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Abstract—The 2.5-D seismic wave numerical simulation

method employs point sources from 2-D geological models,

enabling the calculation of point source wavefields at pseudo-2-D

computational cost. We present herein a generalized 2.5-D first-

order time-domain governing equation to model seismic wave

propagation in different (acoustic, elastic isotropic, and aniso-

tropic) media, then derive different formulae that incorporate

topographic free-surface and fluid–solid interfaces. Furthermore,

by assigning different model parameters from point to point,

accommodating different boundary conditions, and applying the

finite difference approach, we achieve the numerical simulation of

seismic wave propagation with just one computer program. Com-

parisons with 3-D analytic and numerical solutions obtained using

different full-space homogeneous models (acoustic, elastic iso-

tropic, and anisotropic) verify the correctness of the 2.5-D method.

Comparison of the results with a 3-D pseudospectral method show

that the proposed 2.5-D method can simulate seismic wave prop-

agation in various media with different boundary conditions. In

addition, unlike the problems encountered when using 2-D

numerical solutions for real 3-D applications, the 2.5-D method can

be employed directly as a forward modeling method in seismic

reverse-time migration and an efficient wavefield conversion tool

between practical point source data and artificial line source data

for 2-D seismic full waveform inversion.

Keywords: 2.5-D, wave equation, numerical solution, elastic

anisotropy, finite difference.

1. Introduction

The numerical simulation of seismic wave prop-

agation has always been considered a crucial step

towards a more detailed understanding and interpre-

tation of seismic data, as well as for imaging the

Earth’s shallow or deep interior. With the rapid

development of computer technology, various kinds

of numerical methods, such as the finite-difference

method (Moczo et al., 2014), finite-element method

(Zhang et al., 2007), pseudospectral method (Forn-

berg, 1988), boundary element method (Bouchon &

Coutant, 1994), discontinuous Galerkin method

(Hesthaven & Warburton, 2008), finite volume ele-

ment method (Su et al., 2020), and spectral element

method (e.g., Seriani & Priolo, 1994; Faccioli et al.,

1997; Komatitsch & Tromp, 1999) have been suc-

cessfully applied to 2-D and 3-D seismic wave

modeling.

Although 3-D seismic wave modeling can be

applied to more complex problem (e.g., 3-D hetero-

geneous systems), it is usually very time-consuming

and requires huge amounts of computer memory,

leading to inefficiency for seismic imaging tech-

niques in large models. To efficiently obtain high-

resolution images of the Earth’s interior, seismic

imaging techniques are mostly performed using

computationally attractive 2-D models in either the

time or frequency domain, such as diffraction

tomography (Gelius, 1995; Pratt & Worthington,

1988; Wu & Toksöz, 1987), reverse time migration

(Baysal et al., 1983; Dai et al., 2011; Zhang et al.,

2015), and full-waveform inversion (Li & Demanet,

2016; Pratt & Worthington, 1990; Tarantola, 1984;

Vigh et al., 2014; Virieux & Operto, 2009).

However, in 2-D seismic wave modeling, the

point source used in practice is replaced with an

artificial line source to achieve high computational

efficiency, meaning that the magnitude of the source

is constant along the strike direction, e.g., y-direction,

while the wavefield becomes two-dimensional (Zhou

et al., 2012). This is not true in seismic practice and
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results in difficulty in matching the 3-D dynamic

features of real observed seismograms with such 2-D

numerical solutions (Auer et al., 2013). Although 3-D

to 2-D data transformation methods can be applied to

convert realistic point source data into line source

data and thereby obtain synthetic seismograms com-

parable to observed ones, such transformation filters

can only be reliably applied to very simplistic mod-

els, e.g., homogeneous or flat-layered isotropic media

in the far-field approximation with no overlapping

arrivals (Williamson & Pratt, 1995).

To overcome the line-source assumption in 2-D

wave modeling while avoiding the inefficient com-

putations of 3-D wave modeling, one can apply a 2.5-

D wave modeling approach, which employs a 3-D

point source in a 2-D geological model (Song et al.,

1995; Furumura & Takenaka, 1996; Zhou & Green-

halgh, 1998a, 1998b; Novais & Santos, 2005; Sinclair

et al., 2007; Sinclair et al., 2012; Zhou et al., 2012;

Xiong et al., 2013; Baker & Roecker, 2014). The 2.5-

D forward-modeling method assumes a medium that

is symmetric in the out-of-plane direction, allowing

the application of a Fourier transform with respect to

the out-of-plane direction and reducing the 3-D

problem to a repeated 2-D computational problem,

which is much more economical than full 3-D wave

modeling (Zhou & Greenhalgh, 2006). Song et al.

(1995) reconstructed the 3-D wavefield by applying

the 2.5-D finite-difference scheme in the frequency

domain. Zhou and Greenhalgh (1998a, b) applied a

finite-element method to obtain the numerical solu-

tion of the 2.5-D frequency-domain wave equation

with explicit 2.5-D absorbing boundary conditions.

Doyon and Giroux (2014) demonstrated a finite-dif-

ference method to solve a 2.5-D frequency-domain

wave equation in viscoelastic isotropic media. Tak-

enaka and Kennett (1996) solved a 2.5-D

elastodynamic equation in the time domain, but for

incident plane waves. Novais and Santos (2005)

improved the wavenumber sampling strategy for the

time-domain finite-difference method. In addition,

Zhou and Greenhalgh (2011b) developed numerical

computations of sensitivity kernels for 2.5-D seismic

full-waveform inversion. Roecker et al. (2010) and

Baker and Roecker (2014) described a 2.5-D fre-

quency-domain viscoelastic wavefield simulation

method for their full-waveform inversion

applications. Xiong et al. (2013) solved the 2.5-D

problem by first transforming the elastic wave equa-

tion from the spatial into the wavenumber domain.

Then, for each wavenumber, it becomes possible to

solve a 2-D problem using the FD method with

staggered grids.

In addition, the seismic wave velocity is direction

dependent because of the existence of thin isotropic

layers (Backus, 1962), fluid-filled cracks, and frac-

tured rocks (Crampin et al., 1984). Seismic wavefield

propagation modeling in anisotropic media has been

widely studied (e.g., Igel et al., 1995; Lisitsa &

Vishnevskiy, 2010; Saenger & Bohlen, 2004; Zhang

et al., 2012a; Zhou & Greenhalgh, 2011a; Zhu &

Dorman, 2000) due to the significant effects of seis-

mic anisotropy on the arrival time, propagation

direction, amplitude, and phases of the seismic

wavefield (Christensen, 1984; Crampin, 1985; Martin

& Thomas, 1987). As a practical way to understand

the seismic anisotropy, synthetic seismic waveforms

in anisotropic media are important for seismic

exploration and Earth structure investigations (Heibig

& Thomsen, 2005; Silver & Chan, 1991; Tsvankin

et al., 2010). Furthermore, correct implementation of

fluid–solid interfaces is helpful to investigate the

physical phenomena that occur when a seismic wave

propagates across complex fluid–solid interfaces,

which can improve understanding of the generation

and propagation of T-waves (e.g., de Groot-Hedlin &

Orcutt, 2001; Jamet et al., 2013; Okal, 2008), Scholte

and leaky Rayleigh waves (e.g., de Hoop & van der

Hijden, 1983; Padilla et al., 1999; Zhu & Popovics,

2004), and seismic scattering caused by the seafloor

(e.g., Greaves & Stephen, 2000; Robertsson &

Levander, 1995).

However, the above-mentioned 2.5-D seismic

wavefield numerical simulation methods in both the

time and frequency domains are only applicable for a

single (acoustic, elastic, or anisotropic) medium,

while there is no generalized wave equation that can

describe different types of medium (elastic, vis-

coelastic, and anisotropic) under different boundary

conditions (acoustic free surface, solid free surface,

and solid–liquid). This is the problem to be solved

herein, that is, the development of a generalized 2.5-

D first-order wave equation in the time domain and

its solution, being suitable for complex mixed models
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with different boundary conditions. This is because

the resulting generalized wavefield simulation

method can deal with mutual coupling or merging

phenomena between different types of waves, for

example, a body (P or S) wave excited in an elastic

isotropic medium penetrating into an elastic aniso-

tropic medium and splitting and transforming into

quasi-P (qP) or quasi-S (qSV, qSH) waves. Further-

more, it captures the change in the seismic wave

velocity with the direction of propagation, the split-

ting of the shear wave, the dispersion of the surface

wave velocity depending on the propagation direc-

tion, and the apparent anisotropy caused by the thin

interlayer and the directional distribution of cracks in

elastic anisotropic media. Such problems can be

tackled with a single computer program, as illustrated

by the solutions of the generalized 2.5-D first-order

wave equation discussed in this paper.

In this paper, we present a generalized 2.5-D first-

order time-domain wave equation (concise form) that

accommodates acoustic, elastic isotropic, and aniso-

tropic media, as well as the boundary conditions at

free-surface and fluid–solid interfaces. We then solve

the generalized wave equation using the DRP/opt

MacCormack finite-difference method, a popular and

well-tested nonstaggered scheme that has been suc-

cessfully applied by Zhang and Chen (2006), Zhang

et al. (2012a, 2012b) and Sun et al. 2016), and Sun

and Zhang (2018) for 2-D and 3-D seismic wave

modeling. The MacCormack-type scheme has inher-

ent dissipation, which damps the spurious short-

wavelength numerical waves generated by media

discontinuities, computational domain boundaries,

grid discontinuities, and other computational irregu-

larities (Zhang & Chen, 2006). The generalized 2.5-D

seismic wave equation is formulated in a concise

matrix form, which is valid for different media and

boundary conditions at different interfaces, then

several numerical examples are given to show the

correctness of the proposed wave equation and the

effectiveness of the numerical method.

2. Generalized 2.5-D Seismic Wave Equation

Considering a geological model that is constant in

the strike direction then taking the Fourier

transformation with respect to the out-of-plane

coordinate of the 3-D seismic wave equations (No-

vais & Santos, 2005; Zhou & Greenhalgh, 1998a, b),

one obtains a generalized governing equation for 2.5-

D seismic wave modeling in a concise matrix form

that is suitable for different boundary conditions. By

defining different wavefield vectors, assigning vari-

able model parameters from point-to-point to three

coefficient matrices, and employing either a pressure

or force vector as a point source, one can achieve 2.5-

D seismic wave modeling in complex geological

models using a single computer software.

2.1. Elastic Anisotropic Media

In a 3-D elastic anisotropic medium, the first-

order governing equation for wave propagation is

given by Sun and Zhang (2018) as

_vx ¼ q�1 rxx;x þ rxz;z þ rxy;y þ sx

� �
;

_vy ¼ q�1 rxy;x þ ryz;z þ ryy;y þ sy

� �
;

_vz ¼ q�1 rxz;x þ rzz;z þ ryz;y þ sz

� �
;

ð1Þ

and

_rxx ¼ c11vx;x þ c16vx;y þ c15vx;z þ c16vy;x þ c12vy;y

þ c14vy;z þ c15vz;x þ c14vz;y þ c13vz;z;

_rxy ¼ c16vx;x þ c66vx;y þ c56vx;z þ c66vy;x þ c26vy;y

þ c46vy;z þ c56vz;x þ c46vz;y þ c36vz;z;

_ryy ¼ c12vx;x þ c26vx;y þ c25vx;z þ c26vy;x þ c22vy;y

þ c24vy;z þ c25vz;x þ c24vz;y þ c23vz;z;

_rxz ¼ c15vx;x þ c56vx;y þ c55vx;z þ c56vy;x þ c25vy;y

þ c45vy;z þ c55vz;x þ c45vz;y þ c35vz;z;

_ryz ¼ c14vx;x þ c46vx;y þ c45vx;z þ c46vy;x þ c24vy;y

þ c44vy;z þ c45vz;x þ c44vz;y þ c34vz;z;

_rzz ¼ c13vx;x þ c36vx;y þ c35vx;z þ c36vy;x þ c23vy;y

þ c34vy;z þ c35vz;x þ c34vz;y þ c33vz;z;

ð2Þ

in which vx, vy, and vz are particle velocity compo-

nents; rxx, ryy,rzz, rxz,rxy, and ryz are stress tensor

components; sx, sy, and sz are source components; q
is mass density; cij are components of the elastic

matrix, the overdot represents the partial derivative

with respect to time, and ‘‘; xi’’ represents a derivative

with respective to the xi-coordinate. Applying Fourier
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transformation to Eqs. (1) and (2) along the y-axis to

obtain equations in the wavenumber domain yields

the 2.5-D governing equations

_~vx ¼ q�1 ~rxx;x þ ~rxz;z þ iky ~rxy þ sx

� �
;

_~vy ¼ q�1 ~rxy;x þ ~ryz;z þ iky ~ryy þ sy

� �
;

_~vz ¼ q�1 ~rxz;x þ ~rzz;z þ iky ~ryz þ sz

� �
;

ð3Þ

and

_~rxx ¼ c11 ~vx;x þ c15 ~vx;z þ c16 ~vy;x þ c14 ~vy;z þ c15 ~vz;x

þ c13 ~vz;z þ iky c16 ~vx þ c12 ~vy þ c14 ~vz

� �
;

_~rxy ¼ c16 ~vx;x þ c56 ~vx;z þ c66 ~vy;x þ c46 ~vy;z þ c56 ~vz;x

þ c36 ~vz;z þ iky c66 ~vx þ c26 ~vy þ c46 ~vz

� �
;

_~ryy ¼ c12 ~vx;x þ c25 ~vx;z þ c26 ~vy;x þ c24 ~vy;z þ c25 ~vz;x

þ c23 ~vz;z þ iky c26 ~vx þ c22 ~vy þ c24 ~vz

� �
;

_~rxz ¼ c15 ~vx;x þ c55 ~vx;z þ c56 ~vy;x þ c45 ~vy;z þ c55 ~vz;x

þ c35 ~vz;z þ iky c56 ~vx þ c25 ~vy þ c45 ~vz

� �
;

_~ryz ¼ c14 ~vx;x þ c45 ~vx;z þ c46 ~vy;x þ c44 ~vy;z þ c45 ~vz;x

þ c34 ~vz;z þ iky c46 ~vx þ c24 ~vy þ c44 ~vz

� �
;

_~rzz ¼ c13 ~vx;x þ c35 ~vx;z þ c36 ~vy;x þ c34 ~vy;z þ c35 ~vz;x

þ c33 ~vz;z þ iky c36 ~vx þ c23 ~vy þ c34 ~vz

� �
:

ð4Þ

Defining the wavefield vector and source vector as

~yðSÞ ¼ ~v; ~r1; ~r2ð ÞT; ~sðSÞ ¼ ðs; 0; 0ÞT;
~m ¼ ~mx; ~my; ~mz

� �T
; s ¼ q�1 sx; sy; sz

� �T
;

~r1 ¼ ~rxx; ~rxy; ~ryy

� �T
; ~r2 ¼ ~rxz; ~ryz; ~rzz

� �T
;

ð5Þ

then Eqs. (3) and (4) can be simplified to the

matrix form

_~yðSÞ ¼ AðSÞox~y
ðSÞ þ BðSÞoz~y

ðSÞ þ CðSÞ~yðSÞ þ ~sðSÞ; ð6Þ

which is valid for 2.5-D seismic wave modeling in

arbitrary elastic anisotropic media. The coefficient

matrices AðSÞ, BðSÞ, and CðSÞ are given in Appendix 1,

and the superscript ‘‘(S)’’ stands for the solid media,

which may be elastic isotropic and anisotropic.

2.2. Acoustic Medium

In a 3-D acoustic medium, the first-order govern-

ing equation of wave propagation is given by Landau

and Lifshitz (1959) as

_vx ¼ q�1ð�oxPÞ;
_vy ¼ q�1ð�oyPÞ;
_vz ¼ q�1ð�ozPÞ

ð7Þ

and

_P ¼ �Kðoxvx þ oyvy þ ozvzÞ þ sðtÞdðx� xsÞ; ð8Þ

where P is pressure, vi is velocity component, K is the

bulk modulus, q is density of the medium, and s(t) is

a point source at xs.

After taking the Fourier transform with respect to

the y-coordinate, Eqs. (7) and (8) become

_~vx ¼ q�1 �ox
~P

� �
;

_~vy ¼ q�1 �iky
~P

� �
;

_~vz ¼ q�1 �oz
~P

� �
;

ð9Þ

and

_~P ¼ �K ox ~vx þ iky ~vy þ oz ~vz

� �
þ sðtÞd x� xsð Þ: ð10Þ

Defining the wavefield vector and source vector as

~yðWÞ ¼ ~vx; ~vy; ~vz; ~P
� �T

; ~sðWÞ

¼ 0; 0; 0; sðtÞdðx� xsÞð ÞT ; ð11Þ

the combined matrix form of Eqs. (9) and (10)

becomes

_~yðWÞ ¼ AðWÞox~y
ðWÞ þ BðWÞoz~y

ðWÞ þ CðWÞ~yðWÞ þ ~sðWÞ;

ð12Þ

which is valid for 2.5-D seismic wave modeling in

arbitrary acoustic media; the coefficient matrices

AðWÞ, BðWÞ, and CðWÞ are given in Appendix 2. The

superscript ‘‘(W)’’ stands for an acoustic medium

such as water.

2.3. Free Surface of Acoustic Medium

On the free surface of an acoustic medium

(strictly speaking, it should be an air–fluid interface,

which can be approximated as a vacuum–fluid

interface in seismological applications), the pressure

P vanishes. Consequently, Eqs. (9) and (10) become

3002 S.-B. Yang et al. Pure Appl. Geophys.



_~vx ¼ q�1 �ox
~P

� �
;

_~vy ¼ 0;

_~vz ¼ q�1 �oz
~P

� �
;

_~P ¼ 0;

ð13Þ

which can also be written in matrix form as

_~yðAWÞ ¼ AðAWÞox~y
ðWÞ þ BðAWÞoz~y

ðWÞ þ CðAWÞ~yðAWÞ

þ ~sðWÞ;

ð14Þ

where the coefficient matrices are

AðAWÞ ¼
0 0 0 �q�1

0 0 0 0

0 0 0 0

0 0 0 0

0

BB@

1

CCA; BðAWÞ

¼

0 0 0 0

0 0 0 0

0 0 0 �q�1

0 0 0 0

0

BB@

1

CCA; CðAWÞ

¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0

BB@

1

CCA: ð15Þ

The superscript ‘‘(AW)’’ represents the free

surface of the acoustic medium. Comparing

Eqs. (15)–(71) reveals that Eq. (14) is a special case

of Eq. (12).

2.4. Free Surface of Elastic Medium

On the free surface of an elastic medium (strictly

speaking, it should be an air–solid interface, which

can be approximated by a vacuum–solid interface in

seismological applications), the normal component of

the stress vanishes,

r � n ¼ 0; ð16Þ

which means

rxxn1 þ rxyn2 þ rxzn3 ¼ 0;

rxyn1 þ ryyn2 þ ryzn3 ¼ 0;

rxzn1 þ ryzn2 þ rzzn3 ¼ 0:

ð17Þ

Here, n = (n1, n2, n3) is the normal vector of the

free surface. Equation (17) can be rewritten in matrix

form as

n1 n2 0 n3 0 0

0 n1 n2 0 n3 0

0 0 0 n1 n2 n3

0

@

1

A

rxx

rxy

ryy

rxz

ryz

rzz

0

BBBBBB@

1

CCCCCCA

¼ 0;

ð18Þ

which may be changed into the submatrix form

B2r2 ¼ �B1r1; ð19Þ

where

r1¼ rxx; rxy; ryy

� �
; r2¼ rxz; ryz; rzz

� �
; ð20Þ

B1 ¼
n1 n2 0

0 n1 n2

0 0 0

0

@

1

A; B2 ¼
n3 0 0

0 n3 0

n1 n2 n3

0

@

1

A:

ð21Þ

From Eq. (21), the inverse matrix of B2 and its

multiplication with B1 gives

S ¼ �B�1
2 B1 ¼ �

n�1
3 0 0

0 n�1
3 0

�n1n
�2
3 �n2n

�2
3 n�1

3

0

B@

1

CA

n1 n2 0

0 n1 n2

0 0 0

0

B@

1

CA

¼
�n1n

�1
3 �n2n

�1
3 0

0 �n1n
�1
3 �n2n

�1
3

n21n�2
3 2n1n2n

�2
3 n22n�2

3

0

B@

1

CA;

ð22Þ

so that we have

r2¼Sr1; ð23Þ

which shows that the stress component r2 can be

calculated from r1 with a known normal vector n,

and only the stress component r1 is independent.

Assuming that the free surface is given by

z = z0(x) and z0 is differentiable, one has the slopes

tga ¼ z00ðxÞ and the normal vector

n ¼ ð� sin a; 0; cos aÞ, which changes Eq. (22) to

S ¼
z00ðxÞ 0 0

0 z00ðxÞ 0

z00ðxÞ
2

0 0

0

@

1

A: ð24Þ

According to Eqs. (23) and (24), one may

calculate the following partial derivatives:
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_r2 ¼ S_r1;

oxr2 ¼ ðoxSÞr1 þ Sðoxr1Þ;
ozr2 ¼ Sðozr1Þ:

ð25Þ

Substituting Eq. (25) for (3) results in

_~vx ¼ q�1 ~rxx;x þ z00ðxÞ~rxx;z þ iky ~rxy þ sx

� �
;

_~vy ¼ q�1 ~rxy;x þ z00ðxÞ~rxy;z þ iky ~ryy þ sy

� �
;

_~vz ¼ q�1 z00ðxÞ~rxx;x þ z00ðxÞ
2 ~rxx;z þ ikyz00ðxÞ~rxy þ z000ðxÞ~rxx þ sz

h i
:

ð26Þ

From Eq. (4), we have

_~rxx ¼ c11 ~vx;x þ c15 ~vx;z þ c16 ~vy;x þ c14 ~vy;z þ c15 ~vz;x

þ c13 ~vz;z þ iky c16 ~vx þ c12 ~vy þ c14 ~vz

� �
;

_~rxy ¼ c16 ~vx;x þ c56 ~vx;z þ c66 ~vy;x þ c46 ~vy;z þ c56 ~vz;x

þ c36 ~vz;z þ iky c66 ~vx þ c26 ~vy þ c46 ~vz

� �
;

_~ryy ¼ c12 ~vx;x þ c25 ~vx;z þ c26 ~vy;x þ c24 ~vy;z þ c25 ~vz;x

þ c23 ~vz;z þ iky c26 ~vx þ c22 ~vy þ c24 ~vz

� �
:

ð27Þ

Defining the wavefield vector and the source

vector as

~yðASÞ ¼ ~vx; ~vy; ~vz; ~rxx; ~rxy; ~ryy

� �T
; ~sðASÞ

¼ q�1 sx; sy; sz; 0; 0; 0
� �T

; ð28Þ

we obtain the matrix form of Eqs. (26) and (27) as

_~yðASÞ ¼ AðASÞox~y
ðASÞ þ BðASÞoz~y

ðASÞ þ CðASÞ~yðASÞ

þ ~sðASÞ;

ð29Þ

where the coefficient matrices AðASÞ,BðASÞ, and CðASÞ

are given in Appendix 3. The superscript ‘‘(AS)’’

means the free surface of the elastic medium. Com-

paring Eqs. (28) and (29) with Eqs. (5) and (6) reveals

that Eq. (29) excludes the stress components ~r2 from
Eq. (6) due to the free-surface boundary condition of

Eq. (23), and only the stress components ~r1 and

velocity vector ~v are independent and need to be

solved from Eq. (29).

2.5. Fluid–Solid Interface

At a fluid–solid interface, e.g., a 2-D seafloor

defined by z ¼ z0ðxÞ where z0 is twice differentiable,

the boundary conditions include the continuity of the

normal stress and normal velocity vector, while the

tangential traction vanishes, i.e.,

~rðt; x; z0ðxÞÞ � n ¼ � ~Pðt; x; z0ðxÞÞ � n; ð30Þ

~vðSÞðt; x; z0ðxÞÞ � n ¼ ~vðWÞðt; x; z0ðxÞÞ � n; ð31Þ

and

~rðt; x; z0ðxÞÞ � sð1Þ ¼ 0;

~rðt; x; z0ðxÞÞ � sð2Þ ¼ 0;
ð32Þ

where ~r is the stress on the solid side, ~P is the

pressure on the fluid side, and the vectors ~vðSÞ and

~vðWÞ stand for the velocity vectors of solid and fluid at

the interface, respectively. Applying the slope tga ¼
z00ðxÞ of the interface, we have the tangential vectors

sð1Þ ¼
0

1

0

0

@

1

A; sð2Þ ¼
cos a
0

sin a

0

@

1

A: ð33Þ

Equation (32) implies

~rxy ¼ 0; ~ryy ¼ 0; ~ryz ¼ 0;

~rxx ¼ �z00ðxÞ~rxz; ~rxz ¼ �z00ðxÞ~rzz;
ð34Þ

which shows that only ~rzz is independent and that the

other nonzero components ð~rxx; ~rxzÞ depend on ~rzz

and z00ðxÞ. Applying Eqs. (34)–(30) gives

~rzz ¼
�1

1þ z00ðxÞ
2
~P: ð35Þ

This shows that the stress component ~rzz is

defined by the pressure on the fluid side. In the

particular case z00ðxÞ ¼ 0 (a flat interface), we have

~rzz ¼ � ~P and Eq. (34) shows that all the stress

components except for ~rzz vanish. Equation (35)

gives

_~P ¼ � 1þ z00ðxÞ
2

h i
~rzz: ð36Þ

For simplicity, considering no extra source at the

fluid–solid interface, we substitute Eqs. (4) and (14)

for (36) and obtain
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ox ~v
ðWÞ
x þ iky ~v

ðWÞ
y þ oz ~v

ðWÞ
z

¼ 1þ z00ðxÞ
2

K
ðc13; c36; c35Þ � ox~v

ðSÞ
h

þðc35; c34; c33Þ � oz~v
ðSÞþikyðc36; c23; c34Þ � ~vðSÞ

i
;

ð37Þ

which leads to

~vðWÞ
y ¼ 1þ z00ðxÞ

2

K
c36 ~v

ðSÞ
x þ c23 ~v

ðSÞ
y þ c34 ~v

ðSÞ
z

� �
;

ð38Þ

for any ky. Also, Eq. (31) gives

~vðWÞ
z ¼ z00ðxÞ ~vðWÞ

x � ~vðSÞx

� �
þ ~vðSÞz : ð39Þ

Equations (38) and (39) show that the water

velocity components ~v
ðWÞ
y and ~vðWÞ

z are not indepen-

dent and can be calculated from the solid velocity

vector ~vðSÞ ¼ ð~vðSÞx ; ~v
ðSÞ
y ; ~vðSÞz Þ and the x-component

~v
ðWÞ
x of the water velocity vector at the interface.

Substituting Eq. (37) for (4) results in

_~P ¼

� 1þ z00ðxÞ
2

� �
ðc13; c36; c35Þ � ox~v

ðSÞ þ ðc35; c34; c33Þ � oz~v
ðSÞ

h

þ ikyðc36; c23; c34Þ � ~vðSÞ
i
:

ð40Þ

In addition, employing Eqs. (34) and (35) for

Eq. (3), we have

_~vðSÞx ¼ q�1
S

�z
0

0ðxÞ
2

z
0
0ðxÞ

2 þ 1
ox

~P þ z
0

0ðxÞ
z
0
0ðxÞ

2 þ 1
oz

~P þ �z
0

0ðxÞz
00

0ðxÞ

z
0
0ðxÞ

2 þ 1
� �2 ~P

0

B@

1

CA;

_~vðSÞy ¼ q�1
S �z

0

0ðxÞ~rxy;z þ ~ryz;z

� �
;

_~vðSÞz ¼ q�1
S

z
0

0ðxÞ
z
0
0ðxÞ

2 þ 1
ox

~P þ �1

z
0
0ðxÞ

2 þ 1
oz

~P þ
z
00

0ðxÞ 1� z
0

0ðxÞ
2

� �

z
0
0ðxÞ

2 þ 1
� �2 ~P

0

B@

1

CA;

ð41Þ

where qS is the solid density. From Eq. (13), we also

have

_~vðWÞ
x ¼ q�1

W ð�ox
~PÞ; ð42Þ

where qW is the water density. By employing the

following wavefield vectors and a source vector on

the interface

~y WSð Þ ¼ ~vWS; ~P; ~rxy; ~ryz

� �T
;

~v WSð Þ ¼ ~v Wð Þ
x ; ~v Sð Þ

x ; ~v Sð Þ
y ; ~v Sð Þ

z

� �
;

~s WSð Þ ¼
0; 0; 0; 0; _s tð Þd x� xsð Þ; 0; 0ð ÞT; fluidð Þ

0; sx; sy; sz; 0; 0; 0
� �T

; solidð Þ

8
<

:
:

ð43Þ

Equations (38), (40), and (41) can thus be reduced

to the matrix form

_~yðWSÞ ¼ AðWSÞox~y
ðWSÞ þ BðWSÞoz~y

ðWSÞ þ CðWSÞ~yðWSÞ

þ ~sðWSÞ;

ð44Þ

where the coefficient matrices AðWSÞ, BðWSÞ, and

CðWSÞ are given in Appendix 4. After solving

Eq. (44), one can apply Eqs. (34), (35), (38), and

(39) to calculating the solid stress components

~rxx; ~rxz; ~rzzð Þ and the water velocity components

ð~vðWÞ
y ; ~vðWÞ

z Þ; respectively.

3. Numerical Methods

The previous section showed that the generalized

2.5-D time-domain first-order governing equations of

seismic waves in various media and at different

interfaces have the generalized concise matrix form

_~y ¼ Aox ~y þ Boz ~y þ C~y þ ~s; ð45Þ

where the wavefield vector ~y, source vector ~s, and the

matrices A, B, and C depend on the media and vary

from point to point. To better describe the undulating

surface topography, the curvilinear finite-difference

method is applied, enabling one to divide the geo-

logical model by curvilinear coordinates and the

body-conforming grid (Zhang & Chen, 2006) to

make the grid lines exactly match the free-surface

topography and undulating subsurface interfaces. The

first step of the curvilinear finite difference approach

is to map the curvilinear grids in physical space x; zð Þ
to the uniform rectangular grids in the computational

space n; gð Þ by coordinate transformations (Thomp-

son et al., 1985). Thus, Eq. (45) becomes
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_~y ¼ A1on ~y þ B1og ~y þ C1 ~y þ ~s; ð46Þ

where

A1 ¼ oxnðx; zÞ � Aþ oznðx; zÞ � B;
B1 ¼ oxgðx; zÞ � Aþ ozgðx; zÞ � B;
C1 ¼ C:

ð47Þ

The detail of the mapping from the curvilinear

coordinate to the Cartesian coordinates and the

method to obtain the derivatives oxnðx; zÞ; oznðx; zÞ;
oxgðx; zÞ and ozgðx; zÞ have been reported in literature

(Zhang & Chen, 2006; Sun et al., 2016; Sun &

Zhang, 2018; Yang et al., 2020), and z00 and z000 are

also calculated numerically by the finite-difference

method.

3.1. Spatial Differential Format

Hixon and Turkel (2000) applied the dispersion

relation preserving (DRP, Tam & Webb, 1993)

method to optimize the coefficients of the finite

difference operator and obtained a DRP/opt MacCor-

mack format in terms of low dispersion and

dissipation. Here, we adopt the DRP/opt MacCor-

mack finite difference formats to discrete Eq. (46);

e.g., the spatial derivatives with respect to n� and g�
axis can be approximated by the forward and

backward finite-difference operators (Hixon, 1997;

Hixon & Turkel, 2000)

LF
nð~yÞi ¼

1

Dx

X3

j¼�1

aj~yiþj;k;

LB
n ð~yÞi ¼

1

Dx

X3

j¼�1

�aj~yi�j;k;

LF
gð~yÞk ¼

1

Dz

X3

j¼�1

aj~yi;kþj;

LB
g ð~yÞk ¼

1

Dz

X3

j¼�1

�aj~yi;k�j;

ð48Þ

where Ln and Lg represent the spatial difference with

respect to the n� and g�axis, the subscripts i and k

are indices of the grid point, and the superscripts ‘‘F’’

and ‘‘B’’ denote forward and backward operators,

respectively. The coefficients are given by

a�1 ¼ �0:30874, a0 ¼ �0:6326, a1 ¼ 1:2330,

a2 ¼ �0:3334, and a3 ¼ 0:04168.

The spatial derivatives in Eq. (46) can be approx-

imated by the following forms if the DRP/opt

MacCormack differential formats are applied (Zhang

& Chen, 2006)

L̂FFð~yÞ ¼ ALF
nð~yÞ þ BLF

gð~yÞ þ Cð~yÞ;
L̂BBð~yÞ ¼ ALB

n ð~yÞ þ BLB
g ð~yÞ þ Cð~yÞ;

L̂FBð~yÞ ¼ ALF
nð~yÞ þ BLB

g ð~yÞ þ Cð~yÞ;
L̂BFð~yÞ ¼ ALB

n ð~yÞ þ BLF
gð~yÞ þ Cð~yÞ;

8
>>>>><

>>>>>:

ð49Þ

in which L̂FF, L̂BB, L̂FB, and L̂BF are 2-D DRP/opt

MacCormack differential operators.

The derivatives with respect to the g-axis on grid

points near the free surface (k2) and near the water–

solid interface (kn-2 and kn?2) are calculated by the

4–2 MacCormack differential operators,

LF
gð~yÞk ¼

1

Dz

X2

j¼0

aj~yi;kþj;

LB
g ð~yÞk ¼

1

Dz

X2

j¼0

�aj~yi;k�j;

ð50Þ

in which a0 ¼ �7=6, a1 ¼ 8=6, and a2 ¼ �1=6. The

model mesh is shown in Fig. 1. The derivatives with

respect to the g-axis on the grid near the free surface

(k1) and near the water–solid interface (kn-1 and

kn?1) are calculated by 2–2 MacCormack differential

operators, which are the simplest classical FD

operator,

LF
nð~yÞk ¼

1

Dz

X1

j¼0

aj~yi;kþj;

LB
n ð~yÞk ¼

1

Dz

X1

j¼0

�aj~yi;k�j;

ð51Þ

with coefficients a0 ¼ �1:0 and a1 ¼ 1:0.

For free-surface grids (k0) and acoustic wave

equation parameters on water–solid interface grids

(kn), the derivatives with respect to the g�axis are

calculated by one-sided differential operators,

Lgð~yÞk ¼
1

Dz

X1

j¼0

�aj~yi;k�j; ð52Þ

with coefficients a0 ¼ �1:0 and a1 ¼ 1:0, but for
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elastic wave equation parameters on water–solid

interface grids (kn), the derivatives with respect to the

g-axis are calculated by one-sided differential

operators,

Lgð~yÞk ¼
1

Dz

X1

j¼0

aj~yi;kþj; ð53Þ

with coefficients a0 ¼ �1:0 and a1 ¼ 1:0. The

derivatives with respect to the n-axis on these surface

and near surface grids are calculated by DRP/opt

MacCormack differential operators.

3.2. Time Integration Method

The fourth-order Runge–Kutta scheme is used to

update the wavefields (Hixon, 1997; Hixon & Turkel,

2000), which has low dispersion and dissipation. To

avoid numerical bias in each of the multistage

Runge–Kutta schemes, the order of the one-sided

difference operator is interchanged every step (Zhang

& Chen, 2006). The implementation of the DRP/opt

MacCormack scheme and the four-stage low-disper-

sion and low-dissipation Runge–Kutta scheme for

Eq. (46) is described below (Zhang et al.,

2012a, 2012b):

Time integration loop

(i) Sub time step 1:

h
ðnÞ
1 ¼ DtL̂FF ~ynð Þ;

h
ðnÞ
2 ¼ DtL̂BB ~yn þ a2h

ðnÞ
1

� �
;

h
ðnÞ
3 ¼ DtL̂FF ~yn þ a3h

ðnÞ
2

� �
;

h
ðnÞ
4 ¼ DtL̂BB ~yn þ a4h

ðnÞ
3

� �
;

~ynþ1 ¼ ~yn þ b1h
ðnÞ
1 þ b2h

ðnÞ
2 þ b3h

ðnÞ
3 þ b4h

ðnÞ
4 ;

ð54Þ

(ii) Sub time step 2:

h
ðnþ1Þ
1 ¼ DtL̂FB ~ynþ1

� �
;

h
ðnþ1Þ
2 ¼ DtL̂BF ~ynþ1 þ a2h

ðnþ1Þ
1

� �
;

h
ðnþ1Þ
3 ¼ DtL̂FB ~ynþ1 þ a3h

ðnþ1Þ
2

� �
;

h
ðnþ1Þ
4 ¼ DtL̂BF ~ynþ1 þ a4h

ðnþ1Þ
3

� �
;

~ynþ2

ð55Þ

(iii) Sub time step 3:

Figure 1
Model meshing illustration; the blue line (k0) and red line (kn) represent the free surface and fluid–solid interface, respectively
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h
ðnþ2Þ
1 ¼ DtL̂BB ~ynþ2

� �
;

h
ðnþ2Þ
2 ¼ DtL̂FF ~ynþ2 þ a2h

ðnþ2Þ
1

� �
;

h
ðnþ2Þ
3 ¼ DtL̂BB ~ynþ2 þ a3h

ðnþ2Þ
2

� �
;

h
ðnþ2Þ
4 ¼ DtL̂FF ~ynþ2 þ a4h

ðnþ2Þ
3

� �
;

~ynþ3 ¼ ~ynþ2 þ b1h
ðnþ2Þ
1 þ b2h

ðnþ2Þ
2 þ b3h

ðnþ2Þ
3 þ b4h

ðnþ2Þ
4 ;

ð56Þ

(iv) Sub time step 4:

h
ðnþ3Þ
1 ¼ DtL̂BF ~ynþ3

� �
;

h
ðnþ3Þ
2 ¼ DtL̂FB ~ynþ3 þ a2h

ðnþ3Þ
1

� �
;

h
ðnþ3Þ
3 ¼ DtL̂BF ~ynþ3 þ a3h

ðnþ3Þ
2

� �
;

h
ðnþ3Þ
4 ¼ DtL̂FB ~ynþ3 þ a4h

ðnþ3Þ
3

� �
;

~ynþ4 ¼ ~ynþ3 þ b1h
ðnþ3Þ
1 þ b2h

ðnþ3Þ
2 þ b3h

ðnþ3Þ
3 þ b4h

ðnþ3Þ
4 ;

ð57Þ

Stopping criteria.

End of time integration

In the above equations, The coefficients are

a1 ¼ 0, a2 ¼ 0:5, a3 ¼ 0:5, a4 ¼ 1, b1 ¼ 1=6,

b2 ¼ 1=3, b3 ¼ 1=3, and b4 ¼ 1=6. Note that this

DRP/opt MacCormack finite difference method

should satisfy the stability condition (Hixon &

Turkel, 2000)

Dt\0:93
Dh

cmax

; ð58Þ

where Dt is the time sampling rate, cmax is the max-

imum wave velocity of the model, and Dh is the grid

spacing

Dh ¼ cmin

2:5fcPPW
; ð59Þ

where cmin is the minimum wave velocity of the

model, fc is the center frequency of the source signal,

and PPW is the number of points per wavelength.

Numerical tests by Sun et al. (2016) showed that the

DRP/opt MacCormack scheme finite difference

method on curvilinear grids can be effectively

applied to nonflat free-surface models when PPW

exceeds 7.2.

3.3. Source and Absorbing Boundary Conditions

We apply a concentrated force source on the grid

point and use the Ricker wavelet as the source signal,

sðtÞ ¼ 1� 2p2f 2c ðt � t0Þ2
� �

exp �p2f 2c ðt � t0Þ2
� �

;

ð60Þ

for which a center frequency of fc ¼ 30Hz and a

delay time of t0 = 0.03 s are applied. Note that all the

time steps are 0.5 ms for the following numerical

tests, which satisfies the stability condition in

Eq. (58) for the medium used and the source function

has been added to the ~vz component for elastic media

(but could also be added to the ~vx or ~vy component).

To remove the artificial edge effects of the compu-

tational grid, we apply the generalized stiffness

reduction method (GSRM, Zhou et al., 2020), which

is applicable for various media, such as acoustic,

elastic isotropic, and anisotropic.

3.4. Inverse Fourier Transform

After solving Eq. (46), one obtains the ky-domain

wavefield solution ~yðsn; x; ky; zÞ at sn ¼ nDs. To

recover the complete spatial-domain wavefield vector

yðsn; x; y; zÞ, the inverse Fourier transform of the

solution ~yðsn; x; ky; zÞ must be implemented, i.e.

yðsn; x; y; zÞ �
2kc

y

Nky � 1
� �

p

XNky

m¼1

~y sn; x; km
y ; z

� �
ei km

y yð Þ;

km
y 2 �kc

y; kc
y

h i
:

ð61Þ

According to the definition of the wavefield vector

y, the components ð~vx; ~vy; ~vzÞ can be calculated by the

Green’s function tensor
_~Gsj, satisfying the symmetric

or antisymmetric property (Zhou et al. 2012),

_~Gsjðsn; x; ky; zÞ ¼ ð�1Þsþj _~Gsjðsn; x;�ky; zÞ ð62Þ

where s = 1, 2, or 3 stands for the source in the x, y,

or z direction, while j = 1, 2, or 3 stands for the

velocity component in the x, y, or z direction. Con-

sequently, the velocity components vsjðsn; x; y; zÞ are
calculated by
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vsjðsn; x; y; zÞ ¼
kc

y

Nky�1ð Þp
PNky

m¼1

~vsj sn; x; k
m
y ; z

� �
cos km

y y
� �

; ðs þ j ¼ ovenÞ;

kc
y

Nky�1ð Þp
PNky

m¼1

i~vsj sn; x; k
m
y ; z

� �
sin km

y y
� �

; ðs þ j ¼ oddÞ:

8
>>><

>>>:

ð63Þ

It is not difficult to show that the ky-domain

pressure ~Pðsn; x; ky; zÞ is always symmetric about the

xz-plane in an acoustic medium, so that the spatial-

domain pressure can be calculated by

Pðsn; x; y; zÞ ¼
kc

y

Nky � 1
� �

p

XNky

m¼1

~P sn; x; km
y ; z

� �
cos km

y y
� �

;

ð64Þ

where

kc
y ¼

p
Dx

; Nky ¼ Nx; ð65Þ

and Dx and Nx are the grid sampling distance and grid

number in the x-direction, respectively.

4. Verification by Analytic Solutions

To validate the proposed 2.5-D numerical method,

we first conduct three numerical tests for full-space

homogeneous models that have an analytical solution

(Appendix 5). In this way, we can examine how the

2.5-D numerical simulation effectively matches the

3-D analytical solutions in these media. To verify that

the 2.5-D method is more efficient than the 3-D

method, we also compare the 2.5-D numerical results

with 3-D numerical results obtained by using the 3-D

DRP/opt MacCormack finite difference method (Sun

et al. 2018) to solve the 3-D elastic wave equation

(Eqs. 1 and 2) and acoustic wave equation (Eqs. 7 and

8). The global measurement of a single-valued

envelop misfit (EM) and phase misfit (PM) developed

by Kristeková et al., (2006, 2009) is used to evaluate

the misfit between the 2.5-D FDM numerical solu-

tions and the reference solutions. Kristeková et al.

(2009) defined that misfit criteria EM\ 0.22 and

PM\ 0.2 indicate excellent levels while misfit cri-

teria EM\ 0.51 and PM\ 0.40 indicate good levels

of misfit.

The three full-space homogeneous models repre-

sent an acoustic, elastic isotropic, and elastic vertical

transversely isotropic (VTI) medium, respectively.

The model dimensions and grids are shown in Fig. 2,

in which the source and receivers are indicated by a

red star and blue triangles. These layouts of source

and receivers may not be applicable to seismic

Figure 2
Geometric illustrations of 2.5-D numerical simulations for a full space model, b, c free-surface acoustic/elastic isotropic and VTI models, and

d fluid–solid interface model. Red stars and blue triangles indicate source and receiver locations, respectively, and grid spaces are

Dx = Dz = 2 m

Table 1

Model parameters used for numerical experiments

Number Medium Density

(kg/m3)

Elastic moduli

(9 109 kg m-1 s-2)

1 Acoustic 1000 K = 2.25

2 Isotropic 2000 C11 = 18, C44 = 8

3 VTI-1 2000 C11 = 25, C44 = 10, C66 = 8

4 VTI-2 3000 C11 = 40.8, C13 = 13.2,

C33 = 50.6, C44 = 25,

C66 = 13.8
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practice, but they are helpful to illustrate the details

of the solutions. For the 3-D numerical tests, the

model size is 500 m� 500 m� 500 m, the model

slices at y = 0 are shown as Fig. 2a, and the receiver

and source locations are the same as in the 2.5-D

models. The independent model parameters of the

four media used are presented in Table 1. The rest of

the nonzero elastic moduli are calculated from these

independent model parameters; e.g., for the isotropic

medium, we have elastic parameters C12 = C13 =

C23 = C11 - 2C44, C22 = C33 = C11, and C55 =

C66 = C44, and for the VTI-1 medium we calculate

C12 = C11 - 2C66, C13 = C23 = C11–2C44, C22 =

C33 = C11, and C55 = C44, while for the VTI-2

medium we employ C12 = C11–2C66, C22 = C11,

C23 = C13, and C55 = C44.

Figure 3a shows the P-wave snapshot of the 2.5-D

wavefield solutions at time t = 0.14 s for the homo-

geneous acoustic model (model of Fig. 2a), from

which one can clearly see the P-wave in the wave-

fields. To verify the correctness of the 2.5-D

numerical solutions, we compare the P-component

synthetic seismograms (receiver location x = 100 m,

z = 100 m) generalized from the 2.5-D numerical

solutions with the 3-D analytic solutions and 3-D

numerical solutions (Fig. 3b), from which one can

observe that the synthetic seismogram of the 2.5-D

numerical simulation matches reasonably well with

the 3-D analytic solutions and 3-D numerical

solutions.

Figure 4a and b respectively show the Vx- and Vz-

component snapshots of the 2.5-D wavefield solu-

tions at time t = 0.09 s in the homogeneous elastic

isotropic medium, where the P- and S-wavefront are

clearly presented. Figure 4c, d shows a comparison of

the 2.5-D numerical solutions with the 3-D analytic

solutions and 3-D numerical solutions (receiver

location x = 100 m, z = 100 m) for the Vx- and Vz-

component, respectively, from which one can see that

the three solutions coincide with each other very well,

regardless of the 2.5-D and 3-D numerical solutions.

Such observations are similar to the case of the

homogeneous acoustic medium shown in Fig. 3

except for the presence of S-wave.

Figure 5a and b respectively show Vx- and Vz-

component snapshots of the 2.5-D wavefield solu-

tions at time t = 0.08 s for the homogeneous elastic

VTI-1 medium given in Table 1. Note that Fig. 5a, b

Figure 3
Snapshots of the compressed P-wave (a) of the 2.5-D wavefield

solutions at t = 0.14 s and comparison of the compressed P-wave

synthetic seismograms between the 3-D analytic solution, 3-D

FDM, and 2.5-D FDM numerical solutions (b) in the homogeneous

acoustic medium given in Table 1. The black star indicates source

location

Figure 4
Snapshots of Vx- (a) and Vz-component (b) of 2.5-D wavefield solutions at t = 0.09 s and comparison of the Vx- (c) and Vz-component

(d) synthetic seismogram between the 3-D analytic solution, 3-D FDM numerical solution, and 2.5-D FDM numerical solution for the

homogeneous elastic isotropic medium given in Table 1. The black star indicates source location
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does not show any cusp because we choose a simple

VTI model that has an analytic solution. Figure 5c

and d are similar to Fig. 4c and d except that they are

for the VTI model. Moreover, the quantitative com-

parisons of the waveforms of the 2.5-D FDM

numerical solutions and 3-D analytic solutions in

Table 3 (where columns 1–5 correspond to Figs. 3b,

4c, d, and 5c, d, respectively) indicate that both the

PM and EM of the comparisons are below 0.07 and

0.049, above the excellent level for the misfit criteria

(Kristeková et al., 2009). Therefore, these three tests

(homogeneous acoustic, elastic isotropic, and elastic

VTI-1 medium) verify the correctness of the pro-

posed 2.5-D numerical simulations. In addition,

Table 2 also provides a comparison of the CPU

memory cost and CPU running time for the 2.5-D and

3-D numerical simulations calculated on the same

CPU (Intel Xeon Gold 6248 CPU at 2.50 GHz). From

Table 2, it can be concluded that the CPU time and

computer memory used by the 2.5-D numerical

simulation are much less than those of the 3-D

numerical simulation, especially for computer mem-

ory. Because the 2.5-D method can calculate point

source solutions at 2-D memory cost and is easy to

parallelize, it is an economic method to obtain point

source numerical solutions for some specific geo-

logical models, such as sedimentary strata whose

attributes remain approximately unchanged along the

strike direction, in which case there is no need to use

the inefficient 3-D modeling method.

5. Tests for Interface Models

To verify the adaptability of the proposed 2.5-D

numerical simulation method to different models

including different interfaces, we selected four

models: three (acoustic, isotropic, and VTI medium)

flat free-surface models and one fluid–solid interface

model. We choose these flat free-surface models only

to provide a clear view of the wavefronts reflected

from the free surfaces. To verify that the proposed

2.5-D method is valid for the free surface, we com-

pared the 2.5-D numerical results with the 3-D

pseudospectral method (PSM) (Furumura et al.,

1998) for the three free-surface models. For the

acoustic and isotropic free-surface models, the source

is located at point (x = 500 m, z = 350 m) and 101

receivers are located equidistantly along the depth of

500 m (Fig. 2b). For the VTI free-surface model

(Fig. 2c), the source is located at point (x = 500 m,

z = 400 m), and 101 receivers are located equidis-

tantly at the depth of 800 m. For 3-D PSM numerical

Figure 5
Snapshots of the Vx- (a) and Vz-component (b) of the 2.5-D wavefield solutions at t = 0.08 s and comparison of the Vx- (c) and Vz-component

(d) synthetic seismogram between the 3-D analytic solution, 3-D FDM, and 2.5-D FDM numerical solutions in the homogeneous elastic VTI-

1 model given in Table 1. The black star indicates source location

Table 2

Comparison of CPU time and memory cost between the 2.5-D and

3-D numerical simulation methods in a homogeneous model

Acoustic Isotropic VTI-1

CPU time of 2.5-D method 3.571 h 6.484 h 6.486 h

CPU time of 3-D method 9.499 h 19.178 h 19.187 h

CPU memory of 2.5-D method 0.172 G 0.304 G 0.311 G

CPU memory of 3-D method 6.286 G 12.573 G 12.824 G
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modeling, the size of the three free-surface models is

1000 m 9 1000 m 9 1000 m, the model slice at

y = 0 m is shown in Fig. 2b for the acoustic and

isotropic model and in Fig. 2c for VTI model, and the

receiver and source locations are the same as in the

2-D models. For the water–solid interface model

(Fig. 2d), the first layer is acoustic, the second layer

is elastic VTI-1, the source is located at point

(x = 500 m, z = 300 m), and six receivers are located

along the vertical line at x = 300 m crossing the

interface. All the model parameters are presented in

Table 1.

Figure 6a, b shows snapshots of the Vx- and Vz-

component of the 2.5-D wavefield solutions at time

t = 0.4 s in the acoustic free-surface model. Fig-

ure 6c, d shows seismogram of the velocity

components at the line of receivers. From Fig. 6, one

can clearly see the direct P-wave and its reflection

from the free surface. Figure 7 shows a comparison

of two components of the synthetic seismograms

(receiver location: x = 300 m, z = 500 m) between

the 2.5-D FDM and the 3-D PSM numerical solutions

in an acoustic free-surface model. It is clearly seen

that the 2.5-D numerical solution matches well with

the 3-D PSM solution, regardless of the Vx- and Vz-

component synthetic seismograms. Figure 8 shows

2.5-D wavefield solutions in the elastic isotropic free-

surface model, which is similar to Fig. 6 except that

the snapshot time is 0.32 s. From Fig. 8 one can

observe six seismic phases that include the direct P

and S, reflected PP and SS, converted PS and SP

waves, identified by the numbers from 1 to 6. Fig-

ure 9 is similar to Fig. 7 except that it is for the

elastic isotropic free-surface model.

Figure 6
Snapshots of Vx- (a) and Vz-component (b) of the 2.5-D wavefield

solutions and the Vx- (c) and Vz-component (d) synthetic seismo-

grams of the 2.5-D wavefield solutions in an acoustic free-surface

model. The black star indicates source location

Figure 7
Comparison of Vx- (a) and Vz- (b) component synthetic seismograms between the 3-D PSM and 2.5-D FDM numerical solution in an acoustic

free-surface model

3012 S.-B. Yang et al. Pure Appl. Geophys.



Figure 10 shows 2.5-D wavefield solutions in the

elastic VTI free-surface model, which is similar to

Fig. 8 except that the snapshot time is 0.30 s. From

Fig. 10, one can find six seismic phases: direct qP and

qSV, reflected qPqP and qSVqSV, and converted

Figure 8
Vx- (a) and Vz-component (b) snapshots and Vx- (c) and Vz-

component (d) synthetic seismograms of the 2.5-D wavefield

solutions in an elastic isotropic free-surface model. In (c) the

numbers 1–6 indicate the direct P and S, reflected PP, converted SP

and PS, and reflected SS waves, respectively. The black star

indicates source location

Figure 9
Comparison of Vx- (a) and Vz-component (b) synthetic seismograms generalized between the 3-D PSM and 2.5-D FDM numerical solution in

an elastic isotropic free-surface model. In (a) the numbers 1–6 indicate the direct P and S, reflected PP, converted SP and PS, and reflected SS

waves, respectively

Figure 10
Vx- (a) and Vz-component (b) snapshots and Vx- (c) and Vz-

component (d) synthetic seismograms generalized by the 2.5-D

wavefield solutions in an elastic VTI free-surface model. In (c) the

numbers 1–6 indicate the direct qP and qSV, reflected qPqP,

converted qSVqP and qPqSV, and reflected qSVqSV wave,

respectively. The black star indicates source location
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qPqSV and qSVqP waves, which are indicated by

numbers from 1 to 6. Figure 11 is similar to Fig. 9

except that it is for a VTI free-surface model and the

receiver location is (x = 300 m, z = 800 m). From

Figs. 9 and 11, we reach a similar observation that the

2.5-D numerical solutions matches well with the 3-D

PSM solutions, regardless of the Vx- and Vz-

component synthetic seismograms. These seismic

waves exhibit anisotropic propagation in the VTI

medium, being quite different from the waves shown

in Figs. 8 and 9 that propagate at constant speed in all

directions. All these observations are similar to the

results for the previous two free-surface models. The

quantitative comparisons of the waveforms of the

2.5-D FDM numerical solutions and 3-D PSM

numerical solutions in Table 3 (where columns 6–11

correspond to Figs. 7a, b, 9a, b, and 11a, b, respec-

tively) indicate that both the PM and EM of the

comparisons are below 0.30 and 0.22, being better

than the good level for the misfit criteria (Kristeková

et al., 2009). Due to the difference not only between

2.5-D and 3-D methods, but also between FDM and

PSM, the errors between the 2.5-D FDM and 3-D

PSM solutions (Table 3, columns 6–11) are greater

than those between the 2.5-D FDM numerical solu-

tions and 3-D analytic solutions ( Table 3, columns

Figure 11
Comparison of Vx- (a) and Vz-component (b) synthetic seismograms generalized between the 3-D PSM and 2.5-D FDM numerical solution in

an elastic VTI free-surface model. In (a) the numbers 1–6 indicate the direct P and S, reflected PP, converted SP and PS, and reflected SS

waves, respectively

Table 3

Envelop misfit (EM) and phase misfit (PM) values for receivers

No. 1 2 3 4 5 6 7 8 9 10 11

EM 0.055 0.071 0.069 0.065 0.063 0.089 0.087 0.135 0.129 0.264 0.298

PM 0.032 0.048 0.049 0.04 0.041 0.138 0.146 0.222 0.213 0.153 0.158

Figure 12
Vx- and Vz-component snapshots of the 2.5-D wavefield solutions in

a fluid–solid interface model. The black star indicates source

location
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1–5), and in particular the error increases with time

(Figs. 7, 9 and 11).

Figure 12 shows snapshots of the Vx- and Vz-

component 2.5-D wavefield solutions at time

t = 0.28 s in the fluid–solid interface model.

Figure 13a and b respectively show the Vx- and Vz-

component synthetic seismograms at the three

hydrophones located in the fluid, where receivers 1–3

are located at points (x = 300 m, z = 200 m),

(x = 300 m, z = 300 m), and (x = 300 m,

Figure 13
Vx- (a, c) and Vz-component (b, d) synthetic seismograms at the three receivers located in fluid (a, b) and solid Earth (c, d) predicted by the

2.5-D simulation method
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z = 400 m), respectively, while Fig. 13c, d show the

corresponding synthetic seismograms at the three

hydrophones located in the solid Earth, where recei-

vers 4–6 are located at points (x = 300 m,

z = 600 m), (x = 300 m, z = 700 m), and

(x = 300 m, z = 800 m), respectively. From these

results, one can see that the three hydrophones loca-

ted in the fluid only receive two seismic phases, viz.

the direct P and the PP reflection, while the three

geophones located in solid Earth also pick up two

seismic phases but, different from the hydrophones,

one is the transmitted qP arrival and the other is the

transmitted qPqP and converted qPqS. In addition,

one can also see that the Vz-component of the fluid

and solid velocities is continuous at the interface, but

the Vx-components are different. This can be seen

Figure 14
Three-layered mixed (acoustic, elastic isotropic, and VTI-2) model

with the moduli presented in Table 1. The red star and yellow

triangles indicate source and receiver locations, respectively. The

undulating interfaces are generated by a sinusoidal function:

z ¼ z0 þ b0 sin x þ x0ð Þ=a0½ �; for the first interface, z0 = 300 m,

b0 = - 50 m, x0 = 100 m, a0 = 100; for the second interface,

z0 = 600 m, b0 = 50 m, x0 = 100 m, a0 = 100

Figure 15
Vx-component snapshots of the 2.5-D wavefield solutions in a mixed three-layer model at six different time steps. The black star indicates

source location
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from Eqs. 39, 41, and 42 with z
0

0 ¼ 0 (for a flat

interface).

6. Complex Model

To examine the capability of our proposed 2.5-D

numerical method for complex models, we selected a

mixed three-layer (acoustic, elastic isotropic, and

VTI-2) model having a fluid free surface and an

irregular fluid–solid interface (Fig. 14). The source is

located at point (x = 1000 m, z = 450 m), with three

receivers (Fig. 14) located in the acoustic medium

(x = 500 m, z = 200 m), the elastic isotropic medium

(x = 500 m, z = 500 m), and the VTI medium

(x = 500 m, z = 800 m); all the medium parameters

are presented in Table 1. Figures 15 and 16 respec-

tively show the Vx- and Vz-component snapshots of

the 2.5-D wavefield solutions in the mixed three-layer

model for six continuous time steps, from which one

can see clear reflection, conversion, transmission

waveforms and multiples. From the results at time

t = 0.12 s and 0.2 s given by Figs. 15 and 16, the

transmitted and converted P-waves show up in the

first layer (acoustic medium) when the P- and

S-waves pass through the fluid–solid interface, and

the converted qP- and qSV-waves go downward in

the third layer (VTI medium) as the P- and S- wave

pass through the solid–solid interface. From the

results at time t = 0.36 s to 0.52 s, the reflected

P-wave appears due to the arrivals of the upward

P-wave at the free surface in the first layer, and also

Figure 16
Vz-component snapshots of the 2.5-D wavefield solutions in a mixed three-layer model at six different time steps. The black star indicates

source location
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one can see clear multiples in the second layer from

the results at time t = 0.28–0.52 s. Figure 17 shows

the Vx- and Vz-component synthetic seismograms

predicted by the 2.5-D simulation method for

Figure 17
Vx- and Vz-component synthetic seismograms predicted by the 2.5-D simulation method for receiver located in the first layer (acoustic case, a,

b), second layer (isotropic case, c, d), and third layer (VTI case, e, f)
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receivers located in the first layer (acoustic case,

Fig. 17a, b), the second layer (isotropic case,

Fig. 17c, d), and the third layer (VTI case, Fig. 17e,

f). Similarly, we can observe the different arrivals at

the three differently located receivers.

7. Conclusions

A generalized 2.5-D first-order matrix-form wave

equation is established and solved using a high-order

finite-difference scheme. We demonstrate that the

wave equation is valid for various media and differ-

ent interface conditions. By defining different

wavefield vectors, assigning variable model parame-

ters from point-to-point to three coefficient matrices,

and employing a point source of either pressure or

force vector, 2.5-D seismic wave modeling in com-

plex geological models can be accomplished by a

single computer software. Our numerical results show

that the 2.5-D numerical solutions match reasonably

well with 3-D analytical solutions and also 3-D

numerical solutions in different media and display

correct responses to various interfaces. Such a 2.5-D

numerical simulation technique can be directly

employed as the forward modeling method for seis-

mic reverse-time migration and efficient full-

waveform inversion. The proposed 2.5-D numerical

technique may become an effective tool to simulate

3-D seismic wave propagation in 2-D geological

models and investigate the conversion of point source

data to line source data in different (acoustic, elastic

isotropic, and anisotropic) 2-D models which may

include a free-surface topography and fluid–solid

interfaces.
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Appendix 1: Coefficient Matrices for Elastic

Anisotropic Medium

Equations (3) can be rewritten in the following

form:

_~vx

_~vy

_~vz

0

B@

1
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Similarly, Eq. (4) becomes
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Accordingly, we obtain the following coefficient

matrices for Eq. (6):

AðSÞ ¼
0 M1 M2

S1 0 0
S4 0 0

0

@

1

A; BðSÞ
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0 0 M3

S2 0 0
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0
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0

@

1

A;

ð68Þ

where
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Appendix 2: Coefficient Matrices for Acoustic

Medium

We combine Eqs. (9) and (10) into the following

form:
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Consequently, we obtain the following coefficient

matrices for Eq. (12):
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Appendix 3: Coefficient Matrices for the Free Surface

of Elastic Medium

Combing Eqs. 26 and 27, we obtain
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We thus obtain the following coefficient matrices

for Eq. (29):
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Appendix 4: Coefficient Matrices for a Fluid–Solid

Interface

Combining Eqs. 40, 41, and 42, we obtain the

following form:
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We then obtain the following coefficient matrices

for Eq. 44:
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AðWSÞ ¼

0 0 0 0 �q�1
w 0 0

0 0 0 0
�q�1

s oxz2
0

oxz2
0
þ1

0 0

0 0 0 0 0 0 0

0 0 0 0
�q�1

s oxz0
oxz2

0
þ1

0 0

�K 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0

BBBBBBBBBBBB@

1

CCCCCCCCCCCCA

; BðWSÞ ¼

0 0 0 0 0 0 0

0 0 0 0
q�1

s oxz0
oxz2

0
þ1

0 0

0 0 0 0 0 �q�1
s oxz0 q�1

s

0 0 0 0
�q�1

s

oxz2
0
þ1

0 0

�Koxz0 Koxz0 0 �K 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0

BBBBBBBBBBBB@

1

CCCCCCCCCCCCA

; ð75Þ

CðWSÞ ¼

0 0 0 0 0 0 0

0 0 0 0
�2q�1

s oxz0oxxz0

ðoxz2
0
þ1Þ2 0 0

0 0 0 0 0 0 0

0 0 0 0
�q�1

s oxxz0ð1�oxz2
0
Þ

ðoxz2
0
þ1Þ2 0 0

0 �ikyðoxz20 þ 1Þc36 �ikyðoxz20 þ 1Þc23 �ikyðoxz20 þ 1Þc34 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0

BBBBBBBBB@

1

CCCCCCCCCA

: ð76Þ

3022 S.-B. Yang et al. Pure Appl. Geophys.



Appendix 5: Analytical Solutions in 3-D

Homogeneous Medium

The analytical solutions in homogeneous acoustic

media are given by

Fðr; tÞ ¼ IFFT i � w � RðwÞ � GðwÞð Þ; ð77Þ

where RðwÞ is the Fourier transform of the Ricker

wavelet function (Wang, 2015),

RðwÞ ¼ 2w2

ffiffiffi
p

p
w3
p

exp
�w2

w2
p

þ iwt0

 !

: ð78Þ

GðwÞ is the Green’s function in acoustic media

(Aki & Richard, 1980).

The analytical solutions in homogeneous isotropic

and VTI media are given by

vklðx; y; z; tÞ ¼ IFFT i � w � RðwÞ � Gklðx;wÞð Þ; ð79Þ

where wp is the domain frequency corresponding

to the maximum amplitude and t0 is the delay time.

IFFT the is fast inverse Fourier transform. Gklðx;wÞ is
an asymptotic Green’s function in homogeneous

anisotropic medium (Eq. 72, Vavryčuk, 2007).
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Kristeková, M., Kristek, J., Moczo, P., & Day, S. M. (2006). Misfit

criteria for quantitative comparison of seismograms. Bulletin of

the Seismological Society of America, 96(5), 1836–1850.
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