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Abstract—This paper presents the lightning activity, aerosol

optical depth (AOD) and climatic parameters (Bowen ratio, relative

humidity, rainfall, maximum surface temperature and maximum

updraft speed) over wet (Northeast India—NEI) and dry (North-

west India—NWI) land surfaces in a comparative analysis. The

analyses are performed on flash counts and weather data of

17 years (1998–2014) retrieved from the Tropical Rainfall Mea-

suring Mission (TRMM) lightning imaging sensors (LIS) and the

Moderate Resolution Imaging Spectroradiometer (MODIS),

respectively. The first higher peak for flash counts during pre-

monsoon (April–May) and second lower peak during September

over wet NEI and dry NWI regions indicate the development of

strong electrified storms during pre-monsoon and weakly electrified

clouds during the withdrawal phase of the southwest summer

monsoon. The monthly means of flash counts, Bowen ratio, max-

imum surface temperature, AOD and maximum updraft speed are

higher by 27, 81, 16, 50 and 16%, respectively, for NWI than those

of NEI. The relative humidity and rainfall are higher by 12% and

73% for NEI than those of NWI, respectively. The Pearson’s cor-

relation coefficients of lightning activity with climatic parameters

and AOD demonstrate the distinctive orographic lifting, moisture

content and vertical wind shear in the upper troposphere in the

regional climatic zone of dry NWI in comparison to that of wet

NEI.

Keywords: Lightning, rainfall, Bowen ratio, maximum sur-

face temperature, AOD.

1. Introduction

Lightning flash counts show on an average 78% of

the global lightning activity in the tropical belt (30� S

and 30� N) of Southeast Asia, Africa and South

America regions (Cecil et al., 2014; Price, 2008;

Turman & Edgar, 1982; Williams & Satori, 2004).

The relationship of lightning activity with different

weather parameters shows seasonal variations in

severity of convective storms from region to region

(Chate et al., 2017; Tinmaker et al., 2015; Williams,

1985). In tropical regions, lightning and associated

rainfall increase drastically with moisture content and

deep convection in which vertical air motion plays a

pivotal role in the development of thunderstorms

(Chate et al., 2017; Manohar & Kesarkar, 2003;

Tinmaker & Ali, 2012; Tinmaker et al., 2017). The

Bowen ratio (sensible heat flux to latent heat flux

ratio) is a climatic indicator of lightning intensity

over oceanic and continental regions (Brooks, 2013;

Brooks et al., 2003; Chate et al., 2017; Romps et al.,

2014; Tinmaker et al., 2017, 2019; Toumi & Qie,

2004). Lightning flash frequency is associated with

the instability in the troposphere (Radler et al., 2019).

The atmospheric instability for different regions is a

function of topography and weather-driven climatol-

ogy through net solar radiation fluxes on seasonal

scales. The convective available potential energy

(CAPE) is an important ingredient for the develop-

ment of seasonal clouds over different regions. It is a

measure of the maximum kinetic energy required for

lifting the air parcel adiabatically from the lowest

layer to the upper tropospheric layer (Brooks, 2013;

Romps et al., 2014). Higher CAPE leads to the

maximum updraft speed for charge separations in

thunderclouds which causes more lightning dis-

charges (Williams & Stanfill, 2002). The relation

between maximum updraft speed and CAPE is

Wmax =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � CAPE
p

(Tinmaker et al., 2017, 2019;

Westermayer et al., 2016; Williams & Stanfill, 2002).

Pickering et al. (1998) found that lightning frequency
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is a function of maximum updraft speed in thunder-

storm clouds. Barthe and Barth (2008) suggested use

of maximum updraft speed for estimating the light-

ning initiation capability of clouds. The aerosol

optical depth (AOD) is a measure of the hygroscopic

aerosol concentration for the cloud condensation

nuclei (CCN) as a function of relative humidity

(Chate et al., 2017; Grandey et al., 2013; Jin & Wang,

2018; Tao et al., 2012; Tinmaker et al., 2017; Wang

et al., 2011). Lightning involves complex interactions

between atmospheric and in-cloud processes; there-

fore, research into that phenomenon continues to

motivate researchers in this field. A large body of

publications from different geographical regions

demonstrates strong dependence of lightning activity

on the size of storms as a function of regional cli-

matic zones, land use/land cover (LULC) and

orography of terrains. The relationships of lightning

activity with the various atmospheric weather

parameters and aerosol loading using long-term data

are not reported for regional climatic zones of dif-

ferent LULC and topography in a comparative

analysis. For instance, wet (Northeast India—NEI)

and dry (Northwest India—NWI) are two regional

climatic zones of different LULC and topography.

This work analyses the flash count and weather

data of 17 years (1998–2014) retrieved from the

Tropical Rainfall Measuring Mission (TRMM)

lightning imaging sensors (LIS) and the Moderate

Resolution Imaging Spectroradiometer (MODIS),

respectively, for wet (NEI) and dry (NWI) regions.

The retrieved Bowen ratio, maximum surface tem-

perature, maximum updraft speed, relative humidity,

rainfall, lightning flash counts and AOD data provide

storm characteristics in wet (NEI) and dry (NWI)

regional climatic zones. The paper discusses the

variability of lightning activity changes as a function

of Bowen ratio, relative humidity, rainfall, maximum

surface temperature, maximum updraft speed and

AOD for wet (NEI) and dry (NWI) regions. Also,

Pearson’s correlation coefficients of lightning flash

counts with the weather parameters and aerosol

loading support the variability of lightning activities

in the wet (NEI) and dry (NWI) regions on seasonal

scales.

2. Domain of the Study

The study domain of different topographical

regions is shown in Fig. 1. The Northwest Indian

(NWI, a dry land) region (22� N–37� N, 72� E–

84� E) includes the Thar Desert which lies leeward of

the Aravalli Mountains, and thus NWI experiences

minimum rainfall. The Thar Desert is a large arid

region in NWI. The Northeast Indian (NEI, a wet

land) region (22� N–30� N and 87� E–98� E) is sur-

rounded by the Himalaya in the north, the Meghalaya

plateau in the south and the hills of Nagaland,

Mizoram and Manipur in the east. NEI experiences

higher frequency of lightning activity (Chakrabarty

et al., 2007; Guha & De, 2009; Ghosh et al., 2008;

Ray, 2000; Tinmaker & Ali, 2012). For the NEI

region, 80% of annual rainfall is linked to the light-

ning activity with annual thunderstorm frequency of

80 days (Desai, 1950; Dikshit & Dikshit, 2014; IMD,

1944; Kalita & Sarma, 2000; Rao et al., 1971; Tin-

maker & Ali, 2012).

3. Data and Methodology

The TRMM-LIS’s gridded (0.5� 9 0.5�—
55 km 9 55 km) monthly lightning flash count data

set for a period of 17 years (1998–2014) was

Figure 1
The study regions of Northwest India (NWI) and Northeast India

(NEI)
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retrieved from the NASA GHRC website (https://

lightning.nsstc.nasa.gov/nlisib/nlissearch.html) over

the NWI region (22� N–37� N, 72� E–84� E) and

NEI (22� N–30� N and 87� E–98� E) region (Chris-

tian et al., 1999; Boccippio et al., 2002; Schumacher

et al., 2004; Cecil et al.,2014; Chate et al., 2017;

Tinmaker et al., 2015, 2017, 2019). The data sets of

rainfall, relative humidity, AOD and Bowen ratio

were obtained from the MODIS website (https://disc.

sci.gsfc.nasa.gov/giovanni/). The maximum surface

temperature data were fetched from the ftp server of

the Indian Institute of Tropical Meteorology (ftp://

www.tropmet.res.in/pub/data/txtn/new-txregion.txt).

The CAPE data over NWI and NEI were downloaded

from the University of Wyoming’s website (https://

www.weather/uwyo.edu/upperair/sounding.html/).

The maximum updraft speeds were estimated from

Wmax =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � CAPE
p

(Williams & Stanfill, 2002).

The data analyses were carried out for the pre-mon-

soon (March–May), monsoon (June–September),

post-monsoon (October–November) and winter (De-

cember–February) over the period of 17 years

(1998–2014).

Karl Pearson’s measure for intensity of the linear

relationship between variables (series) x and y

denoted by r (x, y) or r or R is referred to as Pearson’s

correlation coefficient. If (xi, yi), i = 1, 2, 3………n

(n pairs of observations on variable x and y), where x

and y are the mean of x and y variables, then the

Pearson’s coefficient can be expressed as:

r ¼
1
n

P

n

i¼1

xi � xð Þ yi � yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

P

n

i¼1

xi � xð Þ21
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

yi � yð Þ2

s

v

u

u

t

The value of r always lies between ?1 and -1. If

the value of r is greater than 0 (positive correlation),

as the value of one variable increases, so does the

value of the other variable, while if r is less than 0

(negative correlation), as the value of one variable

increases, the other variable decreases. The values of

r of between -0.1 and -0.3, -0.3 and -0.5, and

-0.5 and -1.0 indicate weak, moderate and strong

negative correlation coefficients, respectively. On the

other hand, the values of r between 0.1 and 0.3, 0.3

and 0.5, and 0.5 and 1.0 refer to weak, moderate and

strong positive correlation coefficients, respectively.

For examining the existence of Pearson’s correlation

coefficient linear relationship between two variables,

the Z test expression is as below:

Z ¼ x1 � x2ð Þ � l1 � l2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
1

n1
þ r2

2

n2

� �

r ;

where l1 and l2 are hypothesized difference between

the population of variables, r1 and r2 are the stan-

dard deviations of the two variables, and n1 and n2 are

the number of observations.

4. Results and Discussion

Figures 2 and 3 show the monthly mean variation

of flash count, Bowen ratio, maximum surface tem-

perature and AOD over the period of 17 years

(1998–2014) for wet NEI and dry NWI regions. It is

seen from the Figs. 2 and 3 that the flash count,

Bowen ratio and maximum surface temperature show

their first higher peaks during pre-monsoon (April–

May) and that of AOD in July over NEI and NWI

regions, respectively. The monthly mean of flash

counts, Bowen ratio, maximum surface temperature

and AOD are found to be 27%, 81%, 16% and 50%

greater for the NWI region than those of the NEI

region, respectively (Fig. 2). Figures 2 and 3 shows

averaged flash counts higher for the dry NWI region

than that of the wet NEI region, while averaged

rainfall is higher for the wet NEI region than that of

the dry NWI region (Figs. 4, 5). The Bowen ratio is

found to be greater than 10 for the dry (NWI) region,

whereas it is less than 2 for the wet NEI region (Neog

et al., 2005; Shakeel et al., 2012). The results can be

attributed to the greater amount of heat released from

the surface to the atmosphere in the NWI region than

that of the NEI region. This is because of the higher

surface temperature in the NWI region than in the

NEI region. The warm moist air advection during

pre-monsoon season increases the lapse rate and

conditional instability for developments of severe

thunderstorm with high lightning activity over the

NEI region (Ghosh et al., 2008; Tinmaker & Ali,

2012). Figure 3 shows the peak lightning activity

during May was associated with induced lows over
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NWI (IMD, 1973). Figures 4 and 5 show the monthly

mean variation of flash count, maximum updraft

speed, relative humidity and rainfall for the period of

17 years (1998–2014) over NEI and NWI regions,

respectively. Also, Figs. 4 and 5 show the first higher

peaks for flash count and maximum updraft speed

during pre-monsoon (April–May), while for relative

humidity and rainfall, peaks appear in July over NEI

and NWI regions. The first higher peak for flash

count during pre-monsoon may be attributed to

orography of the terrain, supply of moisture from the

neighbouring Arabian Sea of the NWI region and the

Bay of Bengal of the NEI region, high aerosol load-

ing, maximum updraft speed, deep convection and

strong electrical charge centres, leading to more

lightning activity. All these factors play an important

role in the strong electrification process and hence

high lightning activity over NEI and NWI as evident

in publications from different geographical regions

(Middey & Kaware, 2016; Saunders et al., 1991;

Yuan & Qie, 2008) that demonstrate the strong

dependence of lightning activity on the size of

thunderstorm. The second lower peak of flash counts

during September over NEI and NWI regions can be

linked with the lower AOD owing to washout, lower

cloud top, minimum updraft speed, weak electrifica-

tion and hence lesser lightning activity.

Figures 4 and 5 show maximum updraft speed

16% greater over NWI than that over NEI, while

relative humidity and rainfall are 12% and 73%

higher, respectively, over NEI than over NWI. The

higher relative humidity leads to more concentrations

of cloud droplets, and maximum updraft speed results

in ice particle accumulations in the cloud top region

(Soula, 2009). The main charging region in a thun-

derstorm locates where temperature ranges from

-15� to -25 �C. The efficiency of the charge sepa-

ration mainly depends on relative humidity,

temperature and cloud particle distribution in the

storm. The larger the charge separation, the higher

the electrical potential field difference that causes

strong cloud electrification and subsequent lightning
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Monthly mean variation of flash count, Bowen ratio, maximum surface temperature and AOD over NEI for a 17-year period (1998–2014)
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activity (Berdeklis & List, 2001; Houze, 2014; Khain

et al., 2005; Rosenfeld et al., 2001; Shi et al., 2018;

Takahashi, 1978; Williams, 1988; Williams et al.,

2005). The minimum lightning flash counts observed

during monsoon season with a peak in September

over NEI and NWI (Figs. 4, 5) are possibly due to a

lower Bowen ratio (higher latent heat flux relative to

sensible heat flux). During active monsoon, less

aerosol loading (AOD) owing to the washout effect,

large moisture content and moderate updraft speed

limits the vertical development of storms. The cloud

droplets attain the size of raindrops in the storm with

weak cloud electrification and hence low lightning

activity (Kar & Ha, 2003; Middey & Kaware, 2016;

Rosenfeld et al., 2008; Soula, 2009; Yuan & Qie,

2008).

Figure 6a–c shows the Pearson’s correlations of

flash count with Bowen ratio, maximum surface

temperature and AOD with coefficients of

R = 0.84483 (R2 = 0.71056), R = 0.79487

(R2 = 0.62764), and R = 0.75029 (R2 = 0.55807),

respectively, over the NEI region. Figure 7a–c shows

the Pearson’s correlation of flash count with maxi-

mum updraft speed, relative humidity and rainfall

with coefficients of R = 0.66701 (R2 = 0.43867),

R = 0.70021 (R2 = 0.48549) and R = 0.58647

(R2 = 0.33444), respectively, over the NEI region.

Figure 8a–c presents the Pearson’s correlations of

flash counts with Bowen ratio, maximum surface

temperature and AOD with coefficients of

R = 0.95159 (R2 = 0.90448), R = 0.75354

(R2 = 0.56255) and R = 0.69392 (R2 = 0.47595),

respectively, over the NWI region. Also, Fig. 9a–c

shows the Pearson’s correlation of flash counts with

maximum updraft speed, relative humidity and rain-

fall with coefficients of R = 0.79985 (R2 = 0.63562),

R = 0.81527 (R2 = 0.66081) and R = 0.65471

(R2 = 0.42207), respectively, over the NWI region.

For both wet (NEI) and dry (NWI) regional climatic

zones, the Pearson’s correlation coefficients of flash

counts with weather parameters show significant

levels at 0.025 and a calculated z critical value of
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Monthly mean variation of flash count, maximum surface temperature and AOD over NWI for a 17-year period (1998–2014)
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1.96. The orographic lifting, moisture content, aero-

sol loading and vertical wind shear in the upper

troposphere differ in the wet (NEI) and dry (NWI)

regions. As a result, environmental conditions for the

development of storms and their characteristics in

these two regional climatic zones are entirely differ-

ent (Houze Jr et al., 2007; Koteswaram & Srinivasan,

1958; Rao, 1966; Medina et al., 2010; Romatschke

et al., 2010; Srinivasan et al., 1973). The cloud base

in the dry (NWI) climatic zone could be around

3–4 km altitude, while the cloud base may be at

* 1 km above ground in the wet (NEI) climatic

region. Furthermore, raindrops falling below the

storm in the dry (NWI) region frequently evaporate

before reaching the Earth’s surface, which leads to

dust-storm conditions and probably contributes to

aerosol loading (AOD). In summary, the storms in the

wet (NEI) region are responsible for heavy rain, hail

and severe squalls, while the thunderstorms in the dry

climatic region have higher lightning activity as

against those in the wet climatic region.

5. Conclusions

Comparative analysis of lightning activity over

climatologically different topographical regions of

dry land (NWI) and wet land (NEI) as a function of

Bowen ratio, relative humidity, rainfall, maximum

surface temperature, updraft speed and aerosol load-

ing (AOD) can provide an assessment of potential

natural hazards over regional climatic regions of

different LULC and orography. The capability of

aerosol loading for CCN and convective cloud for-

mations is also important. The major findings are

summarised below.

The monthly mean variation of flash count shows

that the first higher peak for flash count during pre-
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monsoon (April–May) can be linked to the maximum

surface temperature, higher Bowen ratio, aerosol

loading, strong convection, maximum updraft speed

and strong electrifications of thunderstorms over

distinct topographical regions of wet (NEI) and dry

(NWI) regions.

The second lower peak for flash count during

September over wet (NEI) and dry (NWI) regions

could possibly be owing to a decrease in AOD with

washout during active monsoon, low cloud base

height, moderate updraft speed, weakly electrified

storms and hence lower lightning activity.

The dry (NWI) region shows that the greater

lightning activity than that of the wet (NEI) region for

the analysed data of weather parameters over

17 years (1998–2014) relates to the distinct LULC

and topography of these regions of different climatic

characteristics.

The monthly means of flash counts, Bowen ratio,

maximum surface temperature and AOD are higher

by 27%, 81%, 16% and 50%, respectively, for the dry

(NWI) region than those of the wet (NEI) region. The

maximum updraft speed is higher by 16% for dry

NWI than that of wet NEI, while relative humidity

and rainfall are higher by 12% and 73%, respectively,

for wet NEI than that of dry NWI.

The good Pearson’s correlation coefficients evi-

dently support the regionally distinctive orographic

lifting, moisture content, aerosol loading and vertical

wind shear in the upper troposphere in dry NWI and

wet NEI regions. Thus, ease of development of

storms and their electrifications in wet NEI and dry

NWI climatic zones of different LULC and orogra-

phy are uniquely distinguishable for the possible

assessments of natural disasters in these regions.
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(a) (b)

(c)

Figure 6
Correlation coefficients of flash count with a Bowen ratio, b maximum surface temperature and c AOD over NEI for a 17-year period

(1998–2014)

1452 M. I. R. Tinmaker et al. Pure Appl. Geophys.



(a) (b)

(c)

Figure 7
Correlation coefficients of flash count with a maximum updraft speed, b relative humidity and c rainfall over NEI for a 17-year period

(1998–2014)
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(a) (b)

(c)

Figure 8
Correlation coefficients of flash count with a Bowen ratio, b maximum surface temperature and c AOD over NWI for a 17-year period

(1998–2014)
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