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Abstract—In this article, we establish a new approach for

removing natural growth trends from tree-ring samples, also called

detrending. We demonstrate this approach using Ocotea porosa

(Nees & Mart) Barroso trees. Nondestructive samples were col-

lected in General Carneiro city, located in the Brazilian southern

region (Paraná state). To remove natural tree growth trends, prin-

cipal components analysis (PCA) was applied on the tree-ring

series as a new detrending method. From this, we obtained the tree-

ring indices by reconstructing the tree-ring series without the first

principal component (PC), which we expect to represent the natural

growth trend. The performance of this PCA method was then

compared to other detrending methods commonly used in den-

drochronology, such as the cubic spline method, negative

exponential or linear regression curve, and the regional curve

standardization method. A comparison of these methods showed

that the PCA detrending method can be used as an alternative to

traditional methods since (1) it preserves the low-frequency vari-

ance in the 566-year chronology and (2) represents an automatic

way to remove the natural growth trends of all individual mea-

surement series at the same time. Moreover, when implemented

using the alternating least squares (ALS) method, the PCA can deal

with tree-ring series of different lengths.

Keywords: Dendrochronology, tree ring, time series, natural

records, principal components analysis.

1. Introduction

Studying tree rings allows us to infer environ-

mental conditions and geophysical phenomena from

recent years to millennia in the past (Fritts, 1976). In

seasonal climates, tree rings can be dated at an annual

resolution, and thus, the information extracted from

tree rings has a high temporal resolution relative to

many other such biological archives. One important

and common aim in tree-ring research is the recon-

struction of climate variability at annual-to-decadal

and longer time scales (Briffa et al., 1996), which

provides us with a longer-term context of the modern

climatic variability and changes. However, informa-

tion stored in tree rings has been used for a number of

different purposes, such as reconstructions of sunspot

activity (Stuiver & Quay, 1980), cyclones (Miller

et al., 2006), or volcanic eruptions (Piermattei et al.,

2014).

A pertinent issue in research based on tree-ring

widths is the extraction of the desired signal from the

noisy ring-width data. Tree growth and the width of

the tree rings are influenced by several physiological

and biochemical factors that need to be taken into

account when interpreting data from tree rings

(Speer, 1971). Depending on the study objectives, the

desired signal can consist, for instance, of year-to-

year variability in the tree-ring widths and wood

anatomy (Piermattei et al., 2014), sudden and sus-

tained longer-term changes in the tree-ring widths

(Maes et al., 2017), or longer-term, trend-like decli-

nes (Amoroso et al., 2012). In the context of climate

reconstructions with a focus on annual-to-decadal and

longer time scales, typically an important first step in

the analysis is the removal of the natural growth trend

and other non-climatic variability to maximize the

climate signal (Briffa et al., 1996). A particular

problem here is how to preserve the low-frequency

signal (climate signal) when removing the natural

tree growth trend (Helama et al., 2017).

Statistical methods can be applied on a tree-ring

time series to remove the biological growth trend.

This application is commonly referred to as

detrending or standardization (Fritts, 1976). The

choice of the detrending method depends on the
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purpose of the study because it will influence the

interpretation of the tree-ring data.

Detrending methods are separated into stochastic

and deterministic methods, and each one has its

specific advantages and disadvantages (Cook et al.,

1990). Deterministic methods fit mathematical mod-

els to estimate the growth of the trees, while

stochastic methods are more adaptable to the data

characteristics (Cook et al., 1990). Common exam-

ples of detrending methods aimed at removing non-

climatic signals include regional curve standardiza-

tion (RCS) (e.g., Helama et al., 2004, 2017) or the

negative exponential or linear regression curve (s-

tandard [STD]) (e.g., Cook et al., 1990; Lorensi &

Prestes, 2016; Prestes, 2009).

One common statistical method for extracting

signals from noisy data is principal components

analysis (PCA), which is one of the most popular

methods for reducing the dimensionality of a data set,

simplifying its analysis and interpretation (Regazzi

2000). In tree-ring research, PCA has been commonly

used to deal with multicollinearity of the independent

variables. As an example, Fekedulegn et al. (2002)

applied principal components regression (PCR) to

model the sensitivity of tree growth to temperature

and precipitation. Enright (1984) applied PCA on

tree-ring samples from different regions of Canada to

assess the response of the trees to precipitation and

temperature. Flower and Smith (2011) used PCA to

develop a white spruce ring-width chronology, and

also to reconstruct the average temperatures from

June to July in the northern Canadian Rockies. The

major disadvantage of PCA was that it requires time

series of equal length, leading to loss of information

when they are resized.

The choice of a detrending method may vary

according to the tree-ring series characteristic that

need to be preserved (Helama et al., 2004). In studies

aimed at reconstructing past climates, choices in the

detrending method risk missing the trees’ responses

to climatic variations, and consequently providing a

misleading view of past climate (Shi et al., 2020). In

this article, we intend to establish a new approach to

remove natural growth trends using PCA. To solve

the issues arising from the loss of data when resizing

(i.e., trimming tree-ring series to equal length), we

use a nonlinear optimization method, the alternating

least-squares method (ALS), which performs the best

adjustment for smaller series. We then compare the

method to three other commonly used tree-ring

standardization methods based on cubic spline func-

tions, regional curve standardization (RCS), and

negative exponential functions. Following, we will

decompose the tree-ring series into its principal

components (PCs) to estimate their natural growth

trends. After obtaining the chronology via PCA

standardization, the PCA chronology will be com-

pared to the chronology obtained via traditional

methods.

2. Tree-Ring Data and Study Area

2.1. Study Area

Samples of imbuia trees obtained in General

Carneiro city (26�240012500 S, 51�240039100 O),

Paraná state, in southern Brazil were used in this

article. The city has a territorial extension of 1070.30

km2 and is located at an altitude of 983 meters

(General Carneiro, 2020). It is also part of the

mesoregion of the southeast of Paraná and the

microregion of União da Vitória. Figure 1 shows

the location of General Carneiro city in the Brazilian

map of the south region, and its adjacent areas where

the samples used in this study were collected.

2.2. Tree Species Description

Ocotea porosa (Nees & Mart) Barroso belongs to

the Lauraceae family, and it is known as imbuia

(Fig. 2). This species can reach heights of 10–20 m,

and an average of diameter at breast height (DBH) of

between 50 and 150 cm. In adulthood, the height

values can reach up to 30 m, with a DBH of 320 cm

or more. This tree is a species of a mixed

ombrophilous forest (Carvalho 2003), which is char-

acterized by a floristic mixture, comprising

Australasian (Drymis, Araucaria) and Afro-Asian

(Podocarpus) genera, with a physiognomy strongly

marked by the predominance of Araucaria angusti-

folia (pine) in its upper stratum. Its area of occurrence

coincides with a humid climate without a dry season,

and with average annual temperatures � 18�C. Its
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environments predominate in the southern Brazilian

Plateau on lands above 500–600 m of altitude, with

disjunctions at higher points in the mountains of Mar

and Mantiqueira (Berrêdo 2015).

Imbuia is native to the Brazilian states of Paraná

(PR), Rio de Janeiro (RJ), Rio Grande do Sul (RS),

Santa Catarina (SC), and São Paulo (SP), between

latitudes 22�300 S (RJ) and 29�500 S (RS), and it is

associated with Araucaria angustifolia (known as

pinheiro-do-paraná) and is rare where there are no

pine trees (Klein 1963). In the pine sub-forests, it

constitutes the most abundant tree, being commonly

found at a rate of 6 to 20 adult imbuias per hectare.

There are areas with high concentrations of

imbuia, and this is due to several conditions such as

soils of low natural fertility, high levels of aluminum,

and medium and high levels of chemical fertility

(Reitz et al., 1978). This species can be observed

from the bottom of valleys to the top of the slopes

(Marchesan et al., 2006; Carvalho, 1994).

However, imbuia is seldom used in dendrochrono-

logical studies, but its dendrochronological potential

is recognized (Stepka 2013). Considering its den-

drochronological potential, imbuia is possibly the

longest-lived tree species in the ‘‘araucaria forest,’’

with a lifetime that can exceed 500 years (Carvalho

1994). Anatomically, in the cross section of the

wood, the presence of distinct growth layers is

observed. It is characterized by the flattening of the

fibers in the latewood, with cell walls that gradually

thicken in the radial direction (Fig. 3). At the

boundaries between the tree-ring growth, there is a

sudden transition from cells with thick walls to those

with thin walls which characterize the initial wood of

the next ring (Tomazello Filho et al., 2004; Cosmo

et al., 2009).

2.3. Sample Preparation

The samples of Ocotea porosa (Nees & Mart)

Barroso were collected in the municipality of Gen-

eral Carneiro in January 2013. We obtained 64

Figure 1
The sample collection location of Carneiro city, Paraná, southern

Brazil, and the species occurrence map. Source: Modified from

CNCFlora (2012)

Figure 2
Ocotea porosa (Nees & Mart) Barroso (imbuia) in the region of

General Carneiro. Source: Laboratório de Registros Naturais

(LRN)-UNIVAP
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samples from 21 trees at 1.3-m height using an

increment borer. Healthy individuals were selected

for sampling to minimize any influence of tree

damage, disease, or insect pests on the tree-ring

series. As a first step to obtaining the dendrochrono-

logical series, the samples were initially polished on

the transversal surface using different sandpapers

(from 50 to 600 grains), so that it is possible to better

visualize the tree rings. Subsequently, they were

examined under a stereomicroscope (6–40� magni-

fication) and an optic fiber lighting system for the

demarcation of the annual tree rings. To measure the

tree rings, a Velmex measuring table with an

accuracy of 0.001 mm (shown in Fig. 4) was used.

Ring widths were measured from the tree bark to

the pith. The last ring formed until the date of

collection corresponds to the year 2011. This is

because the beginning of the formation of an imbuia

ring occurs in spring/summer (considering the South-

ern Hemisphere); in this way, the ring corresponding

to the year 2012 had not been yet completed its

growth in January 2013. The oldest tree had 566

rings.

An analysis to verify the tree-ring width time

series similarities to reduce the error of the mean

chronology was performed. To this end, a subset of

trees was defined to represent each period of time that

trees coexist. Following, we used a measure of

squared Euclidean distance to compare the tree-ring

series pairwise to find dissimilarities between series,

and dendrograms were built from the resulting

dissimilarity matrix. The grouping method was the

Ward pair-group method (inner squared distance).

Another reason to apply the grouping method is that

this method is able to eliminate samples with

counting errors or false rings and partially missing

rings through a similarity group analysis. From this

analysis, only 41 samples were chosen to develop the

mean chronology. To improve accuracy, the cross-

validation technique was also performed using a

50-year window to provide the dating control of the

examined characteristics (Cook & Peters, 1997).

3. Methods to Develop the Mean Chronology

3.1. Removing the Growth Trend

The tree-ring chronologies based on the PCA

detrending method were obtained using the following

three steps. First, the natural growth trend was

expected to be associated with the first PC. This

hypothesis was based on the fact that the first PC

Figure 3
Macroscopic cross section of Ocotea porosa (Nees & Mart)

Barroso wood showing the tree rings. Source: Laboratório de

Registros Naturais (LRN)-UNIVAP

Figure 4
Velmex measurement table associated with a stereoscopic micro-

scope. Source: Laboratório de Registros Naturais (LRN)-UNIVAP
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represents the direction of largest variance of the

original tree-ring series (detailed in Appendix A).

Second, the natural growth trend was removed from

the tree-ring series by standardization methods. In our

case, the tree-ring indices were computed using the

first PC by three methods, i.e., by division, by

subtraction, and by reconstructing the series without

its first PC, in order to compare the results. Third, the

chronology was then computed as a mean of the

individual detrended series using the Tukey biweight

robust mean method.

To perform PCA of the tree-ring series with

different lengths, we estimated the values of the

shortest series using the ALS method. After this

procedure, all tree-ring series were padded using ALS

in order to have the same length (566 years). These

estimated values were removed after the principal

components (PCs) were calculated, and therefore,

they were not used to develop the mean chronology.

Although PCA can be conducted with missing values,

the resulting eigenvectors lack some of the usual

statistical properties. The standard procedure is to

delete individuals or variables containing missing

observations and perform the PCA. However, this

loss of information reduces the ability of PCA to

detect patterns and can also introduce biases (Dray &

Josse, 2015). Brief descriptions of PCA and ALS

methods are given in Appendix A.

We then compared the PCA detrending to

chronologies obtained by other commonly used

detrending methods. In this, we included the 67%n

spline curve (SP67), regional curve standardization

(RCS) (Melvin & Briffa, 2014a), and negative

exponential curve detrending–STD (Helama et al.,

2004). For the negative exponential detrending, we

used a modified version in which a linear model was

fitted if the negative exponential presented a zero

slope. Finally, the four versions of chronologies were

computed for each detrended method mentioned

above using Tukey’s biweight robust mean. If our

hypothesis holds, the first PC should contain similar

variation to the other detrending methods.

3.2. Standardization

The tree-ring indices were defined by reconstruct-

ing the tree-ring series without the first PC or by

dividing each measured tree-ring width, Rt, by its

expected values; in other words, by its estimated

growth trend Gt,

It ¼ Rt=Gt;

or by subtracting the expected values from each

measured tree-ring width,

It ¼ Rt � Gt;

where t stands for a year. For the other detrending

methods, subtraction and division were applied in the

same way.

3.3. Estimation of the Mean Chronology

We used Tukey’s biweight robust mean to reduce

the effect of outliers in the estimation of the mean

chronology. This method reduces the weight of

outliers by considering weighted averages assigned

to each data element (i) of the tree-ring indices in a

certain year, as follows

I ¼
Pn

i¼1 wiIiPn
i¼1 wi

;

such that

wi ¼ 1 � Ii � I

cSi

� �2
 !2

are the weights, with Si ¼ medianfjIi � Ijg. The

constant c is often taken as 6 or 9 (Cook & Peters,

1997). Here, we used c ¼ 9. This procedure is a

process of iteratively reweighted least squares. The

constraint takes the following form

Ii � I

cSi

� �2

\1;

otherwise, it will be given a weight of zero and will

not enter into the calculation of the biweight estimate

at all. Next, we can test for convergence when, for

example, an estimate of I changes by no more than

10�3 from one iteration to another. To start the

interaction for computing the final value of I, the

arithmetic mean or median can be used as an initial

estimation (Cook & Peters, 1997).
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Figure 5
Different components decomposed by PCA for an example tree-ring width data set. Each decomposition is the projection in the principal

component direction of the data that explains a maximal amount of variance—in other words, the axis that captures the most information of

the data
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4. Results and Discussion

4.1. Tree Growth Identified Based on PCA

Here, we illustrate the step-by-step use of PCA for

tree-ring series detrending by considering the first PC

as the natural growth trend of the tree. Figure 5 shows

an example of tree-ring raw data and its nine

decompositions. In this case, we use only the first

PC, only the second PC, and so on. The reconstruc-

tion uses the projections on the eigenvectors of the

covariance matrix as described in Appendix A.

Figure 6a shows the use of the first PC to estimate

the growth trend, Gt. In Fig. 6b, the tree-ring indices

are estimated by ratios and by residuals. Each PC

explains a fraction of the total variance. The first PC

represents � 45% of the total variance. Figure 6c

shows the reconstruction of the ring width series

using all the PCs, only disregarding the first PC. As

depicted in Fig. 6d, the resulting indices by the three

methods are displayed together for comparison. This

procedure was applied to the 41 tree-ring series, but

the other tree graphs are not shown here. For

instance, Fig. 7 presents three examples of tree-ring

width series and their associated first PC used to

identify growth trends using the same steps men-

tioned above. The visual comparison between the

tree-ring indices as ratios and reconstruction demon-

strates several similarities.

4.2. Tree Growth Identified by Other Methods

Four tree-ring standardization methods (PCA,

SP67, RCS, and STD) are compared in this paper.

Of these, the PCA, RCS and STD methods conserve

low-frequency signals, while the SP67 method

removes low-frequency signals. In Fig. 8, we provide

four examples to illustrate the results using 67%n

splines as growth model trends. According to Speer

(1971) and Cook (1985), the cubic spline method is a

stochastic method that uses a low-pass filter. Chang-

ing spline rigidity controls the frequencies of

variance that are removed or preserved, and so the
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Figure 6
Tree-ring standardization using the first PC as the growth trend Gt (a). The tree-ring indices are calculated using the raw data divided (or

subtracted) by Gt (b). Also, the reconstruction without the first PC is shown (c). The resulting index series, calculated as ratios, residuals, and

reconstruction are shown together in the same plot (d)

Vol. 178, (2021) Principal Components Analysis: An Alternative Way for Removing Natural Growth Trends 3137



signal at desired frequencies can be amplified. As an

example, a 32-year-old spline preserves around half

the range of variations that have a wavelength higher

than 32 years (Helama et al., 2004), while a 50-year

spline is more rigid (Brienen & Zuidema, 2005;

Briffa et al., 1990; Lindholm et al., 1999). Here, we

chose the 67%n spline with a 50% frequency cutoff

(SP67). As discussed by Helama et al. (2004), a

67%n spline is a stiffer function, and no more than

half of the amplitude with wavelengths of two-thirds

of the length of each tree-ring series can be expected

to be preserved in its resulting indices.

Another method to derive detrended series used

here is RCS. The RCS method first realigns all time

series of ring width by biological age to calculate an

average ageing curve of the same tree species and

region (e.g., Helama et al., 2004, 2017). Thus, it is

expected that only the ageing factor will be preserved

in the average curve. Before the standardization is

done, this curve is smoothed. The use of only one

average curve to remove the natural growth trend

from all samples has already been applied in studies

by Huntington (1914), Briffa and Melvin (2011),

Autin et al. (2015), and Biondi and Qeadan (2008).

It is possible to implement RCS in different ways.

In our implementation, all series of tree-ring mea-

surements were first aligned by their cambial age,

which means that the first year of each series is set to

the biological age of 1. The arithmetic average of

measurements was then used to produce a curve of

the mean tree-ring series. However, the obtained

mean tree-ring series was noisy and needed to be
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Figure 7
Growth trends and detrended series for three raw tree-ring width data sets using PCA. The left panels show the growth trend identified by

PCA, and the right panels are the detrended series for each tree-ring data set using ratios, residuals, and reconstruction
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smoothed. We used the 67%n spline function to

create a smooth RCS curve (Melvin & Briffa, 2014b),

as shown in Fig. 9. Each tree-ring series was then

divided by and subtracted by the RCS curve value for

its particular biological age to give a index, as

presented in Fig. 10. Finally, all tree-ring series after

the RCS removal were realigned to their original

calendar years to produce the RCS chronology

In the next method, it was necessary to calculate

fitting functions (such as linear or negative exponen-

tial functions) until the best fit was found for each

sample. The linear model is a special case of a

negative exponential with a zero slope. In this article,

the negative exponential is applied together with the

linear regression. In analogy with the PCA detrending

method, the following steps were also involved to
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Four examples of the 67%n splines as growth model trend results
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develop the chronology. First, the natural growth

trend was associated with a negative exponential that

was the best fit for the ring-width series. The R2

coefficient of determination was calculated for each

fit by an iterative method with a stoppage criterion of

zero slope. The negative exponential with the largest

amount of variance explained R2 was then used for

standardizing the ring width series (Fig. 11).

4.3. Chronologies

After the tree-ring indices were computed by

division and subtraction, we observed an apparent

heteroscedasticity in the imbuia series. To correct for

this, it is a common practice to stabilize the variance

using the natural growth trend removal by division

(Helama et al., 2004).

Figure 12 presents the four versions of chronol-

ogy developed based on PCA (both as ratios and

reconstructed without the first PC), SP67, RCS, and

STD. The chronologies show similar variations,

despite the differences at the ends. The same kind

of result was observed by Zhang and Chen (2017)

using ensemble empirical mode decomposition

(EEMD) to remove the tree growth trend. The

chronology versions obtained by SP67 and STD were

very similar (r ¼ 0:95; p\0:01), and the two PCA

versions were also similar (r ¼ 0:83; p\0:01,

Table 1). However, these similarities are not as

evident between the chronology versions obtained

by SP67, RCS, and STD and the two PCA versions

(r ¼ 0:66–0.86, p\0:01). This may be explained by

the differences at the ends. As discussed by Zhang

and Chen (2017), the SP67, RCS, and STD methods

fail to fit the trend for the tree-ring series at the end,

as shown in Figs. 8, 10, and 11.

The power spectra of the tree-ring chronologies

computed with different detrending methods show a

slight distortion in the low-frequency part of the

spectrum (Fig. 13). The first-order autocorrelations

(AR1) are expected to indicate the low-frequency

variability in chronologies (Cook and Peters 1997).

As described by Helama et al. (2004), our results also

showed that AR1 are lowest with the most flexible

standardization curves (SP67) and are highest with

stiffer functions, PCA, RCS, and STD (Table 2). Our

results confirmed that RCS is a robust method for

preserving long-period variations in the tree-ring

chronologies (AR1 = 0.81), as discussed by several

authors (Cook & Peters, 1997; Helama et al.,

2002, 2004; Melvin & Briffa, 2014b). Moreover,

the two PCA versions presented higher AR1 values

than SP67 and STD. In this sense, it seems that most

of the low-frequency variability in each ring series is
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Figure 9
The stochastic derivation of regional curve standardization (RCS) for the tree-ring widths. RCS was based on 67%n spline fits to the mean

values of all series. The bars show the standard deviation of each data according to the mean growth data
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preserved by the chronology based on the PCA

reconstruction without the first PC.

The removal of natural growth trends has been a

subject of much research, especially for dendrocli-

matic studies, where the aim is to reconstruct past

climatic variability. It is important to preserve low-

frequency signals as they contain climatic signals

present in the tree-ring series. Climate signals, which

have periods longer than the tree-ring series length,

are impossible to be removed by all detrending

methods. For example, our longest tree-ring series

has 566 years; therefore, any climate signals which

have periods longer than these 556 years are not

removed by just fitting a curve on it (Zhang & Chen,

2017). The most common methods for preserving

low- to medium-frequency signals are RCS (Briffa &
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Figure 10
Example of four data sets, each one standardized using the RCS curve shown in Fig. 9 in two ways: by division and by subtraction
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Melvin, 2011), EEMD (Zhang & Chen, 2017), and

STD (Cook & Peters, 1997). In RCS, each series of

tree indices is set relative to the RCS fitting, which

enables the RCS to preserve medium-frequency

variance (Melvin & Briffa, 2014b). If the main goal

is the preservation and interpretation of long-time-

scale variance in tree-ring chronologies, other

methods, such as flexible spline functions, end up

removing part of those long-timescale variances, and

consequently, are obviously not recommended for

applications in which the low frequencies might

contain relevant information. In summary, the use of

detrending methods needs caution, and their limita-

tions should not be overlooked, because it may lead
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Figure 11
Four examples of the linear or negative exponential curve (STD) as growth model trend results
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to the misinterpretation of the climate variability in

the tree-ring chronology.

5. Conclusions

In this article, the PCA method was introduced to

remove the natural growth trends of Ocotea porosa

(Nees & Mart) Barroso (imbuia) tree-ring series

collected in General Carneiro city, southern Brazil.

For comparison, the tree-ring data was also detrended

by the cubic spline method (SP67), by negative

exponential or linear regression curve (STD), and by

the regional curve standardization (RCS) method.

The PCA detrending results are similar to the results

obtained with these methods, especially with RCS

and STD. Similar characteristics were observed in the

frequency domain between the four versions of

chronology detrended by PCA and the traditional

methods. Only a slight distortion in the low-fre-

quency part of the spectrum was observed. Our

results showed that the PCA method can be used as

an alternative to the traditional ones. The first PC

identified by PCA can be considered as the natural

growth trend for each tree-ring series. Therefore, one

advantage of the method is that it can be used to

remove more complicated trend patterns, while other

methods usually assume a specific function. Still, at

the same time, it can remove real patterns if the data

includes a low number of samples. Another important

result from our PCA using ALS is that we were able

to deal with tree-ring series with different lengths

using an optimization algorithm. Therefore, there is

no need to re-dimension the tree-ring series for the

same length, which would cause loss of data. In

summary, the PCA fulfilled our purpose and showed

some advantages: (1) it preserves low-frequency
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Figure 12
The chronologies developed based on PCA (both PCA as ratios and reconstructed without the first PC), 67%n spline curve (SP67), regional

curve standardization (RCS), and linear or exponential curve (STD)

Table 1

Coefficients of correlation (r) and p values (p) between the

chronologies using growth trend models based on PCA (PCA as a

growth trend and series reconstruction without the first PC) and the

67%n spline curve (SP67), regional curve standardization (RCS),

and linear or exponential curve (STD)

Growth trend model

PCA Reconstructed SP67 RCS STD

PCA

r 1 0.83 0.82 0.65 0.85

p\ 0.01 y y y y y

Reconstructed

r 0.83 1 0.66 0.85 0.69

p\ 0.01 y y y y y

‘‘y’’ stands for yes
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variance, (2) it applies a single adjustment to all

collected samples (natural tree growth trend unique

model), and (3) it minimizes the ‘‘end effect.’’
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Appendix A: Principal Components Analysis

Let X 2 Rn�m be the data matrix whose m col-

umns represent the variables x1; x2; . . .; xm, zero-

centered by hypothesis, and the n rows represent the

observations of each of them, as described by
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Figure 13
Spectral analysis of the four versions of chronology

Table 2

First-order autocorrelations (AR1) in chronologies constructed

using growth trend models of PCA (both PCA as ratios and

reconstructed without the first PC), 67%n spline curve (SP67),

regional curve standardization (RCS), and linear or exponential

curve (STD)

Growth trend model

PCA Reconstructed SP67 RCS STD

AR1 0.74 0.83 0.62 0.81 0.67
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X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 ... xm

1st x11 x12 . . . x1m

2nd x21 x22 . . . x2m

...
...

...
. . .

...

n-th xn1 xn2 . . . xnm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

...

Xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, ð1Þ

where Xi 2 Rm is a row vector that corresponds to the

ith observation, with 1� i� n. The idea in the stan-

dard derivation of PCA is to find a direction

determined by a unit vector q 2 Rm such that the

variance of projections yi associated to observations

Xi is maximum, as illustrated in Fig. 14.

The projection of Xi onto the unit vector q is given

by yi ¼ Xiq, so that the variance of all projections is

defined by

V ¼ 1

n � 1

Xn

i¼1

y2
i ¼ qT 1

n � 1

Xn

i¼1

XT
i Xi

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
CX

q ¼ qT CXq;

ð2Þ

where CX 2 Rm�m is the covariance matrix associated

to the original set of variables and can be rewritten in

a more convenient way as follows:

CX ¼ 1

n � 1

Xn

i¼1

XT
i Xi ¼

1

n � 1
XT X: ð3Þ

The covariance matrix CX has some properties that

form the basis to the understanding of PCA, and, in

order to visualize them, it is necessary to expand CX

in Eq. (3) considering that the observations are of the

form Xi ¼ xi1 xi2 � � � xim½ �, resulting in

CX ¼

varðx1Þ covðx1;x2Þ ... covðx1;xmÞ

covðx2;x1Þ varðx2Þ ... covðx2;xmÞ

..

. ..
. . .

. ..
.

covðxm;x1Þ covðxm;x2Þ ... varðxmÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

ð4Þ

Equation (4) shows that CX is a symmetric matrix due

to the symmetry of covariance, and therefore, it has a

orthonormal set of m eigenvectors, and it is orthog-

onally diagonalizable, so that there is an orthogonal

matrix Q2Rm�m such that

DX ¼ QT CXQ () CX ¼ QDXQT ; ð5Þ

where DX ¼ diagðk1; k2; . . .; kmÞ is a diagonal matrix

with the eigenvalues of CX ordered in such a way that

k1 	 k2 	 � � � 	 km and Q ¼ q1 q2 . . . qm½ �,
whose column qi 2 Rm is the respective eigenvector

of ki. Besides that, CX is a positive semidefinite

matrix such that if y 2 Rm is a nonzero vector, then

yT CXy ¼ 1

n � 1

Xn

i¼1

ðXiyÞ2 	 0;

where equality can only be obtained when Xi ¼ 0

since y 6¼ 0. As a consequence, the eigenvalues of CX

are nonnegative, which is consistent because they

represent the variance of each principal component,

as will be seen later. Finally, note that the diagonal

elements of the matrix correspond to the variances of

each variable x1; x2; . . .; xm, whereas the off-diagonal

elements correspond to all possibilities of covariance

between these variables.

In order to maximize the variance in Eq. (2), it is

necessary to solve an optimization problem involving

the quadratic form with one constraint, as stated in

Figure 14
Representation of some observations, restricted to variables x1; x2

and x3, and the direction q that maximize the variance of the

projections yi
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maxq V ¼ qT CXq

subject to qT q ¼ 1
: ð6Þ

The standard way to approach such a problem is by

the Lagrange multiplier method that allows one to

combine an objective function with a sequence of

constraints, producing the Lagrange function, which

in this case, is given by

Lðq; kÞ ¼ qT CXq � kðqT q � 1Þ: ð7Þ

By differentiating (7) and equating the result to zero,

considering that oqT q
oq ¼ 2qT and oqT CXq

oq ¼ 2qT CX , one

gets

2qT CX � k2qT ¼ 0 () CXq ¼ kq: ð8Þ

Equation (8) is a major result since it indicates that

the direction q that maximizes the variance V is given

by the eigenvectors of the covariance matrix CX , and

as a consequence, the numerical value of V is given

by the respective eigenvalue k, as indicated by

V ¼ qT CXq ¼ qTkq ¼ k qT q
|{z}

1

¼ k: ð9Þ

Nevertheless, since the matrix CX has a set of

m orthonormal eigenvectors, which one maximizes

V? This question can be answered by observing

Eq. (9), where one can conclude that the eigenvector

with the largest eigenvalue is the one that maximizes

it. Since the eigenvalues are ordered, one can make

the following statements:

(a) q1 is the direction of largest variance k1 of the

original data set;

(b) q2 is the direction of the second-largest variance

k2 and so on.

An important point that deserves attention is the

perpendicular distances di of observations Xi relative

to line ‘, as illustrated in Fig. 14. Mathematically, di

is given by

di ¼ XT
i � yiq

�
�

�
�

2
¼ XT

i � ðXiqÞq
�
�

�
�

2
: ð10Þ

The goal is to verify that the variance D of these

distances is minimized when the variance of the

projections V is maximized. To do this, it is necessary

to square Eq. (10), allowing us to express d2
i in matrix

form as follows:

d2
i ¼ XT

i � ðXiqÞq
�
�

�
�2

2
¼ XiX

T
i � ðXiqÞ2: ð11Þ

From Eq. (11) one can obtain a closed expression for

variance D, as in

D ¼ 1

n � 1

Xn

i¼1

d2
i ¼ 1

n � 1

Xn

i¼1

XiX
T
i � V : ð12Þ

Note that Eq. (12) indicates that when V is maximum,

D is minimum due to the minus sign, since the other

term is constant. This explains why the eigenvectors

seem to fit the cloud of observations when they

overlap in the same plot.

With the largest variance directions determined

by the eigenvalues of CX , all that remains is to project

the observations Xi in the eigenspace of CX . Since the

projection Xi in the direction of qj is given by

yij ¼ Xiqj, by doing this for all eigenvectors indexed

by 1� j�m, there is a new representation of Xi given

by the row vector Yi ¼ Xiq1 Xiq2 . . . Xiqm½ �.
Thus, for all observations indexed by 1� i� n, one

can get a new representation for the original data set,

denoted by the matrix Y 2 Rn�m, as given by

ð13Þ

where the new variables y1; y2; . . .; ym are named

principal components. It should be noted that the

entry yij ¼ Xiqj corresponds to the score of the ith

observation in the jth principal component, whereas

the eigenvector qj is the so-called coefficient vector of

this component. This nomenclature comes from the

fact that the entry yij is written as a linear combina-

tion whose coefficients are the entries of qj, as

follows:
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yij ¼ q1jxi1 þ q2jxi2 þ � � � þ qmjxim ¼
Xm

r¼1

qrjxir:

ð14Þ

In general, the new representation of the original data

set as given by the Eq. (13) is not made considering

all the columns of matrix Q. The idea is to reduce the

dimension of the original data set disregarding the

columns that represent the principal components with

the smallest variances, resulting in a new set of

variables that represents the original ones with a

certain degree of accuracy. For example, suppose that

only the first k\\m principal components are used

to represent a data set in an m-dimensional space. The

accuracy of this representation is defined in terms of

how much the total variance remains in the k-di-

mensional space and is given as a percentage as

follows:

100

trðCXÞ
�
Xk

j¼1

kj ¼ 100 � k1 þ k2 þ � � � þ kk

k1 þ k2 þ � � � þ km
; ð15Þ

where it is quite common to get high values with only

two principal components. Note that with Eq. (13), it

becomes possible to obtain the original data matrix X

by multiplying both sides on the right by QT , as

indicated by

YQT ¼ X QQT

|ffl{zffl}
I

() X ¼ YQT : ð16Þ

One of the main results of PCA can be noticed when

calculating the covariance matrix CY associated to the

principal components, as given by

CY ¼ 1

n � 1
YT Y ¼ QT CXQ: ð17Þ

Substituting Eq. (5) into Eq. (17), it turns out that CY

is a diagonal matrix,

CY ¼ DX ¼

k1 0 . . . 0

0 k2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . km

2

6
6
6
6
4

3

7
7
7
7
5
; ð18Þ

whereby matrix equality follows that varðyjÞ ¼ kj,

that is, the eigenvalues of CX are the variances of the

principal components. Moreover, note that there is no

covariance between them, indicating that they are

unrelated.

A.1 Alternating Least Squares

The alternating least squares (ALS) is a matrix

factorization algorithm that plays an important role in

the context of collaborative filtering (CF) in recom-

mendation systems. Specifically, CF is a technique

used to make predictions about the interests of a user

based on their preferences over a set of available

items (Zhou et al., 2008), which can be movies and/

or songs in streaming platforms, for example. In this

sense, to illustrate the ALS, suppose that a video

streaming platform has nu users and nm movies

available which can be rated. In that scenario, it is

convenient to define a user-movie matrix R 2 Rnu�nm

whose entry rij represents the rating score of movie

j by user i. Unfortunately, the matrix R has a lot of

missing entries since a user only rates a subset of the

available movies. The purpose of a recommendation

system is to estimate these missing entries based on

the previous ratings of the users.

The idea is to perform a low-rank approximation

of the user-movie matrix R by introducing a user

feature matrix U 2 Rnf �nu and a movie feature matrix

M 2 Rnf �nm in such a way that rij 
 uT
i mj8i 2

f1; . . .; nug; 8j 2 f1; . . .; nmg or R 
 UT M, where

ui 2 Rnf and mj 2 Rnf are the user and movie feature

vectors, respectively (Zhou et al., 2008). The nf is the

dimension of the feature space. In this sense, the

matrices U and M are determined by minimizing the

least squares error of the known ratings, i.e.,

min
U;M

f ðU;MÞ ¼ min
U;M

X

ði;jÞ2I

rij � uT
i mj

� �2

þ k
X

i

nui
uik k2þ

X

j

nmj
mj

�
�
�
�2

 !

;

ð19Þ

where I denotes the index set of known ratings, nui

the number of ratings of user i, and nmj
the number of

ratings of movie j. The term involving k in Eq. (19) is

a regularization term to prevent overfitting in ALS

(Zhou et al., 2008). It is noteworthy that the objective

function in Eq. (19) is non-convex due to the term

uT
i mj, but if one of the matrices is fixed, U for

example, then it becomes a convex function of M and
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vice versa. In this way, the approach used to solve

this minimization problem is to fix U and optimize M,

then fix M and optimize U until convergence is

established by some stopping criterion. Actually, this

fact explains the word alternating in the ALS name.

Specifically, to do the optimization, it suffices to

perform a matrix differentiation in Eq. (19) consid-

ering that one of the matrices is held constant and

equates the result to zero. In this sense, suppose that

M is given, then the columns of matrix U will be

ui ¼ ðMIi
MT

Ii
þ knui

EÞ�1MIi
RTði; IiÞ; i 2 f1; . . .; nug;

ð20Þ

where E is the nf � nf identity matrix, MIi
¼ ½mj�j2Ii

,

and Rði; IiÞ is the ith row vector of R considering only

the columns with indexes in Ii (Zhou et al., 2008).

Similarly, by carrying out the same procedure, but

considering that U is given, it results

mj ¼ ðUIj
UT

Ij
þ knmj

EÞ�1UIj
RðIj; jÞ; j 2 f1; . . .; nmg;

ð21Þ

where UIj
¼ ½ui�i2Ij

, and RðIj; jÞ is a column vector of

R considering only the rows with indexes in Ij, which

represents the set of users who rated movie j.

By using Eqs. (20) and (21) in the ALS algorithm,

one can find the matrix ~R ¼ UT M that fits the known

entries of matrix R and fills the missing ones.
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