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Abstract—Monsoon circulation and associated rainfall add

complexities in the boundary layer features over the Indian sub-

continents. Besides relevant microphysical variables, the

characteristics of various boundary layer parameters and their

variations at differing spatial and temporal scales are investigated

over Mumbai during monsoonal heavy rainfall scenarios. During

the summer monsoon months (June to September) of 2014–2018,

16 heavy rainfall cases are chosen for this study. High-resolution

simulation is conducted with three nested domains having a hori-

zontal resolution of 18, 6, and 2 km with the 35 vertical levels in

the advanced research WRF (WRF-ARW) model. The sensitivity

experiment is carried out with seven planetary boundary layer

(PBL) schemes; non-local first-order closure [Yonsei University

(YSU), Asymmetric convective model, version 2 (ACM2), and

Shin-Hong], local one-and-a-half order [Mellor–Yamada–Janjic

(MYJ), quasi-normal scale elimination (QNSE), Bougeault–

Lacarrére (BouLac), and Grenier-Bretherton-McCaa (GBM)] and

five microphysics (MP) schemes [WSM6, Goddard, WDM6,

Thompson, and Lin et al.]. PBL parameterization in combination

with the Lin et al. scheme shows a significant impact on rainfall

and dynamical and thermodynamical parameters at the surface and

the upper levels. QNSE showed a relatively deeper and warmer

atmospheric boundary layer compared to others to support strong

upper-level divergence and high moisture content within the lower

levels. Based on the results, QNSE is found to have a relatively

better skill for representing the conducive environment, and Lin

et al. microphysics could accommodate the same for the occurrence

of the intense monsoonal rainfall events over Mumbai. The said

combination is possibly effective for other coastal areas of India for

better prediction of intense monsoonal rainfall episodes as well.
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1. Introduction

The atmospheric boundary layer (ABL) is the

lowest part of the atmosphere (up to 3 km) within the

troposphere and is characterized by friction and tur-

bulent mixing (Garratt, 1994; Stull, 1988). It is

governed by the heat and momentum fluxes, buoy-

ancy, wind shear, and turbulence due to a strong

interaction with the underlying ground surface. It

responds to the surface forcing within a time scale of

about an hour or less (Stull, 2012). The ABL plays a

vital role in the transportation of mass and energy

(including momentum, heat, and moisture) into the

upper part of the troposphere, which acts as a feed-

back mechanism for wind circulation. Therefore,

boundary-layer processes are essential in the evolu-

tion of the lower atmospheric fields and other state

parameters. The depth and structure of the ABL are

determined by the physical and thermal properties of

the underlying surface, along with the dynamics and

thermodynamics of the lower atmosphere (Boadh

et al., 2016). In numerical weather prediction, the

complex processes of the ABL are resolved using the

planetary boundary layer (PBL) parameterization

schemes, which are developed considering the diur-

nal variability of the parameters (Moeng, 1984).

PBL parameterizations, in combination with

appropriate surface layer schemes, are found to be

highly sensitive for the precipitation simulation over

Seoul (Shin & Hong, 2011). PBL parameterization

directly impacts the vertical mixing and modulates

the mixed layer depth along with associated moisture

availability (Sathyanadh et al., 2017). High vertical

mixing transports more moisture from the surface to

the free atmosphere and favors the precipitation

associated with the heavy rainfall events (Wisse &
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Arellano, 2004). In contrast, the weak vertical mixing

confines moisture to the lower levels, which decrea-

ses the condensates and corresponding latent heating,

hence reducing the surface precipitation (Efstathiou

et al., 2013). Both local and non-local approaches can

parameterize the vertical mixing processes. The non-

local one substantially improves the precipitation

forecast by enhancing the convective overturning

(Hong & Pan, 1996). However, the local schemes are

not expected to behave correctly under a fully

developed turbulence scenario (Stull, 1991).

Nonetheless, they can still compete with non-local

schemes by adding higher-order terms. Previous

works show local schemes tend to produce unrealistic

shallow and moist boundary layers (Alapaty et al.,

1997; Bright & Mullen, 2002; Hong & Lim, 2006;

Stensrud & Weiss, 2002) due to their inability to

represent large-scale turbulence and the underesti-

mation of entrainment. The non-local schemes are not

always skillful (Deng & Stauffer, 2006) and may

produce deeper boundary layers in the windy condi-

tions (Braun & Tao, 2000; Persson et al., 2001).

Besides the PBL, cloud development and associ-

ated physical processes within the boundary layer are

also governed by other physical parameterization

schemes (viz. microphysics or convection). Few

studies have suggested that the rainfall forecast by a

numerical model is more sensitive for the PBL and

microphysics schemes than land surface models

(Singh et al., 2018). For instance, Srinivas et al.

(2018), using the weather research and forecasting

(WRF) model, showed the impact of PBL parame-

terizations during an extremely heavy rainfall event

while analyzing the associated physical processes,

including the modulation of the upper air circulation,

energy transport, moisture convergence, and intensity

of convection. Microphysics parameterization is

fundamental for the development, amount, and type

of cloud (Liu and Avissar, 1996). Rajeevan et al.

(2010) found underestimation of convection strength

and vertical growth of the storm using all popular

microphysics parameterizations and multiple obser-

vational platforms over the Indian region, and they

advocated the need for their improvement. The

irregularities in vertical cloud buildup and the

up/downdraft can produce a higher or lower amount

of precipitation. The choice of microphysics

scheme can significantly affect the rainfall statistics

irrespective of the temporal scale of the simulation

(Orr et al., 2017; Pieri et al., 2015). Microphysics

parameterization also helps differentiate between

cold and warm rain processes to appropriately

reproduce the cloud physical parameters depending

upon the geography and altitude of the location

(Hong et al., 2010; Orr et al., 2017). Recently, Rath

and Panda (2020) also showed the impact of micro-

physical parameterizations on WRF-simulated

rainfall during convectively driven rain events over

an urban area. They advocated using the ‘Lin et al.’

microphysical parameterization to better represent

mixed-phase cloud processes within the WRF mod-

eling framework while simulating convectively

driven rain events.

Although some studies highlighted the signifi-

cance of PBL and others the microphysics schemes,

very few took them together to signify their role

during monsoonal heavy rainfall scenarios. Thus, the

main objective of this work is to highlight the sen-

sitivity of the PBL and microphysics schemes during

monsoonal heavy rainfall events over Mumbai, India,

using the advanced research WRF model. Turbulence

kinetic energy (TKE, one-and-a-half order local clo-

ser) and non-TKE (first-order non-local closer)

schemes are compared in the present study. Several

studies of sensitivity to PBL schemes have been

carried out with the WRF model and its predecessor

MM5 (Bright & Mullen, 2002; Zhang & Zheng,

2004; Deng & Stauffer, 2006; Hong & Lim, 2006;

Weisman et al., 2008; Shin & Hong, 2011). Most of

them focused on short periods of a few days or weeks

and relatively smaller domains with flat and homo-

geneous topography (Stensrud, 2009). However, we

explicitly identify the impact of seven PBL parame-

terization schemes in the WRF model for the

simulation of heavy to very heavy rainfall

([ 100 mm) events over Mumbai. Details about the

data and methodology, including brief reviews of

PBL and microphysical schemes, are presented in

Sect. 2. The WRF simulated results are discussed in

Sect. 3, which is followed by summaries of the

findings in the last section.
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2. Study Area, Data, and Methodology

During the active phase of the southwest monsoon

(June–September), the regions windward to the

Western Ghats (a north–south mountain range in

western India), like Mumbai, Konkan, Goa, and

Karnataka, gets heavy rainfall because of the oro-

graphic effect. The present study focuses on the

Mumbai region confined within 72� 40’ E–73� 34’ E

longitude and 18� 31’ N–19� 38’ N latitude (Fig. 1).

Besides the Arabian Sea on the western side, Mumbai

hosts several lakes and some mountainous regions,

mainly on the northern and eastern sides of the city.

Mumbai reportedly receives more than 200 mm/day

rainfall in several instances during the southwest

monsoon season. Accordingly, the heavy rainfall

events with[ 100 mm/day of precipitation are

identified during 2014–2018 based on the reports of

the India Meteorological Department (IMD) (http://

imd.gov.in/section/nhac/termglossary.pdf). This

study considered 30 heavy rainfall cases for per-

forming simulations using the WRF model. Out of

these, 16 cases (Table 1) are finalized based on the

WRF output (model details described in Sect. 2.2) for

further analysis discarding the rest. For choosing

these 16 cases, three criteria were adopted similar to

the study of Rath and Panda (2020), i.e. (i) amount

Figure 1
Domains used in ARW model simulations and elevation map of inner domain showing Mumbai city area

Table 1

Detailed information of selected events based on the IMD report

Years Start date Rainfall (mm day-1)

2014 02-July 207

09-July 112

15-July 228

27-July 144

2015 19-Jun 190

2016 20-Jun 110

28-Jun 105

29-July 115

05-Aug 143

26-Aug 107

2017 28-Aug 153

2018 09-Jun 165

23-Jun 152

24-Jun 232

02-July 131

07-July 131
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(observed rainfall[ 100 mm/day; considered as a

primary criterion) and duration of rainfall occurrence,

(ii) similar time of onset (in both observation and

model simulation) of rainfall on each day, and (iii)

similar temporal and spatial trend (from model sim-

ulation) as that of the observations.

2.1. Data Used

For rainfall, global precipitation measurement

mission (GPM-IMERG) data (https://gpm.nasa.gov/

data/directory) with 0.1� 9 0.1� horizontal resolution

and 30-min temporal resolution was used to validate

model simulations. The fifth generation of the Euro-

pean Center for Medium-Range Weather Forecasting

(ECMWF) reanalysis ERA5 data set (https://www.

ecmwf.int/en/forecasts/datasets/reanalysis-datasets/

era5) was used for validation of the WRF model-

derived meteorological parameters. The ERA5 data

comes with a 31 km grid resolution on an hourly

basis and resolves the atmosphere using 137 levels

from the surface to the height up to 80 km. The

ERA5 data is interpolated to match the horizontal

resolution of the domain considered for WRF simu-

lations. The reasons for using ERA5 data for

comparison purposes include reasonable spatial and

temporal resolution, data availability irrespective of

the type of weather, and accuracy. The ERA5 data is

only used where observations are not available.

However, the observations for the near-surface vari-

ables, i.e., 2-m temperature, 10-m wind speed, and

2-m relative humidity, are taken from weather

underground (https://www.wunderground.com/). For

the vertical profiles of relative humidity, temperature,

wind speed, and equivalent potential temperature, the

data is considered from the Wyoming weather web

(http://weather.uwyo.edu/upperair/) archive. Notably,

several previous studies across the world (e.g.,

Srinivas et al., 2020; Tarek et al., 2020; Wang et al.,

2020) and for various Indian megacities, including

Mumbai, Delhi, etc., considered ERA5 in addition to

meteorological observations for comparison with

fine-resolution simulations at urban scale (e.g.,

Kumar et al., 2008; Rai & Pattnaik, 2019; Gunwani &

Mohan, 2017).

2.2. Model Description

Advanced research WRF model version 3 (release

3.8.1) is adopted to carry out the numerical simula-

tions. WRF is a fully compressible and non-

hydrostatic next-generation mesoscale model with

multiple nesting capabilities (Skamarock & Klemp,

1992; Wang et al., 2004; Skamarock et al., 2005).

The model configuration consists of interactive three

nested domains with the model top at 100 hPa. The

horizontal resolution of the domains is 18, 6, and

2 km with 35 vertical levels, as shown in Fig. 1. The

simulations are performed using the initial and

boundary conditions, such as large-scale upper- and

lower-layer circulation, moisture contents, and the

thermal structures from the NCEP/NCAR FNL global

1-degree analyses. The MODIS (Moderate Resolu-

tion Imaging Spectroradiometer) land use was

considered while performing the WRF simulations.

For the innermost domain, 30-s land-use data from

MODIS was used. Other land-surface-related infor-

mation considered in the model input is the default

information. Detailed information about the model

configuration and experiment design can be found in

Table 2. The experiments designed using different

Table 2

Domain configuration used in the WRF model

Dynamics Non-hydrostatics

Simulation duration 30 h

Initial conditions 6 hourly NCEP FNL (1� 9 1�) data

Resolution D01: 18 9 18 km, D02: 6 9 6 km, D03:

2 9 2 km

Grid points 200 9 247; 256 9 268; 151 9 163

Vertical levels 35 terrain-following

Horizontal grid system Arakawa-C grid

Integration time step 90 s

Time integration

scheme

3rd order Runga-Kutta scheme

Spatial differencing

scheme

6th order center differencing

Land surface

parameterization

Noah land surface scheme

Microphysics Lin et al. scheme

Shortwave radiation Dudhia scheme

Longwave radiation RRTM

Cumulus

parameterization

Kain–Fritch scheme
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PBL and microphysical schemes besides surface

physics are illustrated in Table 3. Other physics

options in the WRF model, like longwave and

shortwave radiation, cumulus, surface layer, and land

surface parameterization, are selected based on

available literature (Dawn & Satyanarayana, 2020;

Kumar et al., 2008; Li et al., 2013, 2016; Panda &

Sharan, 2012; Panda et al., 2009; Rajeevan et al.,

2010; Rath & Panda, 2019, 2020). The selection of

the particular set of PBL and microphysics schemes is

primarily based on the view of conducting the urban

specific simulations, type of physical processes and

parameterizations considered in the available litera-

ture, and previous experience. Also, the

parameterizations adopted in this study are based on

their consideration of moisture processes and ten-

dencies (cloud, rain, ice, snow, and graupel) so that

the outcome can be well compared. However, the

PBL and microphysical parameterizations are delib-

erated briefly here in line with the defined objective.

2.2.1 Brief Description of PBL Parameterization

Schemes

In the PBL parameterizations, the sub-grid scale

turbulent fluxes are parameterized using mean

prognostic variables such as surface exchange coef-

ficient (c), zonal (u) and meridional (v) wind,

potential temperature (h), and water vapor mixing

ratio (q), through vertical diffusion equations (Shin &

Hong, 2011). The simplest form of vertical diffusion

can be expressed as Eq. (1):

oC

ot
¼ �

o w0c0
� �

oz
¼ o

oz
Kc

oC

oz

� �� �
: ð1Þ

Here, Kc is the diffusivity for the mean variable c.

In this current study, seven PBL schemes are

used, which primarily follow two different

approaches to compute the vertical transport of

momentum, heat, and moisture. Among these PBL

schemes, YSU (Hong & Lim, 2006), ACM2 (Pleim,

2007), and Shin-Hong (Shin & Hong, 2015) are

classified as non-local first-order closure. These

schemes are based on the K-theory (Stull, 1988),

and they do not require any additional prognostic

equations to express the effects of turbulence on

mean variables. The K-theory follows a specific

profile of the eddy diffusivity coefficient, which is a

function of PBL height (PBLH), surface friction

velocity, and stability. In the free atmosphere, the

eddy diffusivity coefficient (Kc) is a function of local

wind shear and local Richardson number (Shin &

Hong, 2011). The YSU scheme expresses the non-

local mixing by simply adding a non-local gradient

adjustment term (cc) to the local gradient of each

mean prognostic variable for heat and momentum.

The diffusion equation for the prognostic variables

are expressed as:

oC

ot
¼ o

oz
Kc

oC

oz
� cc

� ��
� ðw0c0Þh

z

h

� 	3
�
; ð2Þ

cc ¼ b
ðw0c0Þ0

wsh
: ð3Þ

Here, ðw0c0Þ0 is the surface flux for the prognostic

variables, and b is the proportionality constant. In

Eq. (2), the second term on the right side is the

entrainment flux proportional to the surface buoyancy

flux (Srinivas et al., 2018).

The MYJ (Janjic, 1994), QNSE (Sukoriansky

et al., 2005), BouLac (Bougeault & Lacarrere, 1989),

and GBM (Grenier & Bretherton, 2001) schemes are

classified as a local one and half order closer. These

Table 3

Details about the PBL schemes with the combination of relevant

surface physics

PBL Prognostic

variable

Surface

physics

Microphysics

scheme

YSU Non-TKE MM5

similarity

Lin et al.

ACM2 MM5

similarity

Shin-

Hong

MM5

similarity

MYJ TKE Eta similarity

QNSE QNSE

similarity

Lin et al.

WSM 6

Goddard

WDM 6

Thompson

BouLac MM5

similarity

Lin et al.

GBM MM5

similarity
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schemes use turbulence kinetic energy (TKE) to

parameterize eddy diffusivity through a mixing

length approach. The eddy diffusivity coefficient for

the heat and momentum that are parameterized in

terms of TKE is defined as:

Kc ¼ l
ffiffiffi
e

p
Sc: ð4Þ

Here, Sc is the proportionality constant, l is the

mixing length, and e is the TKE. Local closure

schemes differ in consideration of Sc and l and apply

the local mixing with the local diffusivity in Eq. (4)

from the lowest to the highest vertical level for both

convective boundary layer (CBL) and stable boundary

layer (SBL).

These four parameterizations (MYJ, QNSE,

BouLac, and GBM) are explained in more detail in

Janjić (1990), Sukoriansky et al. (2005), Bougeault

and Lacarrére (1989), and Grenier and Bretherton

(2001), respectively. Notably, the QNSE PBL

scheme uses the diffusivity term from the spectral

theory to reflect the effects of internal wave gener-

ation in the presence of turbulence in a stably

stratified boundary layer. The vertical scalar mixing

is suppressed by the stable stratification, whereas

vertical momentum mixing continues even at low

Froude numbers (Sukoriansky et al., 2005). The

QNSE theory is valid for stable stratification and

weak unstable conditions (Galperin & Sukoriansky,

2010).

These PBL schemes are one-dimensional in

higher grid scales and assume a clear scale separation

between sub-grid and resolvable eddies. Boundary

layer eddies start to resolve a fully three-dimensional

local sub-grid turbulence scheme when the grid scale

is within a few hundred meters (Skamarock et al.,

2008). The surface layer physics determines friction

velocities and exchange coefficients, which help

compute surface heat and moisture fluxes by the

land-surface parameterization and surface stress by

the PBL scheme (Skamarock et al., 2008). The

surface layer scheme also provides relevant stability

information for use in the land surface and PBL

parameterizations. Some PBL schemes like YSU

require surface layer depth for representing the same

within the model framework. And the PBL

scheme could be coupled with an appropriate surface

layer scheme (almost fixed) to determine the whole

atmospheric column behavior starting from the

surface in a defined grid (Skamarock et al., 2008;

Wang et al., 2017). For instance, the YSU, Shin-

Hong, and GBM PBL schemes are only compatible

with the MM5 similarity surface layer scheme (Wang

et al., 2017). However, ACM2 and BouLac PBL

parameterizations can also be used with PX and Eta

similarity surface layer schemes, respectively,

besides MM5 (Skamarock et al., 2008; Wang et al.,

2017). The MYJ and QNSE PBL parameterizations

can only be paired with the Eta similarity and QNSE

surface layer schemes, respectively (Wang et al.,

2017). Accordingly, the combinations for the consid-

ered PBL and surface layer physics are decided in the

present study.

2.2.2 Brief Description of Microphysical

Parameterization Schemes

A microphysical parameterization is a prerequisite

for explicit representation and determination of water

vapor, clouds, and precipitation-related processes in

the modeling framework. The mass mixing ratios of

cloud liquid water, cloud ice, snow, rain, and graupel

are usually considered through the microphysical

parameterizations, and in the WRF model, micro-

physics is carried out at the end of each time step as

an adjustment process, and thus does not provide

tendencies (Skamarock et al., 2008). The microphys-

ical parameterizations in the WRF model include the

sedimentation process and saturation adjustment, and

the modeling framework allows the condensation

adjustment. The microphysical parameterizations

consider either bulk or bin representation. They

may take into consideration ice-phase and/or mixed-

phase processes. Accordingly, the spatial variability

of rainfall and vertical variation of hydrometeors may

vary.

Considering the type of microphysical parameter-

ization, available literature, and previous experience

(Dawn & Satyanarayana, 2020; Kumar et al., 2008;

Rajeevan et al., 2010; Rath & Panda, 2020), five

schemes, including Lin et al., Goddard, WSM6,

WDM6, and Thomson, are used in this study. The Lin

et al. scheme, based on Lin et al. (1983) and Rutledge

and Hobbs (1984), is a single-moment scheme in-

cluding modified saturation adjustment (Tao et al.,
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1989) and ice sedimentation (Mitchell et al., 2008). It

includes six classes of hydrometeors: water vapor,

cloud water, rain, cloud ice, snow, and graupel. This

scheme was one of the first to parameterize snow,

graupel, and mixed-phase processes (such as the

Bergeron process and hail growth by riming), and it

has been widely used in numerical weather studies

(Kumar et al., 2008; Rath & Panda, 2019, 2020).

Tao and Simpson (1993) introduced the Goddard

microphysics scheme in WRF. This microphysical

scheme has been modified to reduce the overesti-

mated and unrealistic amount of graupel in the

stratiform region (Tao et al., 2003; Lang et al., 2007).

Also, saturation issues have been better addressed

(Tao et al., 2003), and more realistic ice water

contents have been obtained for long-term simula-

tions (Zeng et al., 2008, 2009).

The WSM6 scheme has been developed by adding

additional processes related to graupel to the WSM5

scheme. In this scheme, additional terms related to

graupel are based on the reports of Lin et al. (1983)

and Rutledge and Hobbs (1984). This scheme’s

prognostic water substance variables include the

mixing ratios of water vapor, cloud water, cloud

ice, snow, rain, and graupel. The WDM6

scheme (Lim & Hong, 2010) is the extended version

of the WSM6 because it adds the prognostic number

concentration of cloud and rainwater together with

the cloud condensation nuclei (CCN); thus, prognos-

tic water substance variables include water vapor,

cloud, rain, ice, snow, and graupel for both the

WDM6 and WSM6 schemes.

The Lin et al. and WSM6 scheme parameterized

the water vapor condensation into cloud liquid, cloud

ice, rain, snow, and graupel. However, the Thompson

et al. (2004) scheme carries an additional prognostic

variable for the number concentration of cloud ice.

According to Cooper (1986), primary ice nucleation

is calculated, and the auto-conversion is considered

similarly as that of Walko et al. (1995). A generalized

gamma function represents the graupel category in

the Thompson scheme instead of the exponential

representation used in Lin et al. and WSM6 schemes.

Depending upon the meteorological scenario, one

or more parameterizations may perform well based

on a better representation of the physical processes

involved. All the discussed microphysical parameter-

izations chosen for this study consider mixed-phase

processes to resolve the updraft in a grid scale of

10 km or less, particularly in convective situations

(Skamarock et al., 2008). The reason for considering

such parameterizations is primarily to facilitate the

city/urban scale simulation of convectively driven

rain events and ease of comparison process.

2.3. Statistical Measures as Model Performance

Indicators

Every statistical parameter plays a role in the

validation of model performance and uncertainty

Table 4

Statistical measures used as model performance indicators

Statistics Formulation

Bias �P � �O

Standard deviation or SD (r)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N

PN
i¼1 Mi � �Mð Þ2

� 	r

Normalized mean square error (NMSE) 1=N
PN

i¼1
Pi�Oið Þ2

�P �O

Index of agreement (IOA) 1 �
PN

i¼1
Oi�Pið Þ2

PN

i¼1
Pi� �Oj jþ Oi� �Oj jð Þ2

Root mean square error (RMSE)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
Pi�Oið Þ2

N

r

Fractional bias (FB)
�O� �P

0:5ð �Oþ �PÞ

P predicted value, O observed value, �P predicted mean value, �O observed mean value, Mi modeled value, �M modeled mean value; N sample

size considered for computation
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estimation, but some are considered more important

(Borrego et al., 2008). In this study, model perfor-

mance is evaluated using standard statistical

parameters (Schlünzen & Sokhi, 2008; Emery,

2001; Gilliam et al., 2006) such as bias, standard

deviation (SD), normalized mean square error

(NMSE), index of agreement (IOA), root mean

square error (RMSE), and fractional bias (FB). The

mathematical formulations for bias, SD, NMSE, IOA,

RMSE, and FB are given in Table 4. Bias measures

the sign of the errors of the numerical simulations.

The positive values of the bias show the model

over-predicts, and negative values show that the

model under-predicts for a particular quantity. The

SD is a measure of the spread of the individual

modeled value from that of the mean. The NMSE is a

measure of the overall deviations between predicted

and observed values. The low NMSE value shows the

model is performing well both in space and time; on

the other hand, a high NMSE value does not mean

that the model is completely wrong. That could be

due to shifting in time and space. IOA provides a

measure of the match between the departure of each

prediction and the departure of each observation from

the observed mean (Willmott, 1981). IOA theoreti-

cally varies between 0 and 1, where 1 indicates the

perfect match, and 0 indicates complete disagreement

between observed and predicted values. RMSE

measures the total model error between the predicted

and observed values. FB is the normalized bias and

varies from -2 to 2. A negative value of FB shows

overestimation; however, positive values show under-

estimation by the model.

3. Results and Discussion

For evaluating the performance of each PBL

scheme, the variation of some relevant variables

considered, which includes temperature, relative

Table 5

Statistical performance indices for 2-m temperature (T2m), 10-m wind speed (WS10m), 2-m relative humidity (RH2m), and cumulative rainfall

Variable PBL scheme BIAS SD NMSE IOA RMSE FB

T2m (�C) YSU -5.54 5.14 0.0028 0.115 5.56 0.232

MYJ -5.48 4.81 0.0027 0.118 5.49 0.229

ACM2 -5.37 4.67 0.0026 0.115 5.39 0.224

Shin-Hong -5.36 3.98 0.0025 0.120 5.37 0.223

QNSE -5.06 5.21 0.0022 0.115 5.09 0.210

BouLac -5.12 3.93 0.0023 0.126 5.14 0.212

GBM -5.36 3.98 0.0025 0.120 5.37 0.223

WS10m (m/s) YSU 2.39 2.22 0.0067 0.162 2.45 -0.50

MYJ 2.85 3.13 0.0081 0.140 2.91 -0.57

ACM2 2.29 1.88 0.0063 0.170 2.34 -0.48

Shin-Hong 2.34 2.32 0.0065 0.163 2.40 -0.49

QNSE 3.69 5.25 0.0107 0.099 3.77 -0.68

BouLac 2.28 2.11 0.0063 0.175 2.33 -0.48

GBM 2.08 2.02 0.0057 0.182 2.14 -0.45

RH2m (%) YSU -0.77 5.72 0.0000195 0.70 2.01 0.0084

MYJ -1.15 8.46 0.0000268 0.62 2.35 0.0126

ACM2 -0.97 4.50 0.0000143 0.69 1.72 0.0106

Shin-Hong -0.96 6.17 0.0000212 0.65 2.10 0.0105

QNSE -1.81 8.95 0.0000308 0.56 2.51 0.0198

BouLac -1.83 11.72 0.0000355 0.61 2.69 0.0201

GBM -1.15 7.11 0.0000243 0.60 2.24 0.0126

Cumulative rainfall (mm) YSU -1.57 13.23 0.05 0.51 2.71 0.556

MYJ -1.86 14.33 0.07 0.50 2.87 0.694

ACM2 -1.44 12.14 0.04 0.53 2.62 0.499

Shin-Hong -1.75 13.65 0.06 0.50 2.82 0.642

QNSE -0.75 10.31 0.02 0.42 2.52 0.231

BouLac -1.71 13.55 0.06 0.50 2.79 0.620

GBM -1.42 12.98 0.04 0.52 2.62 0.489
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humidity, wind speed, rainfall, surface fluxes, PBL

height (PBLH), equivalent potential temperature,

specific humidity, etc. A suitable and better PBL

physics is considered for the selected WRF simula-

tions to understand the sensitivity of rainfall

predictability to microphysics. An ensemble

approach similar to that of Li et al. (2013, 2016), Igri

et al. (2018), and Rath and Panda (2019, 2020) is

adopted for analyzing the simulated results. The

model performance with seven PBL and five micro-

physical parameterization schemes at 2 km horizontal

resolution compared with surface observations using

different statistical measures is described in Sect. 2.3.

And the statistical results are presented in Table 5.

3.1. Rainfall

Rainfall is one of the most important features of

the summer monsoon season. Current analysis indi-

cates the experiments could capture heavy rain

pockets associated with the ensemble average but

differ in spatial extent (Fig. 2). GPM observations

indicate * 140 mm of rainfall over western parts of

Mumbai. The QNSE scheme shows rainfall distribu-

tion (* 160 mm) over the east and southeast sides of

the domain, whereas ACM2 and GBM show *
80–100 mm rainfall over the western side of the

domain. It appears that the actual place of maximum

rainfall has either shifted, or the model is redistribut-

ing the overall rain and under-predicting over certain

locations. The rectangle box within domain 3 is the

primary focused area where QNSE, ACM2, and

GBM better capture the rainfall magnitude

([ 90 mm day-1) than other experiments while

Figure 2
Spatial distribution of ensemble average accumulated rainfall (mm) over domain 3. The rectangular box within the domain shows the primary

area of focus that encloses Mumbai city
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comparing with GPM observations. The area-aver-

aged rainfall (Fig. 3) shows that WRF simulations are

unable to capture all the rainfall peaks. Time series of

hourly rainfall (Fig. 3a) shows the experiment pro-

duces the highest rainfall peak ([ 4 mm h-1) at

07:00–08:00 UTC and the lowest simulated rainfall

peak (\ 2 mm h-1) at 03:00 UTC of the first day.

Most of the time, the hourly rainfall is less than

4 mm h-1 from 10:00 UTC onwards. And the

experiment shows close resemblance from 03:00 to

05:00 UTC (also, during 13:00–14:00 UTC for cases

other than QNSE), and after that, higher fluctuations

were noticed in the simulations. Some schemes like

QNSE and GBM predicted the maximum

(4.5–4.8 mm h-1) and minimum (0.8–2.5 mm h-1)

rainfall than other TKE-based schemes. Among the

non-TKE-based schemes, ACM2 predicted maximum

(4–4.5 mm h-1) and minimum (0.8–1.5 mm h-1)

rainfall than others. Accumulated rainfall (Fig. 3b)

depicts that experiments are unable to capture the

total rainfall. However, the QNSE follows a similar

trend as GPM and predicted total rainfall of

70–75 mm, closer to the observations than the other

PBL schemes. Overall, the model under-predicted the

Figure 3
Time series of area-averaged a hourly rainfall (mm h-1) and b accumulated rainfall (mm) from all PBL experiments compared with GPM

observations. The rectangular box shown in Fig. 2 is considered for area averaging of rainfall
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rainfall for most of the time compared to the GPM

observations, while the QNSE is performing rela-

tively better than others in most instances (but for low

rainfall. i.e.\ 2 mm h-1, QNSE over-predicts, while

other schemes performed somewhat better).

The statistical benchmarks for the model-simu-

lated parameters shown in Table 5 should be

IOA[ 0.7, bias = ± 0.5, and RMSE = ± 2

(Emery, 2001). QNSE has a lower RMSE (= 2.53)

value than other schemes (Table 5). As compared to

the GPM rainfall, ACM2 and GBM are closer to the

QNSE with the RMSE value of 2.62. The magnitude

of the bias, SD, NMSE, MSE, and FB was found to

be relatively smaller for the rainfall prediction using

the model with the QNSE PBL. The magnitude of

IOA for rainfall is within the acceptable range

(\ 0.7), with ACM2 showing better magnitude. Also,

bias was found on the lower side (bias[ -0.5) of

the acceptable range for rainfall, and QNSE shows

comparatively less bias than others. Generally, for the

rainfall, FB lies on the higher side of the accept-

able range (FB[ 0.5) for YSU, MYJ, Shin-Hong,

and BouLac, while for the ACM2, QNSE, and GBM,

it lies within (\ 0.5) the acceptable range (Table 5).

Thus, the quantitative analysis based on statistical

parameters considered here indicated that QNSE

shows a better performance for the rainfall prediction

by WRF (Fig. 3).

Figure 4 shows the frequency distribution of

rainfall at different thresholds (low, moderate, heavy,

very heavy) by considering the intensity-based cat-

egorizations by IMD. All the PBL schemes simulate

higher rainfall (over-predict) at a moderate range

(35.5–64.4 mm day-1) except QNSE, which resem-

bles better with observation in terms of grid points

(Fig. 4b). QNSE performs relatively better in heavy

(64.5–124.4 mm day-1) and very heavy

([ 124 mm day-1) rainfall range than others

(Fig. 4c, d) as well. Because of this reason, the

overall rainfall is better predicted by WRF using

QNSE. The consistency (inconsistency) in the model-

simulated rainfall could be because of the appropriate

(inappropriate) boundary layer response to the avail-

able atmospheric conditions to represent the

convective scenario within the modeling framework.

It could be associated with the relevant physical

Figure 4
Frequency distribution of rainfall at different thresholds. Half hourly GPM data is used to validate the model simulated rainfall
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Figure 5
Time series of surface parameters a 2-m temperature, b 10-m wind speed, and c 2-m relative humidity compared with station observations
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processes and parameterization adopted for designing

the concerned PBL scheme. The present study is

probably the first of its kind to report a better

performance of QNSE PBL parameterization for

rainfall simulations in convective rain events during

the summer monsoon period. The physical reasoning

for better predictability of rainfall could be drawn

from its actual behavior. The studies by Coniglio

et al. (2013), Hariprasad et al. (2014), and Tastula

et al. (2015) indicate that QNSE is capable of

producing highly unstable conditions due to relatively

higher CAPE and allows strong vertical mixing.

Thus, it can support the formation of deep convective

clouds and help produce higher intensity rainfall

compared to other PBL parameterizations.

3.2. Near-Surface Basic Variables

The choice of PBL schemes substantially impacts

the near-surface parameters like 2-m temperature

(T2m), 10-m wind speed (WS10m), and 2-m relative

humidity (RH2m). The comparison between the

model simulations and station observations is illus-

trated in Fig. 5. The variation in the simulated values

is similar when different PBL schemes are compared;

however, the T2m is underestimated while the model

overestimates WS10m. On the other hand, RH2m is

sometimes over-predicted and sometimes under-pre-

dicted. The diurnal variation of T2m shows higher

temperatures during 06–11 UTC, i.e., in the local

afternoon (Fig. 5a). Inter-comparison did not show

much variation during the whole period. The maxi-

mum deviation of 0.5 �C is found among the

experiments from 17 to 22 UTC during night time.

Figure 6
Spatial distribution of 2-m temperature difference (�C) of PBL experiments a YSU, b MYJ, c ACM2, d Shin-Hong, e QNSE, f BouLac, and

g GBM from ERA5
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MYJ and GBM show similar variation throughout as

the values mostly overlap.

The difference between the temperature from the

model output (from the innermost domain) is pre-

sented in Figs. 6, S1, S2, and S3. The analysis by

considering the maximum and minimum tempera-

tures (Figure S1) indicates that the model results have

less bias for the earlier (* 0.2–1 �C) than the latter

(5.8–6.3 �C). The highest and lowest bias for max-

imum temperature was found for QNSE (* 1 �C)

and YSU (0.2 �C), respectively. However, for the

minimum temperature, QNSE simulated the lowest

bias (5.7 �C) while MYJ and BouLac show the

highest bias ([ 6 �C). In the overall comparison, all

the experiments were not able to simulate the

minimum temperature accurately during the rainfall

scenario. Spatial variation of the difference of

simulated T2m shows the highest bias (up to 7 �C)

over the land and less over the ocean (-1 to 1 �C)

regions (Fig. 6). Here, the model predicted less

temperature over most of the grid points over the

land (Fig. 6), becoming the reason for the under-

prediction of T2m when compared with the observa-

tions (Fig. 5a). Separate day (Figure S2) and night

(Figure S3) analysis for the spatial distribution of T2m

difference indicates higher bias during the earlier

within the city boundary. In the northern part, bias is

relatively higher as compared to the southern part of

the city. The overall comparison indicates that the

bias is minimal for the QNSE scheme for day and

night-based analysis (Figures S2–S3). According to

the WMO standards (Gordon & Shaykewich, 2000),

the acceptable range of RMSE for temperature is ± 2

to ± 3 �C, and the acceptable range of the bias

is ± 0.4 �C. In the present case, RMSE[ 4 �C and

BIAS\ -4 �C (Table 5). However, most of the

statistical indices suggest that the QNSE is perform-

ing better in predicting the near-surface air

temperature. The larger errors realized in the present

scenario may be attributed to the complex nature of

the considered rain episodes and instrumental errors.

Since the major focus is on rainfall in line with the

current objectives, future studies may consider

investigating such higher errors, which do not go

well within the prescribed WMO standards.

The temporal variability of simulated WS10m

shows the highest peak ([ 5 ms-1) during 06–12

UTC (local afternoon / late afternoon) of the day and

the lowest peak at 13–24 UTC during night time

(Fig. 5b). All the experiments overestimate WS10m;

however, GBM could represent it better than others

(Table 5), mainly during the night. During the day,

ACM2 and GBM are both able to represent it better

(Fig. 5b). And the variation in WS10m for ACM2 is

similar to GBM for most of the time. QNSE and MYJ

predicted higher WS10m (4.3–5.8 ms-1) from 03 to

10 UTC; after that, QNSE simulated wind speed was

found to be consistently higher ([ 5.5 ms-1).

Figure 5c illustrates the diurnal variation of RH2m

with the highest value (* 95%) during nighttime or

early morning hours and the lowest value (* 85%)

during the daytime. Most of the time, the model

prediction does not follow the observational trend.

However, the variation in RH2m between the exper-

iments/simulations is nearly 2%.

The quantitative analysis for the predictability of

near-surface parameters T2m, RH2m, and WS10m while

evaluating the performances of PBL parameteriza-

tions is based on statistical parameters shown in

Table 5. For T2m, the QNSE shows less error with

RMSE and NMSE values 5.09 and 0.0022. Based on

the statistical indices, GBM and ACM2 perform

relatively better in predicting WS10m and RH2m.

However, the indices indicate that the performances

of QNSE are not too bad in comparison to those of

GBM and ACM2 for the corresponding parameters.

Notably, the magnitudes of IOA for these three near-

surface parameters are below the acceptable range for

all PBL schemes (Table 5). Generally, for all near-

surface parameters considered here, FB\ 0.5, where

positive FB is seen for T2m and RH2m and negative

for WS10m (Table 5). The statistical indices consid-

ered in this study indicate that none of the PBL

schemes is consistent in its performance for simulat-

ing the near-surface variables T2m, WS10m, and

RH2m.

In the surface layer, the basic near-surface

variables considered here mostly depend upon the

surface layer and vertical diffusion formulations

(Shin & Hong, 2011) and, thus, modulated through

different combinations of PBL and surface layer

physics adopted. Some PBL parameterizations along

with their compatible surface-layer scheme, tend to

perform better in simulating near-surface basic
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Figure 7
The diurnal variation of PBL parameters a sensible heat flux (SHF), b latent heat flux (LHF), and c planetary boundary layer height (PBLH)

compared with ERA5
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variables. Still, some others cannot work correctly

due to the stability functions used and the method-

ology adopted to parameterize the associated

processes. The studies by Tastula et al. (2015) and

Coniglio et al. (2013) indicate that QNSE produces

relatively higher kinetic energy at high wind speeds

that amplify the eddy diffusivity and also yields high

CAPE values resulting in a highly unstable and deep

convective boundary layer within the modeling

framework (Hariprasad et al., 2014). Thus, QNSE

appears to be better equipped to represent the

convective conditions like the present ones. There-

fore, it may be able to predict the near-surface

variables in a better manner compared to other PBL

parameterizations. The same is true mainly for T2m

(Gunwani & Mohan, 2017). Thus, the qualitative and

quantitative analysis indicated that QNSE shows a

relatively better performance for T2m (Fig. 5a) and

shows a reasonable skill in simulating the variation of

RH2m (Fig. 5c) and WS10m over Mumbai during the

considered heavy rain events. However, further

investigation is required to arrive at a concrete

conclusion in this regard.

3.3. Surface Fluxes and PBL Height

For understanding the role of PBL parameteriza-

tions in governing the variability in the near-surface

fluxes (sensible and latent heat) and planetary

boundary layer height (PBLH), the temporal/diurnal

variation of these parameters is analyzed. Figure 7

shows the diurnal variation of sensible heat flux

(SHF), latent heat flux (LHF), and PBLH. An

increasing trend in the surface fluxes is realized in

the daytime with higher values from 06 to 10 UTC

(mainly in the afternoon), and then the values start

decreasing to achieve a minimum post-mid-night

before the following day. During the nighttime, fluxes

are very low; LHF is positive but less than 50 Wm-2

and SHF is negative but[ -40 Wm-2. During the

nighttime, the negative values of SHF indicate that

the model produces a warmer, lower atmospheric

layer than the land surface. The MYJ PBL simulates

the highest magnitude (-17 to 26 Wm-2) of the SHF,

and ACM2 simulates the lowest (-5 to -35 Wm-2)

when compared with the others (Fig. 7a). During the

daytime, relatively higher LHF ([ 100 Wm-2) is

simulated by the model while using BouLac, which is

coherent with the YSU and Shin-Hong, and the lower

values are simulated when ACM2 (* 85 Wm-2)

adopted (Fig. 7b). All the experiments underestimate

the SHF and LHF throughout the simulation period.

Overall, inter-comparison among all the experiments

indicates a difference of[ 25 Wm-2 between the

maximum and 15 Wm-2 between the minimum SHF

values. The corresponding differences for maximum

and minimum values of LHF are[ 30 Wm-2

and\ 15 Wm-2, respectively. The simulated diur-

nal/temporal variation of surface fluxes supports the

usual presumption and is found to be physically

consistent.

Figure 7c demonstrates the temporal variation of

PBLH. Here, PBLH is higher during day time and

lower during the night (e.g., 600 m during 06–12

UTC and 400–500 m during 13 UTC-03 UTC the

next day according to ERA5). PBLH predicted by the

MYJ is closer to the ERA5 than others, while the

model simulation adopting QNSE over-predicted the

same. The overall comparison indicates that all model

simulations underestimate the PBLH except QNSE

when the values are compared with those of ERA5.

The over prediction of PBLH by QNSE may be

linked with the higher convective availablepotential

energy (CAPE) and deeper convective boundary

layer consideration (Coniglio et al., 2013; Hariprasad

et al., 2014). Also, ERA5, being a global data set,

may not capture the localized effects appropriately.

Nevertheless, the deeper or shallow PBLH could be

associated with intense or week moisture transport

and consequent moist instability, which, in turn, may

modulate the rainfall distribution (Rai & Pattnaik,

2019) as noticed in the current scenario. Although it

is difficult to draw any conclusion regarding the

PBLH predictability, qualitatively, QNSE with higher

PBLH supports the hypothesis of greater moist

cFigure 8
Validation of simulated mean vertical profile of relative humidity

(%), temperature (�K), wind speed (ms–1), and equivalent potential

temperature (�K) at 12:00 UTC on the same day (a–d) and at 00:00

UTC the next day (e–h). Here, the comparison is done with station

observations
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instability, which is physically consistent with the

convective condition during the rainfall scenarios.

3.4. Vertical Characteristics

The vertical variations of simulated relative

humidity, temperature, wind speed, and equivalent

potential temperature are compared with the available

station observations at 12:00 UTC of the first day and

00:00 UTC of the next day as per the availability of

data from the Wyoming weather web archive

(Fig. 8). The comparison demonstrates that the

model-simulated relative humidity is quite close to

the observations between 1000 and 500 hPa and

underestimates above it, but follows similar trends

(Fig. 8a and e). The vertical profiles of the temper-

ature and equivalent potential temperature follow

similar trends as that of observations (Fig. 8b, d, f,

and h). All the experiments show less variability near

the surface for the air temperature and equivalent

potential temperature. Figure 8c and g show the

vertical profile of the wind speed, where the model

was found to be over-predicting from the surface up

to 600 hPa. The model shows a wind maximum near

900 hPa above the boundary layer and is valid for all

PBL parameterizations considered in this study

(Fig. 8c and g), indicating the impact of land–

atmosphere interaction. The qualitative inter-compar-

ison of PBL schemes shows that QNSE has a

reasonably better prediction skill than others. The

reason for the improved predictability during the

extreme weather condition could be better consider-

ation of vertical diffusion and good

representativeness of convective conditions within

the modeling framework (Coniglio et al., 2013;

Tastula et al., 2015). Therefore, for further compar-

ison, QNSE is used as a benchmark, and other PBL

schemes are evaluated against it.

Figure 9 shows the temporal variation of the

difference of area-averaged wind speed between

other experiments and the one using QNSE. The

comparison shows wind speed has relatively less

difference (about -0.5 to 1.5 ms-1) from the near-

surface to 800 hPa during the initial 9 h of simula-

tion, i.e., 03:00–12:00 UTC on the first day and after

that, it is higher ([ 1.5 ms-1). In the mid-troposphere

Figure 9
Time series plot of spatial mean differences in the vertical distribution of wind speed for a QNSE-YSU, b QNSE-MYJ, c QNSE-ACM2,

d QNSE-Shin-Hong, e QNSE-BouLac, and f QNSE-GBM
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region (800–600 hPa), wind differences are relatively

less for MYJ, BouLac, and Shin-Hong schemes

during the period from 12:00 UTC of the first day

to 03:00 UTC of the next day. Higher wind difference

from 12:00 UTC onwards shows an increase of wind

shear in the lower troposphere for QNSE. The

variation in wind speed directly affects the moisture

availability, and the presence of moisture may also

vary due to phase change, particularly in the middle

troposphere, which modulates the temperature (Rai &

Pattnaik, 2019). All experiments show an almost

similar pattern within the lower troposphere for

having weaker wind shear, which reduces the PBLH

(Fig. 7c).

Figure 10 represents the pressure–time distribu-

tion of the difference of specific humidity (shaded)

and temperature (contours) from different experi-

ments with respect to QNSE. Here, positive and

negative temperature values are represented by solid

and dashed lines, respectively. The increase (de-

crease) in temperature in the region 850–400 hPa is

associated with a decrease (increase) in specific

humidity. For MYJ, BouLac, and Shin-Hong, the

variation in specific humidity above 850 hPa is

qualitatively coherent with wind speed, and an

increase to decrease in wind speed (Fig. 9) is

associated with a decrease to increase in specific

humidity (Fig. 10). Above 500 hPa, the specific

humidity shows less variation (\ 0.1 g kg-1); how-

ever, the temperature is mostly lesser than the QNSE.

Also, QNSE produces moist lower layers

(1000–950 hPa) compared to others.

The pressure–time variation of spatial mean

differences (with respect to ERA5) of wind speed

(ms-1) was analyzed further for understanding the

performance of various PBL parameterizations (Fig-

ure S4). The analysis indicates that the simulated

horizontal wind speed is relatively higher within

800 hPa from the surface. It would eventually

increase the wind shear giving rise to higher PBLH

(Fig. 7c). Higher PBLH supports enhanced convec-

tion and eventually increasing moisture availability

leading to higher humidity (Figs. 10 and S5). There-

fore, QNSE strongly supports this hypothesis and can

represent the prevailing convective conditions in a

better manner.

Figure 10
Time series plot for spatial mean differences in the vertical distribution of specific humidity (shaded; g kg –1 ) and temperature (contours; �C):

a QNSE-YSU, b QNSE-MYJ, c QNSE-ACM2, d QNSE-Shin-Hong, e QNSE-BouLac, and f QNSE-GBM
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Further, the pressure–latitude plots for longitudi-

nally and temporally (05:00–10:00 UTC) averaged

air temperature difference between the other exper-

iments and QNSE are analyzed to investigate the

warming within the lower layer (Figure S6). During

this period, most of the rainfall occurred over

18.5–19.5 �N and 72.66–73.20 �E. Therefore, the

longitudinal average (72.66–73.20 �E) is obtained

during the time 05:00–10:00 UTC (10:30–15:30 local

time). The simulations considering QNSE and MYJ

parameterizations were found to be predicting rela-

tively higher and lower rainfall (Fig. 3; Table 5) with

the warmest lower layers for QNSE (Figs. 5a, S6)

than others. Therefore, the higher rainfall occurrence

is associated with a warmer temperature over the

selected region. And warmer air temperature, espe-

cially over the northern and western side of the city

(Sect. 3.2), is mainly associated with the intense

convection in the case of QNSE, which is responsible

for the higher rainfall predictability.

3.5. Impact of Microphysical Parameterizations

The QNSE PBL scheme is paired with different

microphysics schemes for understanding the charac-

teristic features associated with the microphysical

parameters during the heavy rainfall scenarios over

Mumbai. The ensemble-averaged time series of

hourly and accumulated rainfall is analyzed for this

purpose (Figure S7). The model has simulated the

highest rainfall (* 4 mm h-1) at 08:00 UTC

(1:30 pm local time) and the lowest rainfall

(\ 1.5 mm h-1) at 03:00 UTC, i.e., in the morning

hours around 8:30 am local time. The highest peak of

the rainfall is under-predicted by the model outputs as

compared to the GPM observations. The magnitude

of predicted total rainfall is\ 75 mm, while from

GPM, it is[ 90 mm. The inter-comparison among

different microphysics simulations indicates that the

Lin et al. scheme has better skills to predict the

rainfall with the RMSE value of 2.52 (Table 6). In the

overall analysis based on ensemble averages, it is

found that the model is not able to capture the rainfall

effectively.

Further, the analysis is focused on a single event

that occurred on 26 August 2016 (107 mm rainfall).

The selection of this event is based on the amount and

spatial distribution of simulated rainfall. Figure 11

shows the spatial and temporal distribution of rainfall

for the considered event. The spatial distribution

indicates that the model could capture heavy rain

pockets only but differ in spatial extent. WSM6, Lin

et al., Goddard, and Thompson show the rainfall is

over-predicted ([ 120 mm) by the model at some

grid points in the eastern and northwestern sides. In

view of the spatial extent, the rainfall captured by

GPM is\ 100 mm. And the area-average variation

shows that the model could capture the rainfall till

20:00 UTC, and afterward, it is under-predicted.

Here, Lin et al. performed better than other micro-

physical parameterizations and captured the rainfall

of * 45 mm, while GPM observed rainfall

is[ 60 mm.

Figure 12 demonstrates the rain rate and vertically

integrated moisture transport in the lower troposphere

(from 1000 to 850 hPa) for 26 August 2016. The

increasing trend of moisture transport is seen during

the decreasing rain rate, whereas the decreasing trend

is seen during the increasing rain rate. Although

Goddard simulated relatively higher moisture trans-

port (211 kg m-1 s-1) at 06:00 UTC, possibly due to

higher vertical mixing, it significantly increased in

the case of Lin et al., Thompson, WSM6 for later

hours after 15:00 UTC.

Table 6

Statistical performance indices for rainfall with respect to GPM

MP scheme BIAS SD NMSE IOA RMSE FB

Cumulative rainfall (mm) WSM6 -1.45 14.54 0.056 0.440 2.85 0.47

Goddard -1.22 12.91 0.042 0.445 2.72 0.38

WDM6 -1.41 14.75 0.053 0.443 2.85 0.45

Thompson -1.11 12.52 0.038 0.421 2.72 0.34

Lin et al. -0.75 10.31 0.020 0.420 2.52 0.23
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The vertical variations of area-averaged water

vapor mixing ratio, cloud water mixing ratio, and

rainwater mixing ratio are analyzed (Fig. 13) to

strengthen the understanding of the associated char-

acteristic features and physical consistency. The

water vapor mixing ratio is continuously decreasing

with height, and at the surface, it is higher, but its

value is appreciable till * 700 hPa. It indicates the

presence of a significant amount of vertically trans-

ported moisture to support the formation of clouds in

the atmosphere (Fig. 13a). There is a consistent

increase in the area-averaged cloud water mixing

ratio up to 700 hPa, which indicates the prevalence of

low-level cumulus and stratocumulus cloud layer

(Fig. 13b), supporting the occurrence of rainfall.

Similarly, the vertical distribution of the rainwater

Figure 11
Spatial (above) and time series of area-averaged (below) accumulated rainfall for the 26 August 2016 case
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mixing ratio is affected by induced changes in cloud

properties, i.e., the average rain mixing ratio gener-

ally increases, and raindrop number concentration

decreases, implicating the diameter of raindrop would

increase and enhance the chance of rain (Fig. 13c).

The presence of a greater average rainwater mixing

ratio is the indication of the development of deeper

clouds with a greater amount of water content.

Figure 14 illustrates the temporal variation of

domain average water vapor mixing ratio, cloud

water mixing ratio, and rainwater mixing ratio at

850 hPa. Water vapor and cloud mixing ratios are

relatively less during the highest rain rate scenario

(Fig. 12a). The highest peak of water vapor and cloud

water mixing ratio was observed at 14:00 UTC, when

the rain rate was low (Fig. 14a, b). The temporal

variation of the rainwater mixing ratio is similar to

the rain rate. The highest peak of rainwater content is

seen during 08:00–10:00 UTC, decreasing afterward

(Fig. 14c). Overall, the variability of the hydromete-

ors considered here shows large differences in mixing

ratios with different microphysics except for WSM6

and Thompson schemes.

Microphysics significantly influence the rainfall

simulation due to variation in mixing ratios of

different hydrometeors and the associated dynamic

Figure 12
Temporal variation of a rain rate and b vertical moisture transport for different microphysical parameterization during the 26 August 2016

case
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and thermodynamic parameters. Out of five micro-

physics parameterizations evaluated in this study, the

schemes, viz. WSM6, Lin et al., Goddard, and

Thompson, captured the initiation time of rainfall

occurrence well, while WDM6 showed the rainfall

with a lag time of[ 6 h (Fig. 11b). The temporal and

spatial distribution shows that Lin et al. performed

better with relatively smaller statistical errors when

ensemble averaging is considered (Table 6). A

similar result is found in the case of the single event

of 26 August 2016 with relatively higher IOA for Lin

et al. microphysics (Table S1).

With analogous microphysical considerations,

except for the cloud ice prognostic variable

(Sect. 2.2.2), WSM6 and Thompson behave almost

similarly for predicting the rain rate and vertical

moisture transport (Fig. 12) and mixing ratios

(Figs. 13, 14). However, WDM6 behaved abruptly

for predicting these parameters. And Goddard and

WDM6 simulated a poor rainfall distribution despite

a higher cloud and rainwater mixing ratio (Fig. 13).

Figure 13
Vertical variation of a water mixing ratio, b cloud water mixing ratio, and c rain water mixing ratio during the 26 August 2016 case
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Figure 14
Time series of a water vapor mixing ratio, b cloud water mixing ratio, and c rain water mixing ratio at 850 hPa for different microphysics

during the 26 August 2016 case
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However, Lin et al. could capture the peak rainfall at

08:00 UTC comparatively well, and relatively higher

accumulated rainfall is simulated by it (Figure S7).

Irrespective of whether a single case or ensemble-

averaged values, Lin et al. microphysics performs

relatively better in simulating the rainfall (Figs. 11

and S7; Tables 6 and S1). The variations in hydrom-

eteorological parameters in the case of 26 August

2016 (Figs. 13, 14), and the rain rate and moisture

transport variability (Fig. 12) also signify the same.

The overall analysis suggested that the Lin et al.

scheme is more effective for simulating heavy

precipitation events over Mumbai during monsoon.

In other parts of the country, either WSM6 (Tiwari

et al., 2018), Thompson (Mohan et al., 2018;

Rajeevan et al., 2010), or Lin et al. (Rath & Panda,

2020) were found to be working effectively in heavy

rainfall scenarios. However, the effectiveness

depends on the geographical location, prevailing

meteorological conditions, and season of the year.

For instance, Mohan et al. (2018) found that the

Thompson scheme can produce high vertical motions

associated with high instability, considerable mid-

level convergence, and high-level divergence during

an intense monsoonal precipitation event. Based on

the physical considerations, current analysis, and

available literature, it may be inferred that Lin et al.

microphysics performs better in simulating the

intense monsoonal rainfall episodes over coastal

cities of India.

4. Conclusions

PBL plays an important role in transforming

energy (including momentum, heat, and moisture)

into the upper layer of the atmosphere by evaporation

and transpiration. However, high vertical mixing

transports more moisture from the surface to the free

atmosphere and favors the precipitation associated

with heavy rainfall events. In contrast, weak vertical

mixing confines the moisture to lower levels, which

decreases the condensates and corresponding latent

heating and reduces the surface precipitation.

Therefore, the present study mainly focused on the

sensitivity of seven PBL and five microphysics

parameterizations in the WRF model, where three

PBL schemes are non-TKE- (YSU, ACM2, and Shin-

Hong), and four are TKE- (MYJ, QNSE, BouLac,

and GBM) based. And the microphysics schemes

considered for sensitivity are primarily based on their

types, available literature, and previous experience.

For this purpose, 16 intense rainfall scenarios over

Mumbai are considered. In total, 176 simulations

were carried out to examine the performance of the

said PBL and microphysical parameterizations. An

ensemble averaging approach was adopted for this

purpose.

Comparison of model simulations with ERA5

data for the thermodynamic surface variables (2-m

temperature, 10-m wind speed, and sensible and

latent heat fluxes) revealed the discrepancies between

seven PBL schemes. All the schemes predicted a

higher peak during daytime, and the average values in

the seven experiments are closer to peak measure-

ments than at nighttime. The results of 2-m

temperature and sensible and latent heat fluxes show

that the variables diverge (for 2-m temperature) and

converge at nighttime, and their values are lower than

those observed or those from ERA5. From these

results, it was concluded that the representation of

surface variables is still uncertain even with the state-

of-art PBL schemes. For rainfall, model simulations

are compared with the GPM data. The comparison

among all the experiments underestimated the rain-

fall. The highest and lowest rainfall is estimated by

QNSE and MYJ, respectively. Statistical analysis of

the simulated rainfall with GPM suggests that QNSE

(which is TKE-based) has better skills than the rest.

The vertical distribution of wind speed shows that

wind shear is relatively lower for all the schemes

except QNSE. Lower wind shear reduces and higher

wind enhances the mixing; therefore, results show a

decrease and increase in PBLH for GBM and QNSE,

respectively. For all these experiments, the decrease

(increase) in the temperature in the mid-troposphere

is associated with cooling (heating) due to an increase

(decrease) of moisture caused by phase change,

except for BouLac. Results for the rainfall, T2m, and

RH2m over the Mumbai region suggest that the QNSE

has comparatively better prediction skills.

QNSE PBL is capable of representing convective

conditions like the ones considered in this study. It

could produce highly unstable conditions due to
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higher CAPE (Coniglio et al., 2013; Hariprasad et al.,

2014) and allows strong vertical mixing (Coniglio

et al., 2013; Tastula et al., 2015), thereby supporting

the formation of a deeper convective boundary layer

and deep convective clouds. Therefore, it could pre-

dict the near-surface variables comparatively better,

although it over-predicted PBLH. However, with

higher PBLH, it supports the hypothesis of greater

moist instability that is consistent with the prevailing

convective condition during the considered rain

events. Hence, it helped in producing higher-intensity

rainfall compared to other PBL schemes.

The Goddard and WDM6 schemes simulated a

poor rainfall distribution despite showing a higher

cloud and rainwater mixing ratio. The variability of

the hydrometeors considered in this study indicates

large differences in mixing ratios between different

microphysics except for WSM6 and Thompson

schemes. WSM6 and Thompson behaved similarly

for the prediction of the rain rate and vertical mois-

ture transport, while WDM6 behaved abruptly.

However, the overall analysis indicates that the Lin

et al. scheme is effective in accommodating signifi-

cant vertical motions associated with higher

instability in the WRF modeling framework, which is

consistent with the capability of QNSE PBL. There-

fore, it is concluded that Lin et al. microphysics in

combination with QNSE PBL performs relatively

better in simulating the intense monsoonal rainfall

episodes over coastal regions of India through the

advanced research WRF model.

The statistical evaluations in this study suggest a

much better WRF model performance for RH com-

pared to temperature and wind speed. However, the

WRF model mostly predicts temperature and wind

speed much better than the RH over various regions

across India (Jain et al., 2021; Panda & Giri, 2012;

Panda & Sharan, 2012; Panda et al., 2009; Rath &

Panda, 2019, 2020). In the current study, due to far

better predictions of RH (in comparison to tempera-

ture and wind speed), rainfall predictions are also

quite superior in terms of statistical indices such as

IOA and others (FB, RMSE, etc.). Some earlier

studies highlighted the underestimation or overesti-

mation of near-surface temperature and RH by WRF

simulations. For instance, Rao and Rakesh (2019)

showed that the WRF model overestimated the near-

surface temperature but underestimated the near-

surface RH over Delhi and Hyderabad. Similarly, the

studies of Mohan and Bhati (2011), Sati and Mohan

(2018), and Mohan and Gupta (2018) reported that

the WRF model exhibits a warm bias for near-surface

temperature and dry bias for the near-surface RH.

Chang et al. (2009) also showed that the simulations

considering WRF coupled with the slab and Noah or

Noah-based land-surface models tend to over-predict

the afternoon temperatures over India. Notably, RH is

directly and highly dependent on temperature. Rela-

tively poorer prediction of temperature than RH in

the current study may not seem physically consistent.

This inconsistency may be attributed to four aspects,

which could not be appropriately accounted for in the

current simulations, i.e., (a) the altering of LULC

distribution pattern due to urbanization (Li et al.,

2013, 2016; Ribeiro et al., 2021), (b) unreasonable

performance of specific parameterization schemes

(Hariprasad et al., 2014), which could not generate

the appropriate atmospheric dynamics to represent

the actual state of the atmosphere (Banks et al.,

2016), (c) wetness of the soil, and (d) seasonality that

determines the receipt of rainfall by a particular

region to help increase the moisture availability in the

soil and atmosphere. Notably, the incorporation of

high-resolution LULC data with different urban

classes (Li et al., 2013, 2016) in the WRF urban

canopy model and the accurate estimation of surface

heat and moisture fluxes (Srivastava & Sharan, 2017)

may alter the model bias over highly urbanized

pockets (Bhimala et al., 2021). Although the present

study showed a better rainfall prediction by WRF

simulations during monsoonal intense rainfall events,

the predictability may be improved further with

higher-resolution (* 1 km) configurations by con-

sidering better resolved PBL, convection, and

topographic features. Data assimilation techniques

may be adopted to assimilate land surface and

atmospheric parameters to help improve the model

predictability.
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