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Abstract—Full-waveform inversion (FWI) is a highly nonlin-

ear and ill-posed inverse problem, which needs proper

regularization to produce reliable results. Recently, sparsity and

overcompleteness have been successfully applied to seismic data

processing. In this study, we propose a novel adaptive sparsity-

promoting regularization for FWI which combines the L-BFGS

algorithm with an adaptive overcomplete dictionary learning

method. The dictionary is learned from many small imaging pat-

ches taken from the optimal velocity model that is obtained by

previous L-BFGS iterations. Our dictionary learning method tries

to exploit the 2D geometric structure of the training patches in a

more direct way and is simple to implement. We test our proposed

method on a smoothed Marmousi model, a BG Compass model,

and a SEG/EAGE salt model. Since total variation (TV) regular-

ization plays an important role in FWI, the inversion results using

the TV regularization method are also presented for comparison

purposes. From these experiments, we conclude that the proposed

method can achieve better performance than the FWI with the TV

regularization method.

Keywords: Full-waveform inversion, sparsity-promoting

regularization, overcomplete dictionary learning, total variation

regularization.

1. Introduction

Full-waveform inversion (FWI) is a popular

method for obtaining high-resolution seismic images

by estimating the physical parameters (Tarantola

1984; Pratt et al. 1998; Kumar et al. 2019). Recently,

the advancement of computational science has

enabled the application of FWI to increasingly com-

plex physics and multi-parameter problems, from

acoustic wave equations to the more complex aniso-

tropic (visco)elastic wave equations (Matharu and

Sacchi 2019; Huang et al. 2020; Oh et al. 2020). FWI

is still a challenging data-fitting procedure. It is

usually formulated as a nonlinear least squares opti-

mization problem. If the initial model is not

sufficiently accurate, it is difficult to obtain a global

optimal solution because of cycle-skipping. Most

important, FWI is ill-posed and under-determined,

which is sensitive to noise in data. One way to

address these problems is adding regularization to

guide the FWI toward to a reasonable solution.

The basis of a good regularization is the prior

expressed by the regularizer, which can be smooth or

non-smooth, non-adaptive or adaptive (data-driven)

(Aghamiry et al. 2020). Tikhonov regularization with

l2-norm penalty is one of the most well-established

methods that has been used widely in recent years.

While Tikhonov regularization is known to be simple

for use, it tends to produce overly smooth recon-

structions and is unable to preserve important model

attributes such as faults and other discontinuous

structures.

Recently, in the realm of seismic imaging and

inversion problems, l1-norm regularization methods

have been proved to be very successful with a mul-

titude of variants. Among them, TV regularization is

usually used to preserve sharp interfaces and obtain

non-smooth solutions, where edges and discontinu-

ities are reconstructed. Nowadays, several TV

regularization methods have been reported to return

more realistic discontinuous solutions in FWI (Yong

et al. 2018).

However, TV regularization still has limitations in

some respects (Chan et al. 2000). Specifically, the l1-

norm penalty of the gradient encourages the recovery

of a velocity model in a piecewise constant form,

which results in a reconstructed model with patchy or

painting-like staircase artifacts. Then, many variants1 School of Science, Dalian Maritime University, Dalian,
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of TV have appeared in some existing literature, such

as asymmetric TV constraint (Esser et al. 2018), total

generalized p-variation regularization scheme (Gao

and Huang 2019), and high-order TV regularization

scheme (She et al. 2019), etc. On the other hand,

Loris et al. (2007) regularized the velocity model in

the wavelet domain with a l1-norm penalty, allowing

sharp model discontinuities to be superimposed on a

smooth known background. Li et al. (2012) proposed

a modified Gauss–Newton method to solve the FWI

problem using the sparsity-promoting regularization

of the velocity perturbations in the curvelet domain,

and obtained a solution that preserves the smooth

component and accurately recovers both the locations

and magnitudes of the spiky perturbations. Based on

the ability of curvelets to sparsely represent geo-

physical models, Fu et al. (2020) proposed a new

accelerated proximal gradient algorithm for solving

the sparse optimization problem. Xue et al. (2017)

introduced a l1-norm sparse regularization

scheme with seislet transform to improve the accu-

racy and robustness of FWI.

All these approaches greatly improve the quality

of the inversion result by regularizing the sparsity of

the model parameters (or its perturbation) over a

carefully chosen transform domain. The basic idea is

that the search for model parameters can be com-

pactly expressed with a sparse set of expansion

coefficients over a predefined transform domain/dic-

tionary (Donoho 2006). Actually, restricting the

model to a few representation coefficients does not

necessarily lead to a geophysically plausible inver-

sion result, since the seismic velocity models usually

contain both smooth variations and sharp interfaces

(Aghamiry et al. 2020), and it is difficult to accu-

rately account for both of these two important

ingredients of model parameter variations using a

single specified basis. Hence, dictionary learning

methods from a set of training models/images have

attracted much attention, such as orthogonal dic-

tionaries (Bao et al. 2013) and overcomplete

dictionaries learned by the K-singular value decom-

position (K-SVD) algorithm (Aharon et al. 2006). For

example, Zhu et al. (2017) and Li and Harris (2018)

used orthogonal dictionary learning to improve the

robustness and efficiency of FWI. However, in most

settings, compared to orthogonal dictionary learning,

overcomplete dictionary learning can provide greater

flexibility in modeling as well as better robustness to

noise (see Lewicki and Sejnowski 2000; Elad 2010;

Huang et al. 2019 for details). In recent years, the

K-SVD method has been successfully utilized for

adaptively learning the overcomplete dictionary in

2D seismic denoising (Chen 2017). In a typical sce-

nario, the traditional patch-based dictionary learning

methods convert 2D image/model patches into 1D

vectors for further processing, thereby losing the

inherent 2D geometric structure of natural images.

Here a new overcomplete dictionary learning frame-

work for FWI application is constructed by using the

singular value decomposition (SVD) and a patch

clustering method, which leads to the improved

waveform inversion performance. The proposed dic-

tionary learning algorithm not only incorporates the

inherent 2D geometric structure of natural images

into the dictionary atoms, but also makes the learning

process easier and more direct.

In this paper, we develop a novel sparsity-pro-

moting regularization for FWI called ASRI-FWI

method. We combine the advantages of the L-BFGS

algorithm and overcomplete dictionary learning-

based l1-norm regularization to guide the inversion

process to obtain a satisfactory solution. In brief, our

ASRI-FWI method is an iterative reconstruction

process, which mainly consists of a conventional

FWI with the L-BFGS algorithm and an artifact

removal process with the sparse prior implemented

by overcomplete dictionary learning. Our dictionary

learning algorithm is inspired by ideas from Zeng

et al. (2015) and can be understood as a generalized

wavelet construction method. To be specific, we first

build a special tree structure to partition the set of our

velocity patches; the dictionary elements are then

determined by the obtained subset partitions in the

tree.

The remainder of this paper is organized as fol-

lows: in Sect. 2, we present the optimization problem

associated with the Helmholtz equation in the fre-

quency domain, and introduce the iterative method

for the reconstruction of the velocity model. Section 3

elaborates the design of the proposed ASRI-FWI

method in detail. In Sect. 4, the performances of our

proposed ASRI-FWI method are verified by
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extensive experimental results. Finally, conclusions

and possible future extensions are proposed in

Sect. 5.

2. Acoustic Full-Waveform Inversion

in the Frequency Domain

FWI aims to obtain high-resolution, high-fidelity

velocity models of the subsurface from measured

wavefield data, which can be formulated as a non-

linear least squares optimization problem

min
v
fJðvÞ :¼ 1

2
kFðvÞ � dk22g; ð1Þ

where Fð�Þ is the nonlinear forward modeling oper-

ator, the observed data d 2 CNrNs are acquired from

Nr receivers, Ns is the number of sources, the model

v 2 RNz�Nx is the acoustic velocity of interest, and Nx

and Nz are the number of grid points in the lateral and

vertical directions, respectively.

In the space-frequency domain, the operator FðvÞ
can be formally written RA�1ðvÞQ. Here, A�1ðvÞ is a
discretized 2D Helmholtz operator x2=v2 þr2 with

a perfectly matched layer (PML) boundary condition

for frequency x related to the source function Q, and

the operator R is a restriction of the solution of the

Helmholtz equation to the surface where the data are

recorded.

Since the observed wavefield data depend non-

linearly on the velocity parameters, the optimization

problem (1) must be performed iteratively. Obvi-

ously, we can apply any gradient-like method, such as

the conjugate gradient method, the steepest descent

method, or quasi-Newton method, to solve this opti-

mization problem. In this work, we use the L-BFGS

algorithm (a popular quasi-Newton algorithm) as an

important part for the ASRI-FWI method, due to its

high precision and low storage requirement. Besides,

the FWI problem is ill-posed and requires regular-

ization to stabilize the solution.

3. Proposed Method

3.1. ASRI-FWI Method

Similar to the work of Bao et al. (2018), our FWI

method consists of two nested loops.

In the inner loop step, we adopt the L-BFGS

algorithm (Nocedal and Wright 2006; Byrd et al.

1995) to solve the optimization problem (1). For

given initial model v0, the velocity parameter is

updated as follows

vjþ1 ¼ vj � sjHjgj; ð2Þ

where the step length sj is computed by a line search

that satisfies the weak Wolfe conditions, the vector gj

is the gradient of the objective function JðvÞ, and the

symmetric and positive definite matrix Hj denotes an

approximation to the inverse Hessian. Note that L-

BFGS employs the model and gradient changes from

the most recent iterations to estimate the Hessian

matrix, which is cheaper on time. In our implemen-

tation, the computation of the gradient gj is

accomplished by using the adjoint-state method

(Plessix 2006).

The outer loop step is to obtain an artifact-reduced

result by using sparsity-promoting regularization with

overcomplete dictionary learning, where the esti-

mated result v̂ from the L-BFGS algorithm is taken as

a degradation model. Then, we consider the following

constrained optimization problem

min
D;X

kv� v̂k2F; subject to v ¼ DX; kxik0\T0; 8i;

ð3Þ

where k � kF represents the Frobenius norm of a

matrix, D is referred to as the dictionary matrix, X

denotes the matrix of the corresponding sparse

coefficient vectors xi, k � k0 denotes the l0-norm that

counts the nonzero entries of a vector, and T0 is a

constant that controls the number of nonzero entries

in xi. Obviously, the full dictionary learning can be

achieved by updating the dictionary D and then

iteratively computing the sparse matrix X.
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3.2. Dictionary Learning

A learning-based overcomplete dictionary can

usually provide better sparse approximation proper-

ties (Beckouche and Ma 2014; Liu et al. 2018).

Nowadays, the learned dictionaries from patch-based

representation have been widely used for various

signal and image processing problems, i.e., seismic

data denoising, image deblurring, inpainting, etc. (see

Liu et al. 2018; Mairal et al. 2014; Bruckstein et al.

2009, and references therein). In this research, we

want to use dictionary learning to construct an

overcomplete dictionary.

In FWI scenarios, we first define a patch extrac-

tion operator Ei : R
NzNx ! R

ffiffiffi

m
p

�
ffiffiffi

m
p

, such that

Eiv̂ ¼ Pi 2 R
ffiffiffi

m
p

�
ffiffiffi

m
p

, i ¼ 1; 2; . . .; n (total number of

patches), where Pi corresponds to a
ffiffiffiffi

m
p

�
ffiffiffiffi

m
p

image

patch (2D) in the estimated velocity. In practice, the

overlapping image patches of size
ffiffiffiffi

m
p

�
ffiffiffiffi

m
p

are

extracted with a shift of S spatial grids, and one can

employ periodic boundary conditions for mathemat-

ical convenience. All the patches are arranged into a

set, denoted by fP1;P2; . . .;Png, that then serves as a

training set. As is shown below, the elements of the

dictionary are constructed in the form of patches Dk

(k ¼ 1; 2; . . .;K), such that dk ¼ vecðDkÞ are the

columns (atoms) of D. Each dictionary atom Dk is

the linear combination of low-rank approximation of

a suitable mean matrix, which is averages of subsets

of Pi subsets with nonlocal similarity. This method

lets us incorporate 2D geological features into the

dictionary that cannot be simply found by using only

the vectorized training patches.

An overcomplete dictionary D is a matrix of

dimension m � KðK [mÞ, which contains K column

vectors or atoms of size m. In fact, an overcomplete

dictionary is not unique, and different dictionary

learning methods use different algorithms to solve the

optimization problems in Eq. (3). K-singular value

decomposition (K-SVD) is one of the greatest

potential dictionary learning algorithms (Aharon

et al. 2006), and it has been successfully used to

learn the adaptive sparse dictionary in seismic

denoising. However, K-SVD is very time-consuming

(Liu et al. 2017). Here, we employ a top-bottom two-

dimensional subspace partition (TTSP) algorithm

(Zeng et al. 2015; Liu et al. 2018) for obtaining an

overcomplete dictionary D. The main steps of the

TTSP algorithm are described as follows:

1. Create the partition tree. First, we construct a

root node that includes all the training patches

fP1;P2; . . .;Png, and define the two non-

symmetrical covariance matrices

Lcov ¼
1

n

X

n

i¼1

ðPi � CÞðPi � CÞT ;

Rcov ¼
1

n

X

n

i¼1

ðPi � CÞTðPi � CÞ;
ð4Þ

where C ¼ 1
n

Pn
i¼1 Pi. Note that Lcov and Rcov

have the same eigenvalue. Then, we compute the

normalized maximum eigenvectors u and w of

Lcov and Rcov,

u ¼ arg max
kyk2¼1

yTLcovy;

w ¼ arg max
kyk2¼1

yTRcovy
ð5Þ

representing the main structures of the velocity

patches not being captured by the mean matrix

C. Using u and w, we can compute the one-

dimensional projection representations of all

image patches si ¼ uTPiw; i ¼ 1; . . .; n, and sort

these numbers from smallest to largest, denoted

by fsl1 ; sl2 ; . . .; slng. As a measure of similarity

between the training patches, these numbers are

used to partition the set of fP1;P2; . . .;Png into

two partial sets. For this purpose, we compute

k̂ ¼ argmin
1� k� n�1

X

k

i¼1

sli �
1

k

X

k

j¼1

slj

 !2
2

4

þ
X

n

i¼kþ1

sli �
1

n � k

X

n

j¼kþ1

slj

 !2
3

5:

ð6Þ

Using this k̂, the partition fPl1 ; Il2 ; . . .;Plk̂
g and

fPlk̂þ1
;Plk̂þ2

; . . .;Plng are obtained. And the depth

of the node is added one simultaneously. Once

the number of velocity patches in this child node

is less than the row number or column number of

the velocity image patches, we will stop further

partitioning. Let K be the total number of nodes

in a binary tree.
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2. Determine the dictionary. Now, for each leaf

node k of the partition tree, i.e., for each subset

of training patches fPigi2Kk
, where Kk �

f1; 2; . . .; ng is the subset of indices of these

training patches, the mean matrix is computed by

Ck ¼
1

jKkj
X

i2Kk

Pi: ð7Þ

Then, compute the normalized eigenvectors uk

and wk to the maximal eigenvalue of CT
k Ck and

CkC
T
k , k ¼ 1; 2; . . .;K. Let kk be the maximal

singular value of the mean matrix Ck, then

kkukw
T
k is the best rank-one approximation of the

mean matrix Ck. Hence, we initialize the first

dictionary element

eD1 ¼ u1w
T
1

ð8Þ

describing the main structure of the mean matrix

C ¼ C1. That is, we get the first layer sub-dic-

tionary. Then, for each pair of children nodes

with index sets K2k and K2kþ1 from the same

parent node, we define

eDk ¼ k2ku2kw
T
2k � k2kþ1u2kþ1w

T
2kþ1;Dk ¼

eDk

keDkkF

;

ð9Þ

thereby describing the difference of main struc-

tures of C2k and C2kþ1. Once Dk is calculated for

all nodes, the final dictionary D ¼
½d1; d2; . . .; dK � is determined, where

dk ¼ vecðDkÞ 2 Rm. Figure 1 shows the process

for dictionary learning by the TTSP algorithm.

By construction, our dictionary learning method

can be regarded as a generalized wavelet approach,

where the dictionary elements Dk for k [ 1 are

‘‘wavelet functions’’ and D1 is a ’’scaling function’’.

In the TTSP algorithm, the partition to the subsets of

image patches is used to implement the nonlocal

similarity prior. It can be seen that the TTSP

algorithm is used to quickly top-bottom divide each

leaf node into the left child and right child by the best

rank-1 approximation of the mean (center) matrix

pair. While the traditional K-SVD algorithm is an

iterative method, which has the disadvantages of

large calculation quantity and low accuracy (Zhou

et al. 2014). Nonetheless, the point here is that a

noisy result from L-BFGS is used to learn the

dictionary. Using the TTSP algorithm, the inversion

for stronger noise levels is still not satisfactory. To

get around this limitation, the artifact-reduced step is

not employed at every L-BFGS iteration, but rather,

we perform several iterations for each L-BFGS step.

For given (noisy) training data P ¼
½p1; p2; . . .; pn� 2 Rm�n and D ¼ ½d1; d2; . . .;
dK � 2 Rm�K , Eq. (3) can be formulated as

min
X2RK�n

kP� DXk2F þ kkXk0; ð10Þ

where the columns pi ¼ vecðPiÞ 2 Rm are the vec-

torized velocity patches, and k is a regularization

parameter. Greedy algorithms such as matching pur-

suit (MP) (Mallat and Zhang 1993) and orthogonal

matching pursuit (OMP) (Donoho et al. 2012) can be

used to find sparse representation of Eq. (10).

Because of its faster convergence speed in empirical

observations, we use OMP to find the sparse coeffi-

cient matrix X ¼ ½x1; x2; . . .; xK �T 2 RK�n, such that

the set of velocity patches P̂ ¼ ½p̂1; p̂2; . . .; p̂n� is

sparsely represented by DX.

Next, we use ET
i : R

ffiffiffi

m
p

�
ffiffiffi

m
p

! RNzNx to denote

placing patch P̂i back into the corresponding position

of the reconstructed velocity image. Then, the

dictionary learning-based denoising model can be

expressed as

~v ¼
X

n

i¼1

ET
i P̂i=

X

n

i¼1

ET
i 1

ffiffiffi

m
p

�
ffiffiffi

m
p ; ð11Þ

where the operator / denotes the element-wise divi-

sion of two vectors, and 1 ffiffiffim
p

�
ffiffiffi

m
p is an all-ones matrix

of the same size as P̂i.

3.3. Implementation Details

Above all, our inversion method is composed of

two main parts: the L-BFGS algorithm and sparsity-

promoting regularization. We summarize the pseudo-

code of our ASRI-FWI method in algorithm 1.

Vol. 178, (2021) Adaptive Overcomplete Dictionary 415



The ASRI-FWI algorithm stops if the objective

function JðvÞ decrease is small enough (6 1� 10�4),

or the relative change of the velocity model is less

than 1� 10�3 between consecutive iterations, that is,

kevlþ1 � evlk=kevlk\1� 10�3. In practice, we can

also terminate the inverse computation when the

maximum number of iterations L of the outer loop

reaches a pre-defined value. An appropriate choice of

regularization parameter k which controls the degree

of sparseness is very important for all sparsity-pro-

moting regularization. It is not the main mission here

to delve into this issue, and we will choose a single

value k ¼ 1� 10�1 manually, which proves suffi-

cient, for all the numerical results obtained by the

proposed ASRI-FWI method.

4. Experiment

In this section, we present some inversion results

that verify the performance of the proposed ASRI-

FWI method. In all the experiments, we create noisy

observed data by adding 5% white Gaussian noise,

because noise is unavoidable in field seismic data. To

make it fair, we handle the FWI with TV regular-

ization (denoted as the TV-FWI method for

convenience) using the same acquisition geometry as

ASRI-FWI. And the TV-FWI method is also carried

out by using the L-BFGS algorithm in the frequency

domain. To be specific, the TV-FWI solution can be

recovered by solving the following optimization

problem

min
v
fJTVðvÞ :¼

1

2
kFðvÞ � dk22 þ akrvk1g; ð12Þ

where a is a regularization parameter, for which

values of the order of 10�3 work well.

To improve convergence and avoid trapping to

local minima, all waveform inversions are performed

sequentially in 12 overlapping frequency bands on

the interval 2.9–26 Hz. In our computation, the

parameters of ASRI-FWI are set as follows: we per-

form J ¼ 10 iterations for each L-BFGS step, the

sliding distance S is set to 6, the minimal number of

velocity patches in a subset corresponding to one

node is set to 16, and the patch size is 8� 8, which

means that m ¼ 64. In the following experiments, the

number of iterations of the outer loop is set to L ¼ 4,

and TV-FWI method runs for 40 iterations, so this

helps to ensure a fair comparison between both

inversion methods.

All the experiments are conducted in MATLAB

2017a environment on a desktop PC with a quad-core

processor at 3.20 GHz and 16 GB of RAM. The peak

signal-to-noise ratio (PSNR), structural similarity

(SSIM), root-mean-square error (RMSE) and running

time duration are used to quantitatively evaluate the

performance of the FWI methods.

4.1. Marmousi Model

In this experiment, the Marmousi velocity model

in Fig. 2a is used for numerical tests. The velocity

model is discretized over a Nz � Nx ¼ 260� 819 grid

with a spacing of 4 m. We put Ns ¼ 77 sources and

Nr ¼ 231 receivers near the surface, and both sources

and receivers are evenly distributed in the horizontal

direction. To ensure convergence of the iterative

scheme, the starting model (see Fig. 2b) is obtained

by smoothing the original velocity model with a

416 H. Fu et al. Pure Appl. Geophys.



Gaussian kernel of varying widths. The inversion

results are shown in Fig. 2c, d. In both cases, the

uppermost and the low-velocity region of the Mar-

mousi velocity model are reconstructed reasonably

well. However, the velocity magnitudes and edges in

the deeper part of the model are significantly

improved by making use of the proposed ASRI-

FWI method.

Figure 3 shows the comparison of depth velocity

profiles (the Marmousi model) of the two inversion

results. We also observe that the ASRI-FWI method

reconstructs both the smooth variations and sharp

interfaces more accurately. Compared to the TV-FWI

method, the increase in running time caused by the

dictionary learning step is not significant (see

Table 1). From Table 1, it is clear to observe that

our method achieves the much better performance for

all quantitatively evaluate metrics (PSNR, SSIM and

RMSE).

4.2. BG Compass Model

In the second example, we test our method on a

part of the BG Compass synthetic benchmark model.

The true velocity is depicted in Fig. 4a. This model is

rescaled to Nz � Nx ¼ 205� 701 with a spacing of

10 m. We place 64 sources and 192 receivers, all

regularly spaced along the top of the velocity model.

Figure 4b shows the initial model without any lateral

information, where the velocity magnitudes increase

linearly with depth. The results for the TV-FWI

method and our method are shown in Fig. 4c, d,

respectively. A comparison of vertical velocity

profiles at different locations on the horizon is given

in Fig. 5. The quantitative evaluation of the BG

Compass model is given in Table 1.

We make the following observations from these

visual effects and performance metrics. First, com-

pared with the TV-FWI method, our proposed

method not only improves the clarity of the inversion

image, but also preserves more detail information.

Second, consistent with the visual effects, our

Figure 1
The process for dictionary learning by the TTSP algorithm
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approach has the best test scores for all metrics, and

the improvements are very satisfying, but the com-

puting time is almost the same as the TV-FWI

method.

4.3. SEG/EAGE Salt Model

We finally apply our method to the 2D SEG/

EAGE salt model. The dimensions of the model are

640 m � 1280 m, with grid spacings of 5 m, which is

shown in Fig. 6a. The model is composed of an

isolated salt dome and several faults. The lower and

upper bounds of velocity are 1500 m/s and 4500 m/s,

respectively. The initial model is shown in Fig. 6b.

The data is generated for 31 equispaced sources and

93 receivers on the surface.

In general, the salt structure is one of the most

challenging objects to recover, particularly when

given a poor initial estimate. Although the initial

estimate is rather poor, the reconstruction deteriorates

only slightly compared with that of the two previous

examples. If we examine the inversion results

(Fig. 6c, d) carefully, at certain places, such as the

area represented by the rectangular box, the TV-FWI

results have spurious thin layers, while our method

maintains the edges better. The comparison of the

vertical velocity profiles of the two inversion results

(a)

(c)

(b)

(d)

Figure 2
Inversion results of the Marmousi model

Figure 3
The vertical velocity profiles extracted from the Marmousi model
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is shown in Fig. 7. The quantitative results are shown

in Table 1. In addition, we would like to mention that

the proposed method cannot promise to overcome the

local minimum problem, but it can be largely

alleviated. Due to the presence of the salt body, the

FWI results tend to have undesirable artifacts even

Table 1

Quantitative performance results of the algorithms applied to various models

Models Methods Initialization Final results

PSNR SSIM RMSE PSNR SSIM RMSE Run times(s)

Marmousi model TV 19.26 0.63 0.11 21.73 0.75 0.08 4802.80
ASRI 23.90 0.80 0.06 4980.20

BG model TV 12.73 0.26 0.23 15.46 0.55 0.17 3069.68
ASRI 19.14 0.69 0.11 3103.63

SEG/EAGE salt model TV 7.53 0.46 0.42 11.61 0.51 0.28 203.21
ASRI 12.02 0.54 0.25 215.34

The bold values represent the best value among the comparison results

Figure 5
The vertical velocity profiles extracted from the BG Compass

model

(a)

(b)

(c)

(d)

Figure 4
Inversion results of the BG Compass model
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when the initial velocity is good. In particular, the

deeper part of the estimated model tends to have

incorrect results. As a regularization technique, our

proposed approach can be used together with other

FWI strategies to further improve the accuracy and

the convergence speed.

Further, in order to investigate the sensitivity of

the patch size (
ffiffiffiffi

m
p

�
ffiffiffiffi

m
p

) and sliding distance S,

multiple experiments are performed. The 2D SEG/

EAGE salt model is selected as the test model. We

note that the inversion results are less sensitive to

these parameters as long as the learned dictionary is

overcomplete.

5. Conclusion

Despite the rapid development of waveform

inversion technique, the ill-posedness inherent of

FWI is still a major problem in this field. In this

paper, we propose a novel adaptive dictionary

learning-based sparsity-promoting regularization for

FWI called the ASRI-FWI method. In the inversion

procedure, we use the estimated result (as training

patches) from L-BFGS iterations to teach the dic-

tionary and employ the learned dictionary to guide

(a)

(b)

(c)

(d)

Figure 6
Inversion results of the SEG/EAGE salt model

Figure 7
The vertical velocity graphs extracted from the SEG/EAGE salt

model
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the inversion in the current iteration. Compared with

the traditional TV regularization method, our method

effectively reduces the degrees of freedom in velocity

parameters to be inverted and eliminates undesirable

artifacts and preserves significant details and struc-

tural information of model parameters. The

introduction of the overcomplete dictionary learning

process may also alleviate the problem of local

minima in FWI to some extent, but not completely.

Yet another important problem is the computational

cost. The computational cost of our ASRI-FWI

method is higher than the traditional TV-FWI

method, mainly because of the nested loop steps and

the extra operations related to adaptive dictionary

learning: extraction of patch, construction of the

partition tree, determination of the dictionary from

the partition tree, and sparse approximation calcula-

tion. Further work is required to study a more

efficient choice of optimal parameters, using parallel

computing techniques to accelerate the computation,

and the most important is to test this approach for the

elastic multi-parameter FWI problems, 3D FWI, and

real geophysical inversion problems.
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