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Abstract—In seismic data processing, low-frequency random

noise with non-Gaussian and non-stationary characteristics heavily

contaminates the reflected signals in Tarim area, which brings great

difficulties in interpretation of seismic records in northwest China.

To achieve more satisfied resolution, more greater fidelity, together

with much higher increased signal-to-noise ratio (SNR), this paper

proposes a SNR enhancement method based on the combination of

variational mode decomposition (VMD) and Semi-soft Go

Decomposition (Semi-Soft GoDec), named VMD-SSGoDec, which

can realize the simplification of low-rank extraction in time–fre-

quency representation (TFR) domain. Firstly, each trace of the

rough seismic record is decomposed into several modes to recon-

struct a component matrix by VMD. Due to the semi-low rank or

approximate low-rank character of the desert low-frequency noise

component matrix in TFR domain, secondly, we apply the Semi-

soft GoDec, a low-rank matrix estimation to extract the low-fre-

quency random noise components from the VMD results obtained

in the first step. Repeating the above single-trace procedure to each

trace rather than decomposing the entire record but use low-rank

estimation once can lead to a more reduced dimension of the

component matrix, and thus simplify the low-rank selection in

Semi-soft GoDec. Finally, with the extracted random noise results

in the second step, we can obtain the denoised record by making a

difference with the original input. The proposed algorithm is tested

by both synthetic record and field desert seismic data. Experimental

results show outstanding advantages in low-frequency noise

attenuation comparing with those of f-x deconvolution and SSWT-

OptShrink. Both low-frequency random noise and surface waves

are almost thoroughly attenuated by the proposed method, while

the reflected signals are left nearly intact, revealing a significant

enhancement in SNR.

Keywords: Variational mode decomposition (VMD), Semi-

soft GoDec, SNR enhancement, Low-rank matrix approximation,

Time–frequency representation.

1. Introduction

Seismic data acquisition is always interfered by

various noises in petroleum exploration. Especially in

the desert area in northwest China, due to the par-

ticularity and complexity of geological structure

(Wang et al., 2015; Xu et al., 2020), the seismic

signals collected by the arrays are typically and

seriously polluted by some non-stationary, non-

gaussian, nonlinear, but low-frequency noises. These

noises submerge the reflected signals and thus result

in low SNR, low resolution and low fidelity of the

seismic records. In view of these unclearly detected

characteristics of the desert seismic noise, extracting

the reflected information, improving the SNR of

seismic data, but maintaining the characteristics of

the reflected signal becomes one of the main prob-

lems in high-quality desert seismic data processing.

For non-stationary signals, time–frequency trans-

form (TFR) is more informative than representing

only in frequency or time domain (one-dimensional),

and thus is often used to localize individual oscilla-

tory components of seismic signals. So far, many

different time–frequency representations have been

proposed and improved to suppress seismic noise,

such as f-x deconvolution (Spitz & Deschizeaux,

1994), prediction error filtering in t-x and f-x domains

(Abma and Claerbout, 1995) and f-x singular spec-

trum analysis (Oropeza and Sacchi, 2011; Majumder

et al. 2019). Between 2016 and 2017, Mostafa

Mousavi and Rasoul Anvari applied Syn-

chrosqueezed Wavelet Transform (SSWT) to noise

reduction of seismic signals and achieved good

results (Mousavi et al., 2016; Mousavi & Langston,

2017; Anvari et al., 2017). Variational Mode

Decomposition (VMD) is also a time–frequency
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transform based technique and provides sharpened

time–frequency representation with higher time and

frequency resolution. Unlike traditional reassignment

methods in SSWT (Daubechies et al., 2011), VMD is

adaptive to different types of data and has rich visual

information. Together with its simple and effective

reconstruction formula, VMD became a powerful and

popular tool for precise decomposition and analysis

in recent years (Dragomiretskiy & Zosso 2014).

However, under the circumstance of the complicated

characteristics of the noise, VMD itself can cause

spectral aliasing and could not achieve satisfied

results in desert seismic denoising. In our research,

we utilize the characteristic that the desert seismic

noise preserved its low-rank property (Siahsar et al.,

2016) when transformed with some sparse TFR, and

propose a new method to enhance the SNR of desert

seismic data. To extract the low rank parameter,

many typical low-rank matrix approximation algo-

rithms have been proposed and improved by scholars,

including RPCA (Wright et al., 2009), WNNM (Gu

et al., 2009), GoDec (Siahsar et al. 2016; Zhou &

Tao, 2011), and so on. Semi-Soft GoDec has been

greatly improved than the traditional ones, as it

introduces soft thresholds to speed up the calculation

(Zhou & Tao, 2013).

Hence, based on the above, the proposed method

begins by transforming desert seismic signals with

VMD. Then in each mode, since the low rank of the

seismic noise is lower than that of the reflected signal,

Semi-soft GoDec (Zhou & Tao, 2013) is selected to

extract the low-rank components to estimate the

seismic noise. Finally, a noise free seismic data could

be obtained by subtracting the noise obtained by

mode superposition from the original seismic signal.

Within this method, a record is processed trace by

trace to simplify the low rank extraction. By the way,

no component is discarded at will.

This paper is organized as follows. The second

part briefly elaborate the principle of the Semi-soft

GoDec algorithm and the SNR enhancement method

based on that. In the third part, both synthetic and

field data experiments are processed and discussed in

detail. The last two parts give further discussion and

conclusion.

2. SNR Enhancement Theory

A. Semi-soft GoDec

GoDec is one of the typical low-rank matrix

approximation algorithms aiming at recovering

potential low-rank matrices from the given

degraded observations. It imposes hard con-

straints on the rank of the low-rank matrix L and

the cardinality of the sparse matrix S. In addition,

by using the low-order approximation based on

bilateral random projection (BRP) and the con-

trollable rank of L (Zhou & Tao, 2011, 2013), the

noise decomposition could be accelerated. Given

the input matrix X, the formula of GoDec is

shown as follow:

min
L;S

X � L� S2F

s:t: rank Lð Þ� r; card Sð Þ� k
ð1Þ

If introduce the regularization method with a soft

threshold k, the formula becomes:

min
L;S

X � L� S2F þ kS1

s:t: rank Lð Þ� r
ð2Þ

Semi-soft GoDec solves this problem by alternatively

optimizing the following two sub-problems until

convergence:

Lt ¼ arg min
rank Lð Þ� r

X � L� St�12F

St ¼ argmin
S

X � Lt � S2F þ kS1:

8
<

:
ð3Þ

The two sub-problems can be solved by alternatively

updating Lt via singular value hard thresholding ðsvd)
of X � St�1 and St via soft thresholding (Pk) of X � Lt

(Zhou & Tao, 2011), resctively:

Lt
Pr

i¼1 kiUiV
T
i ; svd X � St�1ð Þ ¼ UKVT

St ¼ Pk X � Ltð Þ; Pk xð Þ ¼ sign xð Þmax xj j � k; 0ð Þ

�

ð4Þ

B. Simplified Low-rank Selection in VMD

In this paper, we propose a method with Semi-

Soft GoDec in the TFR domain for enhancing the

SNR of desert seismic data. As a mature time–

frequency decomposition algorithm, VMD has
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been wely used so that the specific principle is no

longer described in detail here. Hence, we

describe the two main steps of the proposed

algorithm as follows:

Part 1. Time–Frequency Decomposition

Assume the desert seismic record as a m� n

matrix, where m is the number of samples and n

is the number of traces. Choose a single trace

x tð Þ along the m (time) dimensional and decom-

pose it into N modes with VMD algorithm to

obtain a noised component matrix of order

m� N. The column number N constrains the

range for the following simplified rank selection

to 1;Nð Þ.
Part 2. Simplified Low-rank Selection and

Denoising

Since the numerical value of the mode N is

relatively small, it is reasonable and operational

to implement Semi-Soft GoDec algorithm by

trying every rank i, where i 2 1;Nð Þ; to extract

different levels of noise components from the

m� N matrix in part 1, resulting in several (up

to N) filtered m� N matrices. For each of these

matrices, with the superposition of every mode,

we can obtain one low-rank component, denoted

ni tð Þ. Here the filtered components are not

corresponding to the denoised signal but the

noise component, because only the noise rather

than the effective signal has the low-rank

characteristic. Hence, we can observe the SNR

enhanced signal x̂i tð Þ by subtracting the esti-

mated noise ni tð Þ from the original trace x tð Þ.
The optimal result is among the set

x̂i tð Þji 2 1;Nð Þf g, and how to choose the optimal

parameters is discussed in the fourth part.

Repeat the above two steps to all the traces

within the m� n seismic matrix and obtain a

SNR enhanced record in the end.

In fact, there is an alternative to extract the low-

rank components for noise separation, where the

whole seismic record would be considered as an

2D matrix and decomposed with VMD for only

once, thus also be estimated with Semi-Soft

GoDec for only once. That idea comes from the

recently published algorithm SSWT-OptShrink

(Anvari et al., 2017), but the parameter of the

low rank extraction is hard to select from a wide

range of 1; nNð Þ(Ma et al., 2019). However, in

our simplified low rank selection strategy, the

value range of the low rank parameter could be

reduced to 1;Nð Þ by increasing the number of

VMD procedure by n times. In most experi-

ments, the mode number of N is less than 10 so

that it is possible to try all the rank values by

enumeration and choose an optimal result from

x̂i tð Þji 2 1;Nð Þf g. In terms of computational

cost, the simplified low rank extraction in this

paper is much more time saving than the 2D-

VMD implementation. For synthetic seismic

data experiments, it usually takes a few minutes

to accomplish, and for more complex field

seismic records, the denoising process can be

done within 20 min.

3. Examples and Results

A. Synthetic Desert Seismic Record

We constructed a 1400 9 50 synthetic record in

Fig. 1a, where the dominant frequency of the

reflected wavelets varies from 30 to 35 Hz and

the sampling frequency is 500 Hz. The synthetic

record contains several seismic reflection events

with complex characteristics, including cross-

overs, linearity (flat events and steep events),

curve, and discontinuity events. Then we add

some synthetic random noise arises from the

desert seismic model (G. Li et al., 2016), shown

in Fig. 1(b), and make the SNR fall down to –

8.52 dB in Fig. 1(c). In order to verify the per-

formance of both reflected signal enhancement

and noise reduction objectively, we make quan-

titative analyses of each record afterward with

SNR and mean square error (MSE) as follows:

SNR ¼ 10 log

P
i

P
t s t; ið Þj j2

P
i

P
t x t; ið Þ � s t; ið Þj j2

ð5Þ

MSE ¼
P

i

P
t s t; ið Þ � x̂ t; ið Þ½ �2

n� m
ð6Þ

where s t; ið Þ, x t; ið Þ, x̂ t; ið Þ are clean, noisy, and
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denoised synthetic desert seismic data, respectively, t

denotes the sample point, t 2 1;mð Þ, and i denotes the
trace number, i 2 1; nð Þ.
f-x deconvolution together with the SSWT-OptShrink

are selected as comparative experimental methods to

the proposed VMD-SSGoDec, and the results are

exhibited both in Fig. 2; Table 1. Here, the process-

ing frequency band of f-x deconvolution is tuned to

10 Hz–50 Hz with the operator length of 25 sample

points. The rank value of the SSWT-OptShrink is set

to 12 when extracting the low-rank component. In the

proposed algorithm, we first decompose the noisy

Figure 1
Synthetic desert seismic records and their FK spectra. a, b Synthetic pure desert seismic signals. c, d Synthetic desert seismic noise. e,

f Synthetic noisy record with the additive noise (SNR = - 8.52 dB)
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record into 4 modes with VMD, and then extract the

low-rank component with the rank of 1 in Semi-Soft

GoDec procedure to obtain an optimal denoising

performance. From the denoised figures and statisti-

cal data in Fig. 2; Table 1, we can see that all these

methods can achieve noise attenuation, but to a

different degree. From the frequency–wave number

spectra (FK spectra), the denoising effect of f-x

deconvolution is similar to a band-pass filter, where

the energy loss of low frequency reflected signal is

serious but the noise remains strong within other

frequency bands. In SSWT-OptShrink results, the

Figure 2
Noise attenuation results of synthetic desert seismic records and their FK spectra by utilizing three methods. a, b f-x deconvolution, c,

d SSWT-OptShrink, and e, f the proposed VMD-SSGoDec method
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overall residual noise seems less in Fig. 2(c) but it is

clear that some low-frequency noise still retains in

the FK spectrum, so that the SNR enhancement is

secondary. In Fig. 2(e), much more noise is removed

than the former two methods. The continuity and

intactness of the reflection event are well recovered

by the VMD-SSGoDec. The SNR is increased with a

great improvement by 13 dB and the resolution is

enhanced as well.

Figure 3 shows the differences and corresponding FK

spectra of the above three denoising algorithms.

Obviously, some reflection events remain in the

residual noise after the f-x deconvolution in Fig. 3(a),

and both the SSWT-OptShrink denoising method and

the proposed VMD-SSGoDec can separate the low

frequency noise from the noisy record, seen in

Fig. 3(b, c), respectively.

To fix the detail, we also select a single trace (the

48th trace) of each seismic record and compare their

amplitudes in Fig. 4. f-x deconvolution method

results in serious energy loss (20–50%) of the Ricker

wavelet in Fig. 4(a); SSWT-OptShrink performs

better in preservation of the reflected signals when

eliminating the low frequency noise; the proposed

VMD-SSGoDec is superior in low frequency noise

attenuation, especially in the interval of 0–700 ms.

Also, as we mentioned before, since the strategy used

in VMD-SSGoDec can more significantly decrease

the difficulty in rank selection than in SSWT-

OptShrink, the proposed method is undoubtedly a

good choose in low frequency seismic noise attenu-

ation.

We also repeat the synthetic experiments with

various input SNR to test their performances in

SNR enhancement and MSE descend, shown in

Fig. 5. We can see that the denoising framework

proposed in this paper is superior to the other two

methods no matter whether the input SNR is down to

-12 dB or up to 0 dB. When the input SNR is around

0 dB, the output SNR of VMD-SSGoDec is 7 dB,

that is 2–4 dB higher than the other results; when the

input SNR is as low as -11 dB, the output SNR of

VMD-SSGoDec is increased by about 13 dB. Among

the statistical results of MSE, the proposed VMD-

SSGoDec also gives out the minimum value and

shows its accuracy in reflected signal preservation. In

general, the framework introduced in this paper is

more effective in low frequency seismic noise

reduction.

B. Field Desert Seismic Data

Figure 6 shows a field seismic record collected in

desert area in northwest China, which has 210

traces, 2000 samples points in each trace with a

sampling interval of 2 ms. The denoising results

and residual noises are shown in Fig. 7.

The processing frequency band of the comparison

method f-x deconvolution is still tuned to 10 Hz–

50 Hz with the operator length of 25 sample

points. The rank value of the SSWT-OptShrink

algorithm is set to 60. When using the proposed

VMD-SSGoDec to remove the noise, we still

decompose the noisy record into 4 modes with

VMD, and then extract the low-rank component

with the rank of 1 in Semi-Soft GoDec procedure

to obtain an optimal denoising performance. We

can see that the proposed algorithm can almost

cleanly attenuate the low-frequency seismic noise,

including the surface waves in the field data.

Unlike f-x deconvolution, the reflection event can

be preserved with the proposed VMD-SSGoDec,

seen in the red rectangle. Compared with the

SSWT-OptShrink method, VMD-SSGoDec can

remove more noise with low frequency charac-

teristics. Therefore, more reflected signals are

clearly revealed and both the continuity and the

coherence of the seismic reflection events are

improved in Fig. 7(e).

To summarize, the SNR enhancement method

proposed in this paper is effective and efficient in

attenuating the low-frequency seismic noise, and

can achieve the requirements for improving the

resolution of the seismic record.

Table 1

Comparison of denoising performance

Denoising

Methods

f-x

deconvolution

SSWT-

OptShrink

VMD-

SSGoDec

Output SNR

(dB)

2.13 3.42 5.19

Output MSE 0.0359 0.0267 0.0178
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4. Discussion

According to the foregoing, the SNR enhance-

ment method for desert seismic data denoising in this

paper mainly relies on Semi-Soft GoDec algorithm in

extracting the low-frequency noise components from

the VMD representation. In this algorithm, we treat

the 2D seismic record trace by trace, rather than

applying the 2D-VMD only once to simplify the rank

selection in the following Semi-Soft GoDec and save

Figure 3
Comparison of residual noise in synthetic desert seismic records and the FK spectra. a, b f-x deconvolution, (c, d) SSWT-OptShrink, and (e,

f) the proposed VMD-SSGoDec method
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the overall computation cycles. In the above synthetic

and field data experiments, we only demonstrate one

result with relatively fixed parameters. Whereas here

we want to discuss the two main parameters in the

proposed method: the decomposition mode number in

VMD and the rank value in Semi-Soft GoDec.

We repeat the synthetic experiment on Fig. 1(e),

where the SNR is equal to -8.52 dB, with different

mode numbers and rank values, and then exhibit the

Figure 4
Amplitude comparison of reflected signals of the 48th trace after denoising. a f-x deconvolution, (b) SSWT-OptShrink, and (c) the proposed

VMD-SSGoDec method

2912 N. Wu et al. Pure Appl. Geophys.



output SNR and MSE in Tables 2, 3, respectively. In

Table 2, no matter how much the mode number is, the

output SNR would rise to the maximum value when

the selected rank equals 1. In Table 3, no matter how

much the mode number is, the output SNR would rise

to the minimum value when the selected rank equals

1. When the rank value is set to 1, different mode

numbers would not result in much fluctuations in the

SNR or MSE. However, when the mode number in

VMD is down to 3, though the result is

acceptable somehow, the decomposition is incom-

plete and appears spectrum aliasing. On the contrary,

if the mode number is too big, such as 7, it will cause

the problem of over decomposition. Therefore, we

select the medium mode number of 4 (5 is also fine)

and the smallest rank value of 1 in the previous

experiments to raise the SNR as much as possible and

prevent the spectrum aliasing or over decomposition.

Another discussion is about the frequency band of

the attenuated noise. This method only removes the

noise that has the low-frequency (less than 10 Hz)

characteristic in desert seismic signals. However, in

the complex desert random noise, there are not only

low-frequency noise, but also other types of high-

frequency noise. This kind of high-frequency noise

cannot be removed well by this method. In theory, the

low-rank characteristics of high-frequency noise and

reflected signal in VMD time–frequency representa-

tion domain still need to be explored. Perhaps the

algorithm in this paper is imperfect and cannot

achieve good implementation in high-frequency noise

removal. More effort will be paid in the future to

generalize this algorithm to other types of noises.

5. Conclusion

In this paper, we propose a SNR enhancement

method VMD-SSGoDec, which utilizes VMD and

Semi-Soft GoDec to extract the low-rank component

and realize desert seismic data denoising in northwest

Figure 5
Denoising performance comparison of selected method in (a) output SNR and (b) output MSE under various input SNR

Figure 6
Field desert seismic record
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China. Firstly, every trace of a seismic record is

decomposed into several modes by VMD to restruc-

ture a signal matrix. Secondly, use Semi-Soft GoDec

to extract the noise components of the matrix, and

obtain the denoised signal by subtracting the esti-

mated noise from the original trace. Repeat the above

two steps until the final trace is finished. An advan-

tage of this method is to simplify the parameter

selection problem by using the VMD-SSGoDec trace

by trace, which makes a comparatively small range of

the rank selection in Semi-soft GoDec. Experiments

show that VMD-SSGoDec can save much time while

maintaining the performance of denoising comparing

with another low rank extraction method SSWT-

OptShrink. Experiment of synthetic and field desert

seismic data also demonstrate the superiority in both

low frequency noise reduction and reflected signal

preservation than some conventional and state-of-the-

art algorithms, especially in SNR enhancement.
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