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Abstract—The numerical method presented here is simple, fast

and designed to determine automatically the depth, shape, polar-

ization angle and electric dipole moment from residual self-

potential (SP) anomalies due to ore bodies of simple geometry. The

calculation needs only four characteristic points defining the

anomaly and their corresponding distances on the anomaly profile.

The inverse problem of depth determination from residual SP

anomaly is solved by a linear equation for each shape factor. Using

all successful combinations of the four characteristic points and

their corresponding distances, a procedure is developed and prac-

ticed for automated determination of the best shape factor and

depth of the buried body from SP data. The procedure is based on

calculating the standard deviation of depths at each shape factor.

Knowing the optimum depth and shape of the buried structure,

formulas and procedures are also given for estimating the best

polarization angle and the electric dipole moment. Because the

present method uses all successful combinations of data points, it

has the capability of enhancing the interpretation results. The

method is tested on three noisy synthetic examples and applied on

two field examples from Indonesia and Turkey. The estimated

model parameters are always found to be in good agreement with

proposed or actual values.

Keywords: Self-potential interpretation, ore deposits, simple

structures, successful combinations of data points, automatic linear

inversion, standard deviation and rms.

1. Introduction

Self-potential survey is performed mainly for

mineral exploration, geothermal exploration, cavity

detection, hydrogeophysics and environmental and

engineering investigations. Our target is to determine

the model parameters of a buried structure of eco-

nomic interest such as ore mineralization from self-

potential anomalies which reveal themselves as

anomalies on the maps or the profiles. Many authors

solved such problem (Anderson, 1984; Corwin, 1984;

Corwin & Hover, 1979; Fitterman & Corwin, 1982;

Jouniaux et al., 2009; Markiewicz et al., 1984; Oliveti

& Cardarelli, 2019; De Witte, 1948; Yungul, 1950).

Mehanee (2014) and Biswas (2017) give interesting

reviews. The measured anomalies are mainly used in

qualitative means that is to help geological conclu-

sions. Nevertheless, a single residual anomaly might

be clear and so simple in appearance so it can be

identified from the regional background and the

nearby geologic interferences. In this case, it can be

considered as a result of a single structure. Conse-

quently, it would be very helpful to use quantitative

techniques to determine the depth and shape of the

buried object by simulating a model with simple

geometry.

Simultaneous determination of the depth and

shape of a buried structure from self-potential data

has drawn considerable attention. Abdelrahman and

Sharafeldin (1997) developed a least-squares mini-

mization technique to obtain the parameters of the

buried bodies from residual self-potential anomaly

profiles. On the other hand, Abdelrahman et al. (l998)

and Essa (2019) showed that numerical horizontal

derivative anomalies and moving residual anomalies

obtained from SP data using filters of successive

window lengths could be utilized to resolve the shape

and depth of a buried object. Gobashy (2000) showed

that the ill-posed SP inverse problem is also an ill

conditioned and non-linear problem, such complex

ill-posed conditions were greatly damped by simul-

taneous minimization of an objective function of

depth and shape factor using nonlinear simplex

polytope algorithm. Abdelazeem and Gobashy (2006)

used the Genetic algorithm for a fast and
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stable inversion for the true parameters through the

optimization of objective function even when adding

high level of noise to synthetic data. Fedi and Abbas

(2013) have calculated the depth using Extreme

Points method (DEXP) on self-potential data.

Moreover, several other excellent numerical

methods were reported in the geophysical literatures

for interpreting SP anomalies. Patella (1997) and

Revil et al. (2001) presented the tomography tech-

nique for the identification of an underground

causative SP source system assuming that the

monopole charge accumulates and extends the dis-

tribution of dipoles, respectively. Minsley et al.

(2007) utilized a model regulation approach that

selects a class of solutions which fit the data with 3D

sources that are spatially compact. Moreover, an

algorithm to locate self-potential sources was devel-

oped by Gibert and Pessel (2001) using the wavelet

analysis. Eventually, Biswas and Sharma (2015)

presented a simulated annealing global optimization

scheme for the sake of interpreting self-potential

anomaly of idealized bodies. However, they indicated

that the optimization method is able to determine all

model parameters accurately when the shape factor is

fixed in the process. Obviously, the limitations of

most of the above algorithms are that they may not

interpret a self-potential anomaly profile of a short

length. Also, in these methods a very good match

between the model and observations may have taken

place but this does not necessarily guarantee that the

correct solution has been found, particularly, when

dealing with field problems.

More recently, Abdelrahman et al. (2019) devel-

oped a minimization approach to depth and shape

determination from self-potential anomalies due to

sources of simple geometry (e.g., spheres, cylinders,

dikes, contacts) that resemble mineralized bodies. In

their method, the Nelder–Mead simplex algorithm is

applied to solve a nonlinear equation in depth for

each fixed shape factor using the anomaly values at

few points on the anomaly profile. The algorithm is

achieved through two steps. First, it computes the

standard deviation of the depths determined using

different characteristic distances for each value of the

shape factor. Second, it chooses the optimum shape

and depth with minimum standard deviation. How-

ever, most of the minimization approaches solve

nonlinear equations to determine the model parame-

ters of the buried mineralized zone from self-

potential anomalies using usually lengthy and tedious

procedures. Also, the least-squares minimization

methods have no capability of avoiding highly noisy

data points. Finally, Abdelazeem et al. (2019) intro-

duced a meta- heuristic algorithm to provide a

solution to self-potential anomalies. The method is

based on utilizing Whale optimization algorithm

which gives good approximation solution.

In the present paper, we introduce a simple and

fast method to determine automatically the depth,

shape, polarization angle, and electric dipole moment

from residual self-potential (SP) anomalies due ore

bodies of simple geometry. The calculation needs

only four characteristic points defining the anomaly

and their corresponding distances on the anomaly

profile. The inverse problem of depth determination

from residual SP anomaly is solved by a linear

equation for each shape factor. Using all successful

combinations of the four characteristic points and

their corresponding distances, a procedure is devel-

oped and practiced for automated determination of

the best model parameters. Because the present

method uses all successful combinations of data

points, it has the capability of enhancing the inter-

pretation results. The benefits of the proposed method

over both the linear and non-linear least squares

methods is that it is capable of minimizing the effect

of errors in the data points which results in an

enhanced interpretation outcome. The technique is

practiced on noisy synthetic data. The validity, the

technique is applied to two field examples from

Indonesia and Turkey. Within all the examined cases,

the resulting depths and shapes are in a very good

agreement with actual ones.

2. Theory

The general self-potential anomaly expressions

generated by a sphere, an infinitely long horizontal

cylinder and a semi-infinite vertical cylinder can be

presented as (Abdelrahman & Sharafeldin, 1997)
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V xi; z; qð Þ ¼ K
xicoshþ zsinh

ðx2i þ z2Þq ;

q ¼
0:5 for a semi-infinite vertical cylinder

1:0 for a horizontal cylinder

1:5 for a sphere

:

8
<

:

i ¼ 0;þ1; 2; 3; . . .;N; ð1Þ

z is the depth of the body, xi the horizontal position

coordinate, K the electric dipole moment, W the

polarization angle, and q is the shape factor. The

geometries are shown in Fig. 1.

For all shapes (q), Eq. (1) gives the following four

SP anomaly values: V(N), V–N). V(M) and V(- M)

at their corresponding distances xi = ± N, and xi =

± M, respectively

V Nð Þ ¼ K
Ncoswþ zsinw

ðN2 þ z2Þq ; ð2Þ

V �Nð Þ ¼ K
�Ncoswþ zsinw

ðN2 þ z2Þq ; ð3Þ

V Mð Þ ¼ K
Mcoswþ zsinw

ðM2 þ z2Þq ; ð4Þ

and

V �Mð Þ ¼ K
�Mcoswþ zsinw

ðM2 þ z2Þq : ð5Þ

Let F = V(N) - V(- N) and L = V(M)

- V(- M), then using Eqs. (2), (3), (4) and (5), we

obtain

F ¼ 2K
Ncosw

ðN2 þ z2Þq ; ð6Þ

and

L ¼ 2K
Mcosw

ðM2 þ z2Þq : ð7Þ

Using Eqs. (6) and (7), we obtain.

z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPM/NÞ1=qN2 � M2

ð1� ðPM/NÞ1=qÞ

v
u
u
t ; ð8Þ

where

P ¼ F=L

In this way, we are able to eliminate K and w from

Eq. (1) by introducing four pieces of information,

namely, V(N), V(- N), V(M), and V(- M).

For all shapes, Eq. (8) will converge to a depth

solution when N = M, N ? M = 0,

ðPM/NÞ1=qN2 [M2, and 1[ ðPM/NÞ1=q. These

conditions should be implemented in any computer

program in order to determine a reliable depth esti-

mate from all successful combinations of N and M.

Theoretically, one successful value of N and M is

sufficient to determine the depth to the buried struc-

ture from Eq. (8), but in practice, more successful

combinations of N and M is desirable because of the

presence of noise in the data. However, Eq. (8) can

be also used not only to determine the depth but also

to estimate simultaneously the shape of the buried

structure.

Figure 1
Parameters for a sphere and a horizontal cylinder (a) and a vertical cylinder (b) used in this study
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For each N and M value, apply Eq. (8) to the

residual anomaly profile, yielding depth solutions

(z) for all possible q values. We then compute the

standard deviation of depths for each value of the

shape factor. A search algorithm is used to find the

value of the shape factor at which the standard

deviation of the depths is a minimum. The minimum

standard deviation is used as a criterion for deter-

mining the optimum depth and the shape of the

buried body. When the best value of the shape is

used, the resulting standard deviation of the depths is

always less than the standard deviations computed

when using wrong values of the shape factor. The

average depth of all depths computed from all suc-

cessful combinations at the best shape factor is taken

as the best depth of the buried structure.

Moreover, let S = V(N) ? V(- N), then using

Eqs. (2) and (3), we obtain

S ¼ 2K
zsinw

ðN2 þ z2Þq : ð9Þ

Knowing the computed depth (zc) and the shape

factor qc, and using Eqs. (6) and (9), the polarization

angle and the eclectic dipole moment can be com-

puted from the following relationships, respectively

wc ¼ tan�1 SN = F zcð Þ; ð10Þ

and

kc ¼ SðN2 þ z2cÞ
q= 2 zcsinWc ð11Þ

which are valid for any N value. For each N value,

knowing the four model parameters, Eq. (1) is used to

generate the inverted field. We then measure the

goodness of fit between the observed values and the

values computed from the estimated parameters. The

simplest way to compare two self-potential profiles is

to compute the root-mean-square (rms) of the dif-

ferences between the observed and the fitted

anomalies. A search algorithm is then used to find the

N value at which the model parameters give the

minimum rms between the observed data and inver-

ted data. The model parameters which give the least

root-mean-square error are the best and the used N is

the best one.

A pseudo code for the proposed search algorithm

which is used to determine the best depth, shape

factor, polarization angle, and the electric dipole

moment using STD and rms criteria is as follows:

To summarize, the automatic interpretation

scheme based on the above procedures for analyzing

real data is illustrated in Fig. 2a,b.

3. Theoretical Examples

We have computed three different residual self-

potential anomalies due to a semi-infinite vertical

cylinder (q = 0.5, z = 3 units, w = 50�, and

k = - 50 mV) a horizontal cylinder(q = 1, z = 5

units, w = 40�, and k = - 300 mV), and a

sphere(q = 1.5, z = 8 unit, w = 50�, and

k = - 800 mV) each with a profile length = 30 units

with 1 unit interval. The model equations are:

V1 xi; z; qð Þ ¼ �50
xi cos 50

� þ 3 sin 50�

ðx2i þ 32Þ0:5
;

for semi-infinite vertical cylinder,

ð12Þ

V2 xi; z; qð Þ ¼ �300
xi cos 40

� þ 5 sin 40�

ðx2i þ 52Þ1:0
;

for horizontal cylinder,

ð13Þ

and

V3 xi; z; qð Þ ¼ �800
xi cos 50

� þ 8 sin 50�

ðx2i þ 82Þ1:5
; for sphere:

ð14Þ
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To test the stability of our method in the presence

of noise. we have added 10% as a suitable percentage

of Gaussian random errors to each residual self-po-

tential anomaly to produce noisy data using the

following equation

Vrnd1ðxiÞ ¼ V1ðxiÞ 1þ ðRNDðiÞ � 0:5Þ � 0:1½ �; ð15Þ

where Vrnd1(xi) is the contaminated anomaly value at

xi and RND (i) is a pseudo-random number whose

range is (0, 1). The interval of the pseudo random

number is an open interval, i.e. it does not include the

extremes values 0 and 1.

Equation (8) has been applied to each noisy

residual anomaly profile, yielding depth solutions for

all possible q values (0.1, 0.2, 0.3, …, and 1.5) for all

successful combinations of N and M. The standard

deviation search algorithm is used to determine the

best depth and shape factor. For each N value, we

computed the best polarization angle and the dipole

moment from Eqs. (10) and (11), respectively. The

numerical results are given in Table 1. In this Table,

it is numerically verified that when the data contain

10% random errors, the minimum STD and minimum

rms occur at z = 3.16 units, q = 0.5, W = 48.57, and

k = - 48.32 mV for the semi-infinite vertical cylin-

der model; z = 5.26 units and q = 1.0, W = 37.35�,
for the horizontal cylinder model; and z = 8.34 units

and q = 1.5, W = 46.07�, and k = - 789.5 mV, for

the sphere model. In all cases, the estimated model

parameters are in good agreement with true ones

(Figs. 3, 4, and 5). In all cases examined, the range of

the percentage of error varies from 0.0 to 6.6. This

percentages are practically accepted when interpret-

ing noisy data. This demonstrates that the present

method will give reliable model parameters (z, q, W,

and K) even when the residual self-potential anomaly

is contaminated with random errors.

Figure 2
a Search algorithm for best q and z using minimum standard deviation. b Search algorithm for best psi and k using minimum rms.
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4. Field Examples

To examine the applicability of the present

method, the following mineral field examples are

presented.

4.1. Buried Drum Self-Potential Anomaly, Bandung,

Indonesia

Figure 6a shows the self-potential anomaly mea-

sured over a metallic drum containing powder and

metal junk, with 0.6 m diameter and length equals

1.2 m buried at depth of 2.5 m (Srigutomo et al.,

2006).The length of the anomaly profile is 6.56 m

Table 1

Numerical results of noisy self-potential anomalies due to a semi-infinite vertical cylinder (q = 0.5, z = 3 units, w = 50�, k = - 50 mV) a

horizontal cylinder (q = 1, z = 5 units, w = 40 o, k = - 300 mV) and a sphere (q = 1.5, z = 8 unit, w = 50�, k = - 800 mV)

Model parameters q z w K Min. STD No. of successful

combinations

Best N value

(a) Semi-infinite vertical cylinder model

Computed values 0.5 3.16 unit 48.57� - 48.32 mV 1.6535 mV 5828 14

% of error in model parameters 0.0 5.3 - 2.9 - 3.4

(b) Horizontal cylinder model

Computed values 1.0 5.26 unit 37.35� 295.97 mV 0.7139 mV 5112 10

% of error in model parameters 0.0 5.2 - 6.62 - 1.34 0.0

(c) Sphere model

Computed values 1.5 8.34 unit 48.07� 789.47 mV 1.830 mV 4728 15

% of error in model parameters 0.0 4.25 - 3.86 - 1.31

Figure 3
Noisy synthetic anomaly (V1) of a buried semi-infinite vertical cylinder as obtained from Eq. (11) after adding 10% random error
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Figure 4
Noisy synthetic anomaly (V2) of a buried horizontal cylinder as obtained from Eq. (12) after adding 10% random error

Figure 5
Noisy synthetic anomaly (V3) of a buried sphere as obtained from Eq. (13) after adding 10% random error
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and digitized at interval of 0.82 m. The obtained

results using the present approach are given in Fig. 6,

where 1396 successful combinations are used. Fig-

ure 6b shows the Subsurface structure (modified after

SUNGKONO, 2020). The model parameters are very

close to the true model parameters given by

Srigutomo et al., (2006), and Abdelazeem et al.,

(2019). The model misfits some measurable values

because the field data are influenced by the surround-

ing medium transverse anisotropy.

4.2. Suleymnkoy Anomaly, Turkey

Figure 7 shows the Suleymnkoy SP anomaly map,

Ergani Copper district, Turkey. The sp measurements

were performed and described in Yungul (1950). A

self-potential anomaly profile of 165 m length along

the line AA0 of this map is shown in Fig. 8. The

anomaly profile is digitized at an interval of

1.0313 m. The total number of data points is 161.

We applied our interpretation method to the observed

anomaly thus obtained. 119,256 successful combina-

tions of N and M were used from a total of 285,131

when the range of q values is from 0.5 to 1.5 step 0.1.

The results are summarized in Fig. 8. The minimum

Figure 6
a Observed SP profile over a buried drum model, Bandung, Indonesia. b Subsurface structure (modified after SUNGKONO, 2020)
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STD and rms values occurs at q = 1.3, z = 43.1 m,

w =12.9�, and k = - 157,805 mV. This suggests that

the shape of the ore body can be approximated by a

sphere or, practically, two superimposed structures of

different shapes buried at a depth of about 43 m. The

computed anomaly profile using the parameters

obtained by our method, agrees with the observed

profile (Fig. 8). The results agree well with those

obtained in Yungul (1950), Bhattachacharya and Roy

Figure 8
Observed SP profile on line AA0, of the Suleymnkoy Copper ore body, Turkey

Figure 7
Suleymnkoy SP anomaly map, Ergani Copper district, Turkey (modified after Yungul, 1950)
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(1981), Abdelrahman and Sharafeldin (1997), who

assumed or determined a sphere model.

However, this anomaly was interpreted by Abdel-

rahman et al. (2015) as due to two superimposed

structures. They suggest that the shape of the buried

deeper structure resembles a sphere buried at depth of

43.6 m and the shape of the buried shallow structure

resembles a semi-infinite vertical cylinder buried at a

depth of 23.9 m. In all cases, the depth of the buried

source estimated by our method is in excellent

agreement with depth obtained by Abdelrahman

et al. (2015).

5. Discussion and Conclusions

Determination of the model parameters of buried

simple geometrical bodies using self-potential data

can be established using the proposed method. A

highly effective and fast numerical approach is

developed to use the anomaly values at four charac-

teristic points and their corresponding distances on

the residual anomaly profile for addressing simulta-

neously the model parameters of the buried object.

The repetition of the procedure using the successful

combinations of such two pairs of measured points

will result in the best outcome. The benefits of the

proposed method over both the linear and non-linear

least squares methods is that it is capable of mini-

mizing the effect of errors in the data points which

results in an enhanced interpretation outcome. Our

approach is more advantageous than many least-

squares inversion method in determining the model

parameters of the buried structure from residual self-

potential anomaly. Based on our experience with

minimization techniques, they work well when pre-

cise residual anomalies are available and when the

sources are truly idealized. However, when precise

residual anomalies are not available and when the

sources are not truly idealized as in cases dealing

with field problems, a very good match between the

model and observations may have occurred but this

not necessarily guarantee that the correct solution has

been found. Also, the minimization technique for two

or more unknowns always produces good results

from synthetic data with and without random noise.

In case of the field data, good results may only be

obtained when using very good initial guesses on the

model parameters (q, z, w, and k) On the other hand,

because the present method uses all successful com-

binations of data points, it has the capability of

enhancing the interpretation results, a good match

between the model and observations may have not

occurred but our approach guarantees that the correct

solution has been found.

Finally, another advantage of this method over the

other methods of interpreting self-potential residual

anomalies is that the effect of the reference or base

line is removed completely. This is because of the

fact that the subtraction of the numerical value of

V(- N) from V(N) and the subtraction of the

numerical value of V(- M) from V(M) will eliminate

the constant base line and a zero-order regional

polynomial. Also, the technique dose not depend on

the value of the anomaly at origin of the profile

(V(0)) nor on the zero-anomaly distance (xo).

On the other hand, it is evident from the field

examples that our method gives good insight from

self-potential data of short or long profile length

concerning the nature of the buried structure. This

because of the fact that the geologic situation is not

complicated. The present method may not be applied

to real data in complex geologic situation to obtain

reliable or detailed information about the different

buried structures. This is true because each SP mea-

surement determines at the station location, the sum

of all effects from the surface downward.

Acknowledgements

We thank Prf. Dr Carla F. Braitenberg, Editor in

Chief and anonymous capable PAAG reviewer for

their comments and suggestions.

Author contributions EMA: provided the conception and

design of the study, shared with MG the manuscript

preparation, figure design, and Tables preparation. GMM:

shared writing the manuscript and designed the all

programming work. Shared the first author in revising the

manuscript.

3036 E. M. Abdelrahman, M. M. Gobashy Pure Appl. Geophys.



Funding

No funding was received for conducting this study.

Availability of data and material

The datasets generated during and/or analyzed during

the current study are available from the correspond-

ing author on reasonable request.

Code availability

No code is available in this work.

Declarations

Conflict of interest The authors have no conflicts of interest to

declare that are relevant to the content of this article.

Publisher’s Note Springer Nature remains neutral

with regard to jurisdictional claims in published maps

and institutional affiliations.

REFERENCES

Abdelazeem, M., & Gobashy, M. (2006). Self-potential inversion

using genetic algorithm. Journal of King Abdulaziz University,

JKAU: Earth Science, 17, 83–101.

Abdelazeem, M., Gobashy, M., Khalil, M., & Abdrabou, M.

(2019). A complete model parameter optimization from self-

potential data using Whale algorithm. Journal of Applied Geo-

physics, 170, 103825. https://doi.org/10.1016/j.jappgeo.2019.

103825

Abdelrahman, E. M., Abdelazeem, M., & Gobashy, M. (2019). A

minimization approach to depth and shape determination of

mineralized zones from potential field data using the Nelder-

Mead simplex algorithm. Ore Geology Reviews, 114(2),

103–123. https://doi.org/10.1016/j.oregeorev.2019.103123

Abdelrahman, E. M., Abo-Ezz, E. R., El-Araby, T. M., & Essa, K.

S. (2015). A simple method for depth determination from self-

potential anomalies due to superimposed structures. Exploration

Geophysics, 47, 308–314. https://doi.org/10.1071/EG15012

Abdelrahman, E. M., Ammar, A. A., Hassanein, H. I., & Hafez, M.

A. (1998). Derivative analysis of SP anomalies. Geophysics, 63,

890–497.

Abdelrahman, E. M., & Sharafeldin, S. M. (1997). A least squares

approach to depth determination from residual self-potential

anomalies caused by horizontal cylinders and spheres. Geo-

physics, 62, 44–48.

Anderson, L. A. (1984). Self-potential investigations in the Puhi-

mau thermal area, Kilauea Volcano, Hawaii. SEG Technical

Program Expanded Abstracts, 3, 84–86.

Bhattacharya, B. B., & Roy, N. (1981). A note on the use of

nomograms for self-potential anomalies. Geophysical Prospect-

ing, 29(1), 102–107. https://doi.org/10.1111/j.1365-2478.1981.

tb01013.x

Biswas, A. (2017). A review on modeling, inversion and inter-

pretation of self-potential in mineral exploration and tracing

paleo-shear zones. Ore Geology Reviews, 91, 21–56. https://doi.

org/10.1016/j.oregeorev.2017.10.024

Biswas, A., & Sharma, P. S. (2015). Interpretation of self-potential

anomaly over idealized bodies and analysis of ambiguity using

very fast simulated annealing optimization technique. Near

Surface Geophysics, 13(2), 179–195. https://doi.org/10.3997/

1873-0604.2015005

Corwin, R. F. (1984). The self-potential method and its engineering

applications; an overview. In: 54th Annul. Int. Meet. Soc. Expl.

Geophysics., Expanded Abstracts. Soc. Expl. Geophysics., Tulsa,

Session: SP. 1.

Corwin, R. F., & Hoover, D. B. (1979). The self-potential method

in geothermal exploration. Geophysics, 44, 226–245. https://doi.

org/10.1190/1.1440964

De Witte, L. (1948). A new method of interpretation of self-po-

tential field data. Geophysics, 13, 600–608. https://doi.org/10.

1190/1.1437436

Essa, K. S. (2019). A particle swarm optimization method for

interpreting self-potential anomalies. Journal of Geophysics and

Engineering, 16(2), 463–477. https://doi.org/10.1093/jge/gxz024

Fedi, M., & Abbas, M. (2013). A fast interpretation of self-po-

tential data using the depth from extreme points method.

Geophysics, 78(2), E107–E116. https://doi.org/10.1190/geo2012-

0074.1

Fitterman, D. V., & Corwin, R. F. (1982). Inversion of self-po-

tential data from the Cerro Prieto geothermal field, Mexico.

Geophysics, 47, 938–945.

Gibert, D., & Pessel, M. (2001). Identification of sources of

potential fields with the continuous wavelet transform: Appli-

cation to self-potential profiles. Geophysical Research Letters,

28, 1863–1866. https://doi.org/10.1029/2000GL012041

Gobashy, M. M. (2000). Constraint inversion of residual self-po-

tential anomalies. Delta J. Sci., 24 Tanta University, Egypt.

Jouniaux, L., Maineult, A., Naudet, V., Pessel, M., & Sailhac, P.

(2009). Review of self-potential methods in hydrogeophysics.

Comptes Rendus Geoscience, 341(10–11), 928–936.

Markiewicz, R. D., Davenport, G. C., & Randall, J. A. (1984). The

use of self-potential surveys in geotechnical investigations. SEG

Technical Program Expanded Abstracts, 3, 164–165. https://doi.

org/10.1190/1.1894184

Mehanee, S. (2014). An efficient regularized inversion approach

for self-potential data interpretation of ore exploration using a

mix of logarithmic and non-logarthimic model parameters. Ore

Geology Reviews, 57, 87–115. https://doi.org/10.1016/j.

oregeorev.2013.09.002

Minsley, B. J., Sogade, J., & Morgan, F. D. (2007). Three-di-

mensional source inversion of self-potential data. Journal of

Geophysical Research, Solid Earth. https://doi.org/10.1029/

2006JB004262

Oliveti, I., & Cardarelli, E. (2019). Self-potential data inversion for

environmental and hydrogeological investigations. Pure and

Vol. 178, (2021) A Fast Method for Interpretation of Self-Potential 3037

https://doi.org/10.1016/j.jappgeo.2019.103825
https://doi.org/10.1016/j.jappgeo.2019.103825
https://doi.org/10.1016/j.oregeorev.2019.103123
https://doi.org/10.1071/EG15012
https://doi.org/10.1111/j.1365-2478.1981.tb01013.x
https://doi.org/10.1111/j.1365-2478.1981.tb01013.x
https://doi.org/10.1016/j.oregeorev.2017.10.024
https://doi.org/10.1016/j.oregeorev.2017.10.024
https://doi.org/10.3997/1873-0604.2015005
https://doi.org/10.3997/1873-0604.2015005
https://doi.org/10.1190/1.1440964
https://doi.org/10.1190/1.1440964
https://doi.org/10.1190/1.1437436
https://doi.org/10.1190/1.1437436
https://doi.org/10.1093/jge/gxz024
https://doi.org/10.1190/geo2012-0074.1
https://doi.org/10.1190/geo2012-0074.1
https://doi.org/10.1029/2000GL012041
https://doi.org/10.1190/1.1894184
https://doi.org/10.1190/1.1894184
https://doi.org/10.1016/j.oregeorev.2013.09.002
https://doi.org/10.1016/j.oregeorev.2013.09.002
https://doi.org/10.1029/2006JB004262
https://doi.org/10.1029/2006JB004262


Applied Geophysics, 176(8), 3607–3628. https://doi.org/10.1007/

s00024-019-02155-x

Patella, D. (1997). Introduction to ground surface self-potential

tomography. Geophysical Prospecting, 45, 653–681. https://doi.

org/10.1046/j.1365-2478.1997.430277.x

Revil, A., Ehouarne, L., & Thyreault, E. (2001). Tomography of

self-potential anomalies of electrochemical nature. Geophysical

Research Letters, 28, 4363–4366. https://doi.org/10.1029/

2001GL013631

Srigutomo, W., Agustine, E., & Zen, M. H. (2006). Quantitative

analysis of self-potential anomaly: Derivative analysis, least-

squares method, and non-linear inversion. Indonesian Journal of

Physics, 17, 49–55.

Sungkono. (2020). Robust interpretation of single and multiple

self-potential anomalies via flower pollination algorithm. Ara-

bian Journal of Geosciences , 13, 100. https://doi.org/10.1007/

s12517-020-5079-4

Yungul, S. (1950). Interpretation of spontaneous polarization

anomalies caused by spherical ore bodies. Geophysics, 15,

237–246. https://doi.org/10.1190/1.1437597

(Received June 8, 2020, revised June 5, 2021, accepted June 7, 2021, Published online June 18, 2021)

3038 E. M. Abdelrahman, M. M. Gobashy Pure Appl. Geophys.

https://doi.org/10.1007/s00024-019-02155-x
https://doi.org/10.1007/s00024-019-02155-x
https://doi.org/10.1046/j.1365-2478.1997.430277.x
https://doi.org/10.1046/j.1365-2478.1997.430277.x
https://doi.org/10.1029/2001GL013631
https://doi.org/10.1029/2001GL013631
https://doi.org/10.1007/s12517-020-5079-4
https://doi.org/10.1007/s12517-020-5079-4
https://doi.org/10.1190/1.1437597

	A Fast Method for Interpretation of Self-Potential Anomalies Due to Buried Bodies of Simple Geometry
	Abstract
	Introduction
	Theory
	Theoretical Examples
	Field Examples
	Buried Drum Self-Potential Anomaly, Bandung, Indonesia
	Suleymnkoy Anomaly, Turkey

	Discussion and Conclusions
	Acknowledgements
	Author contributions
	Code availability
	References




