many additional physical phenomena

such as friction, breaking, and wave nonlinearity on

the wave transformations, which restricts its appli-

cability. Therefore, many researchers have focused

on modifying the original MSE, and a number of

improvements have been suggested, such as intro-

ducing wave breaking (Battjes, 1978; Dally et al.,

1985; Massel, 1992), frictional dissipation (Alvarez

et al., 2017; Booij, 1981; Khellaf & Bouhadef, 2004),

wave-current interaction (Kirby, 1984; Liu, 1983;

Massel, 1992), and steep slope (James, 1986; Lee &

Yoon, 2004; Zou et al., 2017) into the original MSE
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and extending it to a time-dependent equation (Beels

et al., 2010a; Kim et al., 2006; Lee & Suh, 1998; Lin,

2004; Smith & Sprinks, 1975; Tsai et al., 2014). A

mesh-free numerical method, the generalized finite

difference method (GFDM) was first proposed to

accurately and efficiently solve the original MSE in

our previous study (Zhang et al., 2018). However, the

original MSE can only be applied for the of steady-

state wave predication, so the transient behavior of a

wave, playing an essential role in real engineering,

cannot be predicted. In this paper, it concentrates on

proposing a newly-developed meshless numerical

scheme to directly solve the time-dependent MSE. It

is paramount to search a direct and effective numer-

ical scheme for solving the time-dependent MSE,

which is a hyperbolic partial differential equation

combining with the second-order time derivative

term. Therefore, in this paper, the GFDM and Hou-

bolt finite difference method (HFDM) were

respectively employed for spatial and temporal dis-

cretization to develop a novel numerical

scheme which has the ability to deal with simulating

transient wave movement by approximately estimat-

ing the propagation speed of wave energy.

The time-dependent MSE (Smith & Sprinks,

1975) has gained a good reputation for describing

near coastal and offshore wave phenomena, espe-

cially combined diffraction and refraction, since it

was developed more than four decades ago. Zhang

et al. (1995) later derived a new form of time-de-

pendent MSE for random waves using the Padé

approximation and Kubo’s time series concept, and

their results proved that the new equation excels at

describing both regular and random waves while

neglecting bottom friction. A dispersive time-depen-

dent MSE, which is composed of several depth-

dependent functions in their most general form, was

also developed by Beji and Nadaoka (1997). Lin

(2004) established a numerical algorithm based on an

explicit finite difference method (FDM) which has

second-order temporal and spatial accuracy to model

wave propagation, shoaling, together with refraction

and diffraction, by solving the time-dependent MSE.

Zhang et al. (2007) utilized the Euler predictor–cor-

rector method and a three-point FDM with variable

spatial steps to solve the time-dependent MSE con-

sidering bottom dissipation and nonlinearity. Tong

et al. (2010) presented an extension of the time-de-

pendent MSE and solved it by adopting the

alternating–direction implicit (ADI) method with a

space-staggered grid to simulate wave propagation

under the influence of rapidly varying depth in

curvilinear coordinates. The time-dependent MSE

has also been used to deal with realistic problems.

Beels et al. (2010b) exploited the method to simulate

the wake effects in the lee of a farm of Wave Dragon

wave energy converters. Tsai et al. (2014) developed

a set of second-order time-dependent MSEs using a

perturbation method, and the equations were simpli-

fied to a nonlinear long-wave equation, a linear time-

dependent MSE, and the traditional Boussinesq

equation. In order to accurately generate regular

waves and irregular long- and short-crested waves in

any direction, the time-dependent MSE model was

used to develop periodic lateral boundaries, i.e.

MILDwave, by Vasarmidis et al. (2019). The studies

mentioned above all have their own strengths and

weaknesses in terms of applicability, accuracy, and

computational cost, so a more reliable method is still

needed to solve the time-dependent MSE.

To save the time of mesh generation and numer-

ical integration, which are compulsory steps in

traditional mesh-based methods and greatly decrease

computational efficiency (especially in problems

concerning high dimension and complex geometry)

(Belytschko et al., 1996), meshless methods such as

the element-free Galerkin method (EFGM) (Álvarez

et al., 2018), the method of fundamental solutions

(MFS) (Li et al., 2019a), the modified collocation

Trefftz method (MCTM) (Fan et al., 2012, 2014), the

meshless local Petrov–Galerkin method (MLPGM)

(Li et al., 2019b), the local radial basis function

(RBF) collocation method (LRBFCM) (Boudjaj

et al., 2019), the local RBF-based differential

quadrature method (LRBFDQM) (Wang et al., 2017),

the smoothed-particle hydrodynamics (SPH) (Härdi

et al., 2019), and the GFDM (Benito et al., 2001; Fan

et al., 2015, 2019; Gavette et al., 2003; Li & Fan,

2017; Ureña et al., 2012, 2019, 2020; Zhang et al.,

2016a, 2016b, 2018) have been proposed in recent

decades.

Among the meshless methods mentioned above,

as a domain-type meshless method, the numerical

implementation of the GFDM only needs a group of
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boundary nodes and a group of interior nodes. Then,

the numerical predications can be easily acquired by

enforcing the satisfaction of the governing equations

at every interior node and the boundary conditions at

every boundary node. Thus, this meshless method is

easy to program, uncomplicated, and efficient. At the

same time, the application of localization helps the

GFDM avoid the problems of ill-conditioned matri-

ces. An explicit formula for the GFDM was

developed by Benito et al. (2001), and used four

mathematical examples to examine many critical

factors for the numerical accuracy. Subsequently,

Gavette et al. (2003) improved the GFDM, whose

superiority over the element-free Galerkin method

(EFGM) was already demonstrated. Ureña et al.

applied an extension of the GFDM to solve high-

order partial differential equations (PDE) (Ureña

et al., 2012), and the nonlinear parabolic and hyper-

bolic PDE (Ureña et al., 2019, 2020) obtained the

explicit solution. In the past few years, the GFDM has

been employed to solve various mathematical ques-

tions and engineering applications including two-

dimensional inverse Cauchy problems (Fan et al.,

2015), the two-dimensional liquid sloshing flows

problem (Zhang et al., 2016a), the propagation of

nonlinear waves (Zhang et al., 2016b), the shallow

water equation (Li & Fan, 2017), the mild-slope

equation (Zhang et al., 2018), and wave-current

interactions (Fan et al., 2019).

In this paper, the GFDM and the HFDM were

respectively adopted for spatial and temporal dis-

cretization of the time-dependent MSE (Houbolt,

1950; Lin et al., 2014; Najarzadeh et al., 2019; Sor-

oushian & Farjoodi, 2008; Young et al., 2008) to

study wave transformations, including shoaling,

reflection, and combined refraction and diffraction.

As the spatial derivatives of every computational

node can be easily obtained by the function values of

their own nearby nodes, this shows that the GFDM

has the flexibility of spatial discretization and sim-

plicity of the implementation process. From the

above description, it is worth noting that the proposed

numerical method really eliminates mesh generation

and numerical quadrature, which can deal with the

difficulty of solving the spatial partial derivative

terms. After the discretization by the HFDM, every

node marches the time step with the second-order

time derivative term, and the free surface displace-

ment will change at each time step simultaneously.

Next, the GFDM is applied for solving the time-de-

pendent MSE at the present time step. It is worth

mentioning that the speed of propagation and wave

dispersion can be captured well. Specifically, the

numerical scheme presented herein is fit to simulate

the wave propagation and deformation for a larger

and more complicated computational domain due to

the simple numerical procedures and flexible distri-

bution of nodes. The numerical results obtained

imply that it is successful for the employed numerical

scheme to simulate the time-dependent MSE.

The remainder of the paper is organized as fol-

lows. The governing equations and the boundary

condition are presented in Sect. 2. The proposed

numerical procedures combining the GFDM and

HFDM are described in Sect. 3. In Sect. 4, four

examples are presented to validate the capability of

the presented meshless numerical method in solving

the time-dependent MSE, and the numerical results

are compared with other numerical results.

2. Governing Equation and Boundary Conditions

2.1. Governing Equations

The MSE has been widely applied for the

description of wave propagation containing refraction

and diffraction over a slowly varying topography.

Thus, wave propagation in a numerical model over

different bottoms and h(x, y) denote still water depth,

which is considered in this study to simulate this

phenomenon. As depicted in Fig. 1, the Cartesian

coordinate system, (x, y), is laid on the free surface.

The governing equation herein adopts the time-

dependent MSE proposed by Smith and Sprinks (1975).

The time-dependent MSE incorporating the second-

order time derivative term can be expressed by:

o2g
ot2

�
o ccg

� �

ox

og
ox

�
o ccg

� �

oy

og
oy

� ccg
o2g
ox2

þ o2g
oy2

� �

þ x2 � k2ccg

� �
g

¼ 0;

ð1Þ

where g denotes the free surface displacement, and t
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represents time, c stands for the phase velocity and cg

stands for the group velocity, which are respectively

calculated as follows:

c ¼ x
k
; cg ¼

dx
dk

¼ c

2
1þ 2kh

sinh 2kh

� �
: ð2Þ

Based on the dispersion relation, the relationship

between the local wave number k and angular

frequency x can be described as follows:

x2 ¼ gk tanh khð Þ: ð3Þ

2.2. Boundary Conditions

To accurately simulate wave motion in a numer-

ical model, suitable boundary conditions are of great

importance. Thus, three types of boundary conditions

described below are considered herein. As depicted in

Fig. 1, a wave with wave height H0 propagates into

the computational domain from the left boundary,

and this wave is specified as the incident boundary

condition:

g tð Þ ¼ H0

2
sin xtð Þ: ð4Þ

The right boundary displayed in Fig. 1 specifies

the radiation boundary condition, which signifies that

the waves can leave the domain freely. A second-

order radiation boundary condition is adopted in this

study (Engquist & Majda, 1977), which is defined by:

o2g
ot2

þ c
o2g
onot

� c2

2

o2g
os2

¼ 0; ð5Þ

in which n and s denote the normal outward and

tangential directions at the right radiation boundary,

respectively.

Lateral boundaries are solid, which implies that

the waves are fully reflected. The expression of this

boundary condition is also given by:

og
on

¼ 0: ð6Þ

3. Numerical Methods

The GFDM and the HFDM are employed herein

for spatial and temporal discretization, respectively.

HFDM is mainly used to manage the time derivative

terms in the governing equations and radiation

boundary conditions, while GFDM is employed to

process the MSE at the current time step depending

on the updated value of the free surface displacement.

All calculation nodes in the computational domain

are fixed, whether an interior node or boundary node,

so once the nodes are distributed, the weighting

coefficient of each node can be determined. The

concrete analysis of the GFDM and the HFDM are

presented in the following sections.

3.1. Houbolt Finite Difference Method (HFDM)

As mentioned above, the time-dependent MSE is

a second-order hyperbolic equation with transient

terms. HFDM is a three-step implicit and strictly

stable time-integration method. The time operators

can be approximately computed by the values of the

four levels from tn�2 ¼ n � 2ð ÞDt to tnþ1 ¼
n þ 1ð ÞDt when tnþ1 using the Lagrange interpola-

tion. Thus, the first- and second-order time operators

can be expressed by:

og
ot

� �nþ1

� 1

6Dt
11gnþ1 � 18gn þ 9gn�1 � 2gn�2
� �

;

ð7Þ

o2g
ot2

� �nþ1

� 1

Dt2
2gnþ1 � 5gn þ 4gn�1 � gn�2
� �

; ð8Þ

h

η
o

b

a

x

y Incident wave
boundary

Radiation 
boundary

Figure 1
Schematic diagram of computational domain and boundary

conditions
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in which Dt denotes the time increment, and gn rep-

resents the free surface displacement at time n, i.e.

gn(x) = g(x,tn).
Since four time levels are considered in both of

the above formulas, the setup problem has to be

managed. Thus, the Euler scheme is adopted herein to

handle the problem as follows:

gn�1 ¼ gI � Dt � gII

gn�2 ¼ gI � 2Dt � gII

�
; n� 2; ð9Þ

in which the subscripts I and II indicate the first- and

second-order partial derivatives in the initial time

with the following expressions:

g x!; t
� ���

t¼0
¼ gI x!

� �

og x!;t
� �

ot

����
t¼0

¼ gII x!
� �

;

8
<

:
ð10Þ

The computation starts from the n?1th time step,

and the water is initially still in the computational

domain. Therefore, the wave elevation at the three

previous time steps are set as gn(x,y) = 0, gn-1(-

x,y) = 0, and gn-2(x,y) = 0.

3.2. Generalized Finite Difference Method (GFDM)

In this section, based on the moving least squares

(MLS) method, the numerical implementation of

GFDM for the spatial discretization in solving two-

dimensional wave propagation under different bound-

ary conditions problems is briefly introduced.

First, two sets of nodes are generated in the

computational domain, namely the scattered interior

nodes and the boundary nodes, and the distribution

can be arbitrary or uniform. Then, a small computa-

tional subdomain, defined as a cluster, is circled out

by the ns closest nodes around a given ith node.

Various options for the shapes of the cluster have

been presented elsewhere (Benito et al., 2001). In this

paper, a circular cluster, which is widely applied, is

chosen for simplicity. Theoretically, the greater the

number of nodes selected in the cluster, the more

accurate the results obtained; nonetheless, ns should

be optimized according to the accuracy preferred and

the computational cost required. According to

previous studies (Fan et al., 2015; Ureña et al.,

2020; Zhang et al., 2016a, b), for practical compu-

tations solved with the GFDM, satisfactory precision

can be achieved when ns is larger than 10. Conse-

quently, ns is set at 10 for all the examples presented

in this work.

After forming the cluster of the ith node, a new

function, B(g), can be defined by Taylor series

expansion using the spatial positions and physical

quantities of the ns closest points (Benito et al., 2001;

Fan et al., 2015; Gavette et al., 2003; Ureña et al.,

2012, 2019, 2020; Zhang et al., 2016a, b) as follows:

BðgÞ ¼
Xns

j¼1

gi � gi
j þ cijDu

� 	
wij

n o2

; ð11Þ

where Du ¼ og
ox

��
i
og
oy

���
i

o2g
ox2

���
i

o2g
oy2

���
i

o2g
oxoy

���
i

� 	T

denotes the

vector of unknown derivatives at the ith node, and

cij ¼ hij kij
h2ij
2

k2ij
2

hijkij

� 	
signifies the coefficients

corresponding to the unknown derivatives. j is the

local index in the star, and xi
j; yi

j

n oj¼ns

j¼1
represents the

coordinates of the ns nodes. hij ¼ xi � xi
j and kij ¼

yi � yi
j represent the distances between the ith node

and the jth node along the x and y directions,

respectively. wij ¼ wðhij; kijÞ is the value of the pos-

itive symmetrical weighting function at xi
j; yi

j

� 	
.

Among the proposed weighting functions, including

quartic spline, cubic spline, and potential function

(Benito et al., 2001; Gavette et al., 2003; Ureña et al.,

2012, 2019), the quartic spline was adopted in this

study.

Next, based on Eq. (11), a linear system can be

generated by minimizing function B(g) with respect

to Du ¼ og
ox

��
i

og
oy

���
i

o2g
ox2

���
i

o2g
ox2

���
i

o2g
oxoy

���
i

n oT

. The linear

system can be expressed by:

ADu ¼ b; ð12Þ

where

A ¼
Xns

j¼1

w2
ijc

T
ijcij; ð13Þ

b ¼
Xns

j¼1

w2
ij �gi þ gi

j

� 	
cT

ij : ð14Þ

Consequently, the derivatives vector, Du, is

defined as follows:
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Du ¼ A�1b ¼ �A�1
Xns

j¼1

w2
ijgic

T
ij þ A�1

Xns

j¼1

w2
ijg

i
jc

T
ij

¼ Wi
0gi þ

Xns

j¼1

Wi
jg

i
j;

ð15Þ

in which

Wi
0 ¼ �A�1

Xns

j¼1

w2
ijc

T
ij ; ð16Þ

Wi
j ¼ A�1w2

ijc
T
ij ; ð17Þ

where Wi
0 and Wi

j represent the relevant weighting

coefficients in the star of the ith point and can be

computed numerically. Then, the spatial derivative of

each node can be computed by the linear combination

of the product of the nearby function value and the

corresponding weighting coefficient by performing

the above process.

Finally, a sparse system of linear algebraic

equations, which is used to acquire the ultimate

numerical solutions, can be generated by enforcing

the satisfaction of the governing equations at all

interior nodes and the boundary conditions at all

boundary nodes. Meanwhile, it can be found that

although the following four numerical examples use

uniform discrete points, as a meshless method, the

numerical method presented indeed eliminates mesh

generation and numerical quadrature by constructing

the approximation entirely in terms of points. Since

the above derivational procedures, i.e. exploiting the

GFDM to tackle the second-order PDE, have been

clearly discussed in previous studies (Benito et al.,

2001; Fan et al., 2015; Gavette et al., 2003; Ureña

et al., 2012, 2019, 2020; Zhang et al., 2016a, b),

readers are encouraged to refer to these published

works for further details.

3.3. Solving Time-Dependent MSE with GFDM

and HFDM

After temporal discretization by the HFDM, the

governing equation, Eq. (1), and the radiation bound-

ary condition, Eq. (5), can be respectively rewritten

as follows:

2þ Dt2 r2 � k2ccg

� �
 �
gnþ1

� Dt2
o ccg

� �

ox

ognþ1

ox
þ
o ccg

� �

oy

ognþ1

oy

� �

� Dt2ccg
o2gnþ1

ox2
þ o2gnþ1

oy2

� �
¼ 5gn � 4gn�1 þ gn�2;

ð18Þ

2gnþ1 þ 11cDt

6

ognþ1

ox
� c2Dt2

2

o2gnþ1

oy2

¼ 5gn � 4gn�1 þ gn�2

þ cDt

6
18

ogn

ox
� 9

ogn�1

ox
þ 2

ogn�2

ox

� �
:

ð19Þ

The procedure for analyzing the time-dependent

MSE at the present time level by adopting the GFDM

for the spatial discretization is then presented as

follows (see Fig. 1). In fact, ni nodes represent

interior nodes in the computational domain, and

nb1; nb2; nb3, and nb4 nodes represent boundary

nodes distributed at the incoming wave boundary,

radiation boundary, and two side-wall boundaries,

respectively. The partial derivatives of every node/-

point can then be easily expressed by following

procedures defined in Eqs. (11)–(17).

Enforcing every interior node satisfies the gov-

erning equation, Eq. (18), which can generate a set of

ni linear equations, as given with the following

expression:
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2þ Dt2 r2 � k2ccg

� �
 �
gnþ1

i

� Dt2 Ex;i
0 ccg

� �
i
þ
Xns

j¼1

Ex;i
j ccg

� �i

j

 !

Ex;i
0 gnþ1

i þ
Xns

j¼1

Ex;i
j gnþ1;i

j

 !

� Dt2 Ey;i
0 ccg

� �
i
þ
Xns

j¼1

Ey;i
j ccg

� �i

j

 !

Ey;i
0 gnþ1

i þ
Xns

j¼1

Ey;i
j gnþ1;i

j

 !

� Dt2ccg Exx;i
0 gnþ1

i þ
Xns

j¼1

Exx;i
j gnþ1;i

j

 

þEyy;i
0 gnþ1

i þ
Xns

j¼1

Eyy;i
j gnþ1;i

j

!

¼ 5gn
i � 4gn�1

i þ gn�2
i i ¼ 1; 2; 3; :::; ni:

ð20Þ

In addition, by enforcing the fulfillment of the

boundary conditions at every boundary node, another

system of linear algebraic equations can be generated as

follows:

gnþ1
i ¼ H0

2
sin xtnþ1
� �

i ¼ ni þ 1; ni þ 2; ni þ 3. . .; ni þ nb1;
ð21Þ

� ognþ1

oy

����
i

¼ �Ey;i
0 gnþ1

i �
Xns

j¼1

Ey;i
j gnþ1;i

j ¼ 0

i ¼ ni þ nb1 þ 1; ni þ nb1

þ 2; ni þ nb1 þ 3. . .; ni þ nb1 þ nb2;

ð22Þ

2gnþ1 þ 11cDt

6
Ex;i
0 gnþ1

i þ
Xns

j¼1

Ex;j
j gnþ1;i

j

 !

� c2Dt2

2
Eyy;i
0 gnþ1

i þ
Xns

j¼1

Eyy;j
j gnþ1;i

j

 !

¼ 5gn � 4gn�1 þ gn�2 þ 3cDt Ex;i
0 gn

i þ
Xns

j¼1

Ex;j
j gn;i

j

 !

� 3cDt

2
Ex;i
0 gn�1

i þ
Xns

j¼1

Ex;j
j gn�1;i

j

 !

þ cDt

3
Ex;i
0 gn�2

i þ
Xns

j¼1

Ex;j
j gn�2;i

j

 !

i ¼ ni þ b1 þ b2 þ 1; ni þ b1 þ b2 þ 2; ni

þ b1 þ b2 þ 3. . .; ni þ b1 þ b2 þ b3;

ð23Þ

ognþ1

oy

����
i

¼ Ey;i
0 gnþ1

i þ
Xns

j¼1

Ey;i
j gnþ1;i

j ¼ 0

i ¼ ni þ nb1 þ nb2 þ nb3 þ 1; ni þ nb1

þ nb2 þ nb3 þ 2; . . .;N:

ð24Þ

where N denotes the total number of nodes.

Thereafter, the above equations Eqs. (20)–(24) are

combined to generate a new system of linear

algebraic equations as follows:

E½ �N�N gnþ1

 �

N�1
¼ gf gN�1; ð25Þ

where E½ � denotes a sparse coefficient matrix, on

account of the sparsity of which only 10 corre-

sponding nodes within the star are considered for

every computed node. gf g is composed of the

homogeneous terms of the governing equation and

the boundary data.

The numerical results of g at time (n?1)th can be

easily obtained by calculating Eq. (25), both at all

interior and boundary points, and the values of every

point at the next time are solved at the previous time

step. The simulation then continues until the wave

motion in the whole computational domain reaches a

stable state.

According to the above description, the time-

dependent MSE, which contains spatial partial

derivative terms and second-order time derivative

terms, can be directly and efficiently solved by the

proposed numerical method. Hence, the partial

derivatives of the governing equation and boundary

conditions can be discretized by the GFDM to

effectively simplify the numerical procedures. In

the following section, four quintessential numerical

examples of the combined diffraction and refraction

problem are adopted to demonstrate that the pre-

sented simulation model can successfully simulate

wave propagation.

4. Numerical Results and Comparisons

Four numerical examples of the combined

refraction and diffraction are used to substantiate the
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stability, accuracy, and simplicity of the numerical

algorithm presented in the preceding section in

solving the time-dependent MSE. The problems of

two-dimensional waves propagating at invariable and

variable water depth are simulated in the first two

examples (Lin, 2004). In the third example, a

numerical simulation of wave propagation over a

submerged elliptic shoal at a slope, in which both

wave refraction and diffraction are obvious, will be

performed (Berkhoff et al., 1982; Cerrato et al., 2017;

Hamidi et al., 2012; Karperaki et al., 2019; Panchang

et al., 1991; Tang et al., 2004). Finally, as the fourth

example, the experiment of Chawla and Kirby is

adopted for simulation considering wave refraction

and diffraction over submerged shoals (Chawla &

Kirby, 1996; Chen & Kirby, 2000; Song et al., 2007).

The results obtained by the proposed numerical

scheme will be compared with other numerical pre-

dictions and available experimental data to validate

the applicability.

4.1. Propagation of Short and Long Waves

at Constant Water Depth

In order to examine the validity of the proposed

method, a problem when a one-dimensional linear

wave propagates over invariant water depth is

considered as the first example. The first target is to

test the minimum number of nodes needed in one

wavelength to reach the appropriate precision of the

simulation predictions; this minimum number of

points will subsequently serve as the basis for more

complex two-dimensional computations. The second

goal is to examine the effectiveness of the radiation

and wall boundary conditions, as defined in Eqs. (6)

and (7), in absorbing and reflecting waves. Finally, it

is significant for real-time wave forecasting to

demonstrate the ability of the proposed numerical

model to tackle transient problems.

As is generally known, group velocities and phase

velocities are two critical parameters in wave prop-

agation, and the group velocities are always lower

than the phase velocities in deep water. Due to the

wave energy transmission with the speed of group
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Figure 2
Propagation of short waves (kh = 4.03) into still water
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velocity, derived from the linear wave theory, when a

wave train propagates into still deep water, wave

crests vanish at the location of x = cgt (where x is the

wave propagation direction and cg represents group

velocity), which proceeds at a speed lower than the

phase velocity. This effect is indicated in Fig. 2.

In this example, both short and long waves are

evaluated. In the first test, a short wave train

propagates into a numerical flume with 100 m length

and 1.5 m width, where the water depth is kept

constant and h = 1 m. The wave period and height

are T = 1 s and H0 = 0.01 m, respectively. The

radiation boundary condition defined by Eq. (6) is

set at x = 100 m. In this test, the phase velocity is

c = 1.559 m s-1, the group velocity is

cg = 0.783 m s-1, corresponding to kh = 4.03, the

distance between the nodes is Dx = 0.1 m, and the

time increment is denote Dt = 0.04 s; according to

this condition, about 16 points can describe one

wavelength. The profiles of free surface along the

central horizontal axis at different specific times are

delineated in Fig. 2. As shown in Fig. 2, the wave

speed, preceding in the wave train, is nearly equal to

cg, i.e. group velocity. Due to the wave dispersion, it

can be clearly noted that some leakage of wave

energy appears when the wave speed is close to the

group velocity. Furthermore, a well-established wave

train (e.g. t = 200 s) is formed when the leading wave

front leaves the computational domain freely through

the radiation boundary. Obviously, the above phe-

nomenon verifies the validity of the boundary

condition defined in Eq. (2). In addition, the numer-

ical results indicate that 16 nodes in one wavelength

are sufficient to achieve reasonable accuracy.

In the second example, wave period T = 20 s is

chosen as a long wave for simulation at the same

water depth and compared with the short wave. The

phase velocity and group velocity are respectively

3.127 and 3.116 m s-1, with kh = 0.101; the param-

eters of Dx and Dt are 1.0 m and 0.1 s, respectively.

According to the numerical results demonstrated in

Fig. 3, the thick solid line and the thick dashed line

nearly coincide. This implies that the wave phase

velocity is almost equal to the group velocity. Owing

x/m
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Propagation of long waves (kh = 0.101) into still water
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to the varied insignificant wave dispersion, unlike the

shortwave, the wave peak does not disappear in front

of the longwave propagation. Additionally, in the

propagation of long waves, the characteristic of the

wave rough propagation at group velocity in the

propagation is accurately simulated. Similarly, a

well-established wave train is formed (see

t = 500 s), which verifies the validity of the boundary

condition defined in Eq. (5).

To further analyze the solid boundary condition as

described in Eq. (6), the numerical results of chang-

ing the radiation boundary condition to the solid

boundary condition are depicted in Fig. 4 with the

simulation time t from 600 to 620 s. A perfect

standing wave is formed in front of the solid wall,

which proves the validity of the solid boundary

condition.

4.2. Wave Shoaling from Deep to Shallow Water

Based on the wave propagation in the two

previous examples, this case examines a one-dimen-

sional long-distance wave propagation with a

shoaling problem to indicate the ability of the

proposed numerical model to simulate the conserva-

tion of wave energy in this process. When waves

propagate from deep to shallow water, wave energy

density and wave height (indirectly proportional to

the square root of wave energy density) change with

the velocity of the local group. Dean and Dalrymple

(1991) derived the shoaling formula from the con-

servation of energy flux as follows:

cgE ¼ constant ) cgH2 ¼ constant; ð26Þ

Herein, an idealized case of a linear wave train

propagating across a continental shelf from deep

water to shallow water was selected to simulate the

effect of wave shoaling. As presented in Fig. 5, the

whole computational domain is 200 km in length and

1.5 km in width, in which the deep water at a depth of

3000 m is connected at a mild slope of 2% to the

shallow water at a depth of 40 m. The period and the

wave height of the incident wave are 60 s and

0.01 m, respectively. The parameter of (kh)d is equal

to 3.365 in the deep water and (kh)s is 0.213 in the

shallow water. Therefore, the incident wave is

classified as a short wave in the deep ocean but as

a long wave in the shallow water region.

The energy flux and wave height along the

centerline are depicted in Fig. 5. When the waves

propagate from deep water to intermediate-depth

water, the wave height gradually decreases with the

increase in group velocity. Then, the wave height

rises sharply when the waves propagate to a shallow

water area. Moreover, the line of energy flux along

the centerline is roughly horizontal from deep to

shallow water. These findings are in good agreement

with the physical meaning described by the shoaling

formula, i.e. Eq. (26). This implies that the proposed

meshless numerical scheme can ensure energy con-

servation in long-distance wave propagation. In
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Standing waves when right boundary changes from radiation boundary to solid wall
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addition, the wave amplitude of first harmonic based

on fast Fourier transform (FFT) analysis is also

illustrated in Fig. 5. It can be noted that the wave

amplitude of first harmonics increases with propaga-

tion to an area of shallower water, which indicates

that a significant amount of energy of first harmonic

increases due to the wave shoaling effect. Hence, the

satisfactory practicability and stability of using the

GFDM to tackle the time-dependent MSE are

confirmed.

4.3. Wave Refraction and Diffraction

over Submerged Elliptic Shoal at Slope

In this example, considering refraction and

diffraction, waves propagating over a submerged

elliptic shoal located on a slope were analyzed. The

physical model device presented by Berkhoff et al.

(1982), as a classic example, is adopted by many

researchers (Berkhoff et al., 1982; Cerrato et al.,

2017; Hamidi et al., 2012; Karperaki et al., 2019;

Panchang et al., 1991; Tang et al., 2004) to verify

their numerical models. This case was described by

the original MSE in our previous work (Zhang et al.,

2018). Therefore, this classic case of simulated

coupled refraction and diffraction is modeled using
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Figure 6
Schematic view of a experimental model, b topography, and c 3D presentation of elliptic shoal (Berkhoff et al., 1982)
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the GFDM to tackle the time-dependent MSE to

verify the feasibility of the numerical model pre-

sented herein.

As displayed in Fig. 6, an elliptic shoal is

mounted on a sloping beach with a slope of 2%,

and the coordinate origin is set in the center of the

elliptic shoal. The incident wave, whose height and

period are 0.0464 m and 1 s, respectively, enters the

computational domain from the left boundary at

y = -10 m and propagates across to the right

absorption boundary at y = -12 m. Two reflection

boundary conditions are respectively set at

x = -10 m and x = 10 m.

Referring to Fig. 6, the slope oriented coordinates

(x0; y0) are applied, which correspond to the compu-

tational coordinates (x; y) as follows:

x0 ¼ x � x0ð Þ cos 20� þ y � y0ð Þ sin 20�

y0 ¼ y � y0ð Þ cos 20� � x � x0ð Þ sin 20�
;

ð27Þ

where x0; y0ð Þ ¼ 0; 0ð Þ represents the center of the

shore, so the position of the shoal can be expressed

by:

x0

4

� �2

þ y0

3

� �2

\1: ð28Þ

The water depth out of range of the shoal is given

by:

hs ¼ 0:45� 0:02 5:84þ y0ð Þ y0 	 � 5:84m

hs ¼ 0:45 y0\� 5:84m:
ð29Þ

The water depth above the shoal is also defined

by:

h ¼ hs þ 0:3� 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x0

5

� �2

� y0

3:75

� �2
s

: ð30Þ

In the numerical procedure, the parameters of

Dx and Dt are respectively set at 0.05 m and 0.01 s,

and the total calculation time is t = 60 T. It is known

that the unknown physical quantity in the governing

equation is the free surface displacement (g). In

addition, the relative wave height (H/H0) is presented

here to compare our results with the other different

schemes. It was computed by adopting the free

surface displacement within 20 periods after the wave

propagation achieved the steady state in the

computational domain. In other words, the maximum

free surface displacement at each node in the wave

period range of 35 T to 55 T is regarded as the

amplitude at the node, and the wave height (H) is

then computed.

The comparison between the GFDM and other

previous results of relative wave heights at the eight

different transections are presented in Fig. 6 and

demonstrated in Fig. 7, including the experimental

data and numerical results by the finite element

method (Berkhoff et al., 1982), the solutions of the

original MSE obtained by the FDM (Panchang et al.,

1991), and the localized differential quadrature

method (LDQM) (Hamidi et al., 2012), as well as

the nonlinear findings of the model of the original

MSE in our previous study (Zhang et al., 2018). It is

clearly observed that a satisfactory estimation is

achieved by comparison with other numerical results.

Moreover, the results of the proposed method were

very close to the results from the FDM (blue line) and

the LDQM (red line). Unfortunately, some differ-

ences can be observed between the present model and

the experimental data at certain positions in some

sections, as well as between the other numerical

models and the experimental data, especially from

y = 6 m to y = 10 m in Sect. 8. They are mainly due

to the influence of the linear MSE model, which has

also been mentioned in previous studies. For exam-

ple, Kirby and Dalrymple (1984) obtained better

results by replacing the linear dispersion relation with

a nonlinear dispersion relationship. Based on this

nonlinear model, Hamidi et al. (2012) also obtained

more accurate results which were nearly identical to

the experimental data. Furthermore, the same con-

clusion was reached by using the nonlinear model of

the original MSE (Zhang et al., 2018), as shown in

Fig. 7. However, no research has introduced the

nonlinear effects into the time-dependent MSE, so

future work should investigate the nonlinear model of

the time-dependent MSE.

4.4. Asymmetric Model of Submerged Circular Shoal

In the last example, an asymmetric model is

analyzed, and the computational domain is demon-

strated in Fig. 8. There is a submerged circular shoal

in the rectangular computational domain with a
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GFDM results of relative wave heights in comparison with experimental data and other numerical results
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radius of 2.57 m. The length and width of the

rectangular domain are 20 m and 18.2 m, respec-

tively. The incident waves with wave height

H0 = 1.18 cm and wave period T = 1 s propagate

over the computational domain from the left open

boundary to the right absorption boundary, and the

reflection boundary conditions are imposed along the

other two lateral closed boundaries. The position of

the shoal is set as:

x � 5ð Þ2þ y � 8:98ð Þ2¼ 2:572: ð31Þ

The water depth out of range of the shoal is

0.45 m, and the water depth above the shoal is

described as follows:

h x; yð Þ ¼ 9:18�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
82:81� x � 5ð Þ2� y � 8:98ð Þ2

q
:

ð32Þ

This model was proposed by Chawla and Kirby

(1996), and a range of experiments including regular

waves, irregular waves, breaking waves, and non-

breaking waves were carried out. Later, Chen and

Kirby (2000) utilized it to verify the Boussinesq

model, and Song et al. (2007) used the time-

dependent MSE to simulate the model. However, in

the previous studies, the wave height results are all

presented using the form of the root mean square. In

the accessible references, except for section A–A as

shown in Fig. 8, no work gives the location of other

sections. Accordingly, considering that the previous
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examples proved the feasibility of using the GFDM to

solve the MSE, the comparison at section A–A,

among the GFDM results, other numerical predic-

tions, and experimental data, is used to confirm that

the proposed numerical scheme is practical and

accurate. Then, the other sections are defined, as

illustrated in Fig. 8, and the predictions are provided

in the form of the relative wave height, which will

provide a reference for future research on this model.

Additionally, three different space intervals (Dx), of

0.2, 0.1, and 0.05 m and three time increments (Dt) of

0.01, 0.025, and 0.05 s are selected to evaluate the

convergence of the simulation model.

The simulation runs until the wave propagation

achieves a steady state, about 50 s. As in the previous

example, for the sake of comparison between our

results and the previous findings, which are presented

in the form of the relative wave height (H/H0), the

maximum free surface displacement at each point in

the wave period range of 35 T to 50 T, during which

the wave propagation reaches the steady state in the

computational domain, is regarded as the amplitude

at the point. Then, the wave height, H, is calculated.

The comparison of steady-state results at the A–A

section, among the GFDM, other numerical models

and experimental data, is shown in Fig. 9. Our results

are in excellent agreement with the other solutions.

The results of using different space intervals (Dx) and

time increments (Dt) at seven sections are also

depicted in Figs. 10 and 11, respectively.

In Fig. 10, the time increment is set at 0.025 s. It

can be observed in the A–A section that with a

decrease in Dx, the simulation results gradually

approach the experimental data. When Dx = 0.1 m,

the relative wave height tends to converge, and a

space interval of 0.05 m produces converging results

which are almost the same as the experimental data.

At the same time, there is similar convergence in

other sections, so it is concluded that the converging

numerical result is obtained when the space interval

is equal to 0.1 m. In Fig. 11, the space interval is set

at 0.05 m. Similarly, the simulation results gradually

approach the experimental data with a decrease in the

time increment (Dt) in the A–A section. When

Dt = 0.025 s, the relative wave height tends to

converge, and a time increment of 0.01 s results in

converging predictions which are almost in agree-

ment with the experimental data. The similar

convergence also remains in other sections. Thus, it

is concluded that the converging numerical result is

achieved when the time increment is equal to 0.025 s.

According to the steady-state profile of the three-

dimensional free surface illustrated in Fig. 12, the

distribution of waves is generally symmetrical. Nev-

ertheless, since the position of the submerged shoal is

slightly biased towards the negative direction of the

y-axis, the distribution of the waves seems slightly

asymmetrical. Figure 13 shows the three-dimensional

free surface profiles at t = 5 s, t = 10 s, t = 15 s, and

t = 20 s. It can be seen in Fig. 13a that the wave

propagates from one side of the computational

domain and just reaches the front of the shoal at

t = 5 s. The wave then washes over the shoal and

deformation appears due to the influence of the shoal
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GFDM results of relative wave heights in comparison with experimental data and other numerical results in A–A section
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in Fig. 13b, c. Then, Fig. 13d shows that the wave

passes the shoal and will eventually develop into a

steady-state motion at t = 20 s. It can be clearly

observed that the wave deformation occurs because

of the influence of the submerged circular shoal,

which demonstrated the applicability of the proposed

meshless model to deal with transient problems.
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Figure 12
3D presentation of GFDM results of circular shoal model: a free surface elevation and b relative wave height
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5. Discussion and Conclusions

In this work, a novel meshless numerical

scheme based on the GFDM and the HFDM was first

developed to solve the time-dependent MSE. Since

marching the time step with the second-order time

derivative term is arduous, there are few numerical

methods that have been developed to solve it directly.

Coupled with the HFDM, an unconditionally

stable finite difference time marching scheme for

solving the second-order time derivative term, the

GFDM has been applied to the time-dependent MSE

for solving the problem of waves. Based on the

GFDM, the time-dependent MSE at each point can be

simply, straightforwardly, and efficiently converted

into the linear combinations of the product of nearby

function values and the corresponding weight

coefficients. Therefore, the numerical procedure of

the GFDM and the HFDM in solving the time-de-

pendent MSE can be easily implemented by

addressing a sparse system of linear algebraic equa-

tions, which can achieve sufficient accuracy.

Four numerical examples were provided, and the

comparison among the numerical results, the avail-

able experimental results, and other simulation results

were also provided to validate the applicability of the

proposed meshless numerical scheme. In the first two

numerical examples, the problems of one-dimen-

sional wave propagation at a constant and variable

water depth were studied, and it was demonstrated

that the proposed method can accurately capture the

transient feature of wave advancement into still water

and simulate transient wave motion accurately by

correctly predicting the speed of wave energy
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Figure 13
Three-dimensional profiles of free surfaces at a t = 5 s, b t = 10 s, c t = 15 s, d t = 20 s
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propagation. In addition, the energy transformation of

waves in long-distance wave propagation is accu-

rately captured based on FFT analysis, in which the

wave amplitude and wave height change with the

velocity of the local group. This indicates that the

proposed numerical scheme can ensure the conser-

vation of wave energy in the wave shoaling problem.

In the last two examples, the ability of the proposed

method to simulate wave reflection and diffraction

processes was also proved by studying wave propa-

gation in complex bottom topography. It can be

observed that the proposed numerical model can

accurately capture the wave profiles since satisfying

results are obtained by comparing with experimental

and other simulation results. In addition, six other

sections were defined in our last example and dif-

ferent space intervals and time increments were

considered to examine the stability and convergence

of the presented numerical simulation model. Finally,

the proposed model proves to be an excellent tool to

predict the transient behavior of waves. In general, it

is concluded that the proposed numerical model can

efficiently and accurately deal with the time-depen-

dent MSE and has good flexibility to deal with

complex wave propagation problems.

Although satisfactory results were obtained in

these examples, and the practicability and precision

of exploiting the HFDM and the GFDM to tackle the

time-dependent MSE were confirmed, the proposed

numerical scheme still needs to be further improved.

Hence, our future objective is to extend the present

scheme to a nonlinear time-dependent MSE by con-

sidering the nonlinear effects to broaden the

application range of the model to practical

engineering.
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