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Abstract—This work proposes a new approach, based on

Bayesian updating and extreme value statistics to determine the

maximum magnitudes for truncated magnitude-frequency distri-

butions such as the Gutenberg Richter model in the framework of

Probabilistic Seismic Hazard Analyses. Only the maximum

observed magnitude and the associated completeness period are

required so that the approach is easy to implement and there is no

need to determine and use the completeness periods for smaller

events. The choice of maximum magnitudes can have a major

impact on hazard curves when long return periods as required for

safety analysis of nuclear power plants are considered. Here, not

only a singular value but a probability distribution accounting for

prior information, data and uncertainty is provided. Moreover,

uncertainties related to magnitude frequency distributions, includ-

ing the uncertainty related to the maximum observed magnitude are

discussed and accounted for. The accuracy of the approach is

validated based on simulated catalogues with various parameter

values. Then the approach is applied to French data for a specific

region characterized by high-seismic activity in order to determine

the maximum magnitude distribution and to compare the results to

other approaches.

Keywords: Maximum magnitude, extreme value, bayesian

updating, simulation, earthquake catalogue, uncertainty.

1. Introduction

Probabilistic Seismic Hazard Assessment (PSHA)

has the goal to evaluate annual frequencies of

exceeding a given ground motion intensity measure.

For this purpose, it is necessary to describe occur-

rence rates of earthquakes and the distribution of their

magnitudes. In the classical PSHA (Cornell 1968),

the hazard integral is evaluated for magnitudes in the

range mmin andmmax, where mmax is the maximum

magnitude that can be expected for a given area and

mmin is the minimum magnitude of relevance for

engineering structures (Bommer and Crowley 2017).

The most popular distribution of magnitudes fre-

quencies is the Gutenberg-Richter (Gutenberg and

Richter 1944) truncated exponential distribution.

Numerous studies and applications showed that the

GR distribution is a good choice to model the dis-

tribution of magnitudes over a wide magnitudes

range. The maximum magnitude mmax is then the

upper value used to truncate the GR model. The

justification of the choice of mmax only from physics

or simple statistics is not straightforward. The largest

observed earthquake in a specified area provides an

unarguable lower bound on mmax in the area. How-

ever it is difficult to estimate the upper bound of the

mmax because the physical reasons why earthquake

rupture stops are still poorly understood. The choice

of maximum magnitudes can have a major impact on

the hazard curve when long return periods, as

required for safety analysis of NPP (e.g.,

10,000 years or longer), are considered.

There are essentially three types of approaches

that have been pursued in the past to determine the

maximum magnitude mmax(see e.g. the review in

Wheeler 2009). The simplest method is purely

empirical and consists in adding an increment (e.g.,

0.5 magnitudes units) to the largest magnitude

observed in the zone or region of interest. The

physical approach consists in considering fault

geometry, and length and possibly paleo-seismicity to

deduce information on the energy that could be

released (see also Zöller and Holschneider 2016). In

addition, deformation rates from geodetic data and

long-term tectonic deformation are gaining increased
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interest for the determination of maximum magni-

tudes (e.g. Anderson 1979; Main and Burton 1984;

Moravos et al. 2003; Rong et al. 2017; Stevens and

Avouac 2017). Alternatively, the theory of statistics

of extremes has been applied in engineering seis-

mology since the early ‘fifties’ by different authors

such as Nordquist (1945), Epstein and Lomnitz

(1966) and Knopoff and Kagan (1977) to estimate

maximum magnitudes. The developments concern

both the estimation of mmax of the truncated GR

distribution and the direct estimation of the tails of

the magnitude distribution by the Generalized

Extreme Value (GEV) and Pareto distributions.

Burton and Makropoulos (1985) express the distri-

bution of maximum magnitude by an extreme value

distribution of Weibull type that has an upper bound

to be estimated. The authors use no prior information

so the uncertainty in the maximum magnitude is very

large. Pisarenko and Sornette (2003) and Pisarenko

et al. (2008, 2014) study the more general framework

of GEV and Pareto distributions applied to earth-

quake magnitudes distribution and mmax.

From a theoretical point of view, extreme value

statistics show that the GEV distribution is the limit

distribution of the maximum of a series of indepen-

dent random variables with same distribution under

the condition of appropriate normalization. However,

the scarcity of data in low seismicity regions can

make it difficult to apply the latter statistical methods.

On the other hand, it is well known that the maximum

likelihood estimator (MLE) of the mmax is biased

(Kijko 2004, 2012). The maximum likelihood esti-

mate corresponds to the maximum of the likelihood

function which is always equal to the highest

observed magnitude mmaxobs. As the number of

observed earthquakes and thus the sample size

increases it becomes more and more likely that

mmaxobs is the true mmax and the likelihood function

gets more and more concentrated around this value.

In consequence, the estimator converges with

increasing the sample size N to the ‘‘true’’ value, but

from below. This means that the estimated mmax is

always below the true value which is why the esti-

mator is called biased. To overcome this drawback,

Kijko (2012) developed a bias correction. The

derivation of the correction term is however based on

a couple of simplifying assumptions.

Zöller et al. (2016) and Holschneider et al.

(2014) argue that the modeling context of a doubly

truncated GR law allows for the inference of the

maximum possible magnitude only if unrealistically

large catalogs are available. Zöller et al. (2013)

suggest replacing it by the maximum expected

magnitude on a particular time horizon, for which

confidence intervals can be computed from an

earthquake catalog in the framework of Gutenberg–

Richter statistics. This approach has been recently

applied to evaluate maximum expected magnitudes

for Iran (Salamat et al. 2019). It has to be pointed

out that the distribution of the maximum magnitude

on a time horizon has a fundamentally different

meaning than the estimation of the mmax in the

truncated GR law. First, for determining the maxi-

mum magnitude in a time horizon in the framework

of the GR law, it is still necessary to estimate the

truncation of the GR law or, else, to work with the

untruncated GR law. The latter however leads to

very large expected magnitudes for large time

horizons such as considered in probabilistic risk

assessment in the nuclear sector. Secondly, in con-

trast to the distribution of the mmax used to truncate

the GR law, the distribution of the maximum mag-

nitude on a time horizon does not represent

epistemic uncertainty but aleatory variability (each

of the maximum magnitudes could happen to be the

maximum value over one such time interval, with

different probabilities of occurrence). This has to be

taken into account when choosing for example a

deterministic design value, such as the 95% non-

exceedance value on the time horizon.

The work presented here focuses on the estima-

tion of mmax distributions that could be used to

propagate epistemic uncertainty in the framework of

PSHA. For this purpose we develop a new approach

based on Bayesian updating that allows to tackle

most of the problems discussed above. It allows for

the combination of different sources of information,

and to overcome the problem of bias of the simple

MLE. The Bayesian updating approach to estimate

maximum magnitudes of the doubly truncate GR

law has been initially proposed by Cornell (1994)

(also referred to as EPRI-1994) for stable tectonic

regions such as the Central and Eastern United

States (CEUS). The development of the prior

5644 I. Zentner et al. Pure Appl. Geophys.



distributions relies on drawing analogies with tec-

tonically comparable regions so as to obtain a larger

dataset (Cornell 1994). The Bayesian approach has

been applied in several PSHA projects worldwide,

using the prior distributions developed for CEUS

(e.g., USNRC (2012) in the framework of the seis-

mic-source characterization for nuclear facilities in

CEUS; Bommer et al. (2015) for the Thyspunt NPP

in South Africa, Grünthal et al. (2018) in the

national PSHA for Germany by Wiemer et al.

(2016) in the national PSHA for Switzerland).

Recently Martin et al. (2017) and Drouet et al.

(2020) applied the Bayesian approach for PSHA in

France using priors specifically developed for the

target region (Ameri et al. 2015).

We develop here an improved version of the

Bayesian updating approach allowing for more

accurate estimates while accounting for uncertainty

in the likelihood function.

It is noteworthy that the Bayesian updating

approach for estimation of mmax has also been blamed

for producing results that are biased to low values

(e.g. Kijko 2012). The authors however consider only

the mode of the posterior as the point estimate of

mmax, (similar to the Maximum Likelihood solution),

which leads to the bias. Here we use the full posterior

distribution in the application of the Bayesian

approach for the mmax estimation and we consider the

posterior mean, sometimes called the ‘‘Bayes esti-

mator’’, which is known to be a better point estimator

for mmax than the mode (see e.g. Jaynes 2007). We

show by means of simulated catalogues, that, when

assuming the truncated GR distribution for the sim-

ulated magnitudes, it is possible obtain a meaningful

estimate of mmax based on available data. Several

case studies presented in USNRC (2012) confirm that

the Bayesian posterior does not display any signifi-

cant bias.

Finally we present an application to the French

territory by considering appropriate prior distribu-

tions (Ameri et al. 2015) and a recently compiled

national earthquake catalogue that includes histori-

cal and instrumental periods (Manchuel et al.

2017).

2. Methodology

2.1. Distribution of Extreme Magnitudes

Extreme value statistics provide mathematical

methods and tools for the law of extremes defined by

the tails of probability distributions. By the extreme

value theorem, the GEV distributions is the only

possible limit distribution of properly normalized

maxima of a sequence of independent and identically

distributed random variables.

Let us consider a sequence of n random variables

X1;X2; . . .;Xn with common cumulative density

function (cdf) F xð Þ and the random variable

Mn ¼ maxfX1;X2; . . .;Xng ð1Þ

The cdf of the maxima Mn of the sequence is then

simply expressed as:

P Mn\xð Þ ¼ FðxÞn: ð2Þ

However, the function F xð Þ is generally not

known. Moreover, small errors on the quantity F xð Þ
can lead to important errors in the product FðxÞn. An
alternative consists in the direct estimation of the

quantity FðxÞn. It can be shown that for large n and

when choosing appropriate normalizing constants an,

bn (see e.g. Coles 2001) we have: PðMn�bn
an

\zÞ !
GðzÞ where

G zð Þ ¼ exp � 1þ n
z� l
r

� �h i�1=n
� �

ð3Þ

represents the family of GEV distributions, with

parameters l; r[ 0 and n that have to be determined.

The parameters l and r define localization and scale.

The parameter n is called the ‘‘shape parameter’’

since it determines to which of the three possible

families of extreme value distributions the variable

belongs.

For earthquake recurrence, if the truncated GR

distribution or any other frequency-magnitude distri-

bution is assumed, then the cdf F xð Þ is known and the

extreme value distributions can be derived

analytically.

Under the assumption of Poissonian occurrence,

as assumed in standard PSHA, the theorem of total

probabilities allows writing the probability that all
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magnitudes, observed over a time horizon s, are less

than m as:

G mð Þ ¼
X1
k¼0

k0sð Þk

k!
e�k0s FM mð Þ½ �k;

¼ exp �k0sð1� FM mð ÞÞ½ � ð4Þ

where k0 is the annual rate of earthquakes and FM mð Þ
is the cdf of magnitudes. Equation (4) expresses the

cumulative density function of maximum magnitudes

over the period s, called G mð Þ. The corresponding

probability density function (pdf) reads:

g mð Þ ¼ dGðmÞ
dm

¼ f M mð Þk0sexp �k0sð1� FM mð ÞÞ½ �

ð5Þ

where f M mð Þ is the pdf of magnitudes. It is possible

to derive the distribution of maxima accounting for

the truncated GR law with upper bound mmax and

lower boundmmin. In this case, we obtain the fol-

lowing expression for mmin �m�mmax:

G mð Þ ¼ exp �k0s
exp �bmmaxð Þ � exp �bmð Þ

exp �bmmaxð Þ � exp �bmminð Þ

� �� 	

ð6Þ

where we have written k0 for the annual rate of

earthquakes with magnitude larger than mmin and b
represents the b-value of the GR law (ratio between

earthquakes with large and small

magnitude):b ¼ blnð10Þ.
The maximum likelihood estimator for mmax in

Eqs. (4)–(6) is biased as explained above. The

Bayesian updating allows for a more robust and

globally unbiased estimation as we show in what

follows.

2.2. Bayesian Updating of Extreme Value

Distribution

In what follows, we first give a general descrip-

tion of the Bayesian updating approach. We then

show different ways to construct the likelihood

function based on the extreme value distribution

and conclude with the proposed approach (Sect. 2.3).

Afterwards (Sect. 2.4), the EPRI-1994 Bayesian

updating procedure (Cornell 1994) is described and

advantages of the new method proposed here are

highlighted.

The Bayes theorem allows us to write the

posterior distribution of the maximum magni-

tudemmax, denoted f mmax obsjð Þ, as a product of the

prior distribution f 0ðmmaxÞ and the likelihood:

f mmax obsjð Þ ¼ cL obs mmaxjð Þf 0ðmmaxÞ ð7Þ

with an appropriate normalizing constant c. In this

expression, the likelihood function L obs mmaxjð Þ
expresses the probability to observe the data (denoted

by ‘‘obs’’), given the model parameter mmax. In order

to apply the Bayesian updating we have to consider a

suitable prior distribution. For the maximum magni-

tude, EPRI-1994 proposes to develop prior

distributions of mmax based on the statistical analysis

of a catalogue of earthquakes that occurred globally,

within regions with similar tectonics and geological

configurations to the target region. Obviously, if the

data available for the Bayesian update is scarce, then

the posterior distribution is close to the prior such that

the prior has a major impact on the estimation. We

anticipate here that the studies conducted here in this

work for French data showed that the available

observations drive the estimations and have a sig-

nificant impact on the estimates.

2.3. Different Ways to Express the Likelihood

Function Based on the Distribution of Extremes

The data required to construct the likelihood

functions is the observed mmaxobs and the duration T

(duration of catalogue). The likelihood functions are

defined based on the extreme value distributions for

Poissonian occurrences using the Eqs. (4) for the

cdf and (5) for the pdf. If the GR law is assumed,

then cdf yields Eq. (6). Nevertheless, any other

magnitude distribution parameterized by mmax could

be used in the likelihood functions developed

below.

The first two functions (Eqs. (8) and (9)) are

applicable only if mmaxobs is included in the complete

part of the catalogue, with completeness period T and

is not a paleo-event.

5646 I. Zentner et al. Pure Appl. Geophys.



(Ia) Probability to Observe m maxobs on the

Interval T (Completeness Period of mmaxobs)

Lðobs mmaxj Þ ¼ gðmmaxobs mmaxj Þ ð8Þ

(Ib) Probability to Observe a Set of mmax_ti on n

Time Intervals
Pn

i¼1ti

Lðobs mmaxj Þ ¼
Y

ti
gðmmax ti mmaxj Þ ð9Þ

The two cases (Ia) and (Ib) are illustrated in Fig. 1

for a subset of the French catalogue, where the

magnitudes are plotted as a function of the year of

observation (more details will be provided in Sect. 4).

On Fig. 1a, the maximum over the whole time

interval is considered to construct the likelihood

function of Eq. (8) while on Fig. 1b a separation in

smaller time intervals is considered to construct the

likelihood given by Eq. (9).

The parameters that define the likelihood function

are the durations and the values of the maxima over

this time interval. Numerical analyses showed that

the result is the same if the catalogue is partitioned

into equal intervals and the block maxima are used or

if the maximum observed over the whole duration of

completeness is considered. This is also the conclu-

sion of Zöller and Holschneider (2016). Additional

information on past earthquakes is only helpful to

constrain the parameters of the seismicity model, for

example, the GR parameters a and b. Moreover, if the

largest magnitude per interval is larger than the

completeness magnitude of the considered time

interval, then no special consideration of complete-

ness is required, otherwise approach 1b cannot be

applied directly.

In conclusion, the duration T together with

mmaxobs should be chosen (point 1 a) above) to

construct the likelihood function since the complete-

ness interval for mmaxobs is generally rather large. This

approach requires the determination of the complete-

ness period of mmaxobs only, without considering the

issue of completeness for smaller events. The signif-

icant duration for the analyses is then the

completeness period of mmaxobs, T(mmaxobs). Since

the catalogue it is complete for magnitudes higher

than mmaxobs, we know that no larger event occurred

during that period.

However, in some cases, the maximum observed

earthquake might be outside the completeness period

of the catalogue, such as for paleo-earthquakes. In

this case, the likelihood function of relation (8) is not

applicable, nor the likelihood function given by

relation (9). In this case, we can still use the

constraint that the largest magnitude in the time

Figure 1
Illustration of methods I a) (left) and I b) (right) for the construction of the likelihood function. The year of completeness for mmaxobs is

assumed to be 1600
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interval T is less than mmaxobs. This is the approach

developed in what follows and recommended for

further applications.

(II) Probability that m < mmaxobs on Interval T

(Completeness Period for mmaxobs)—Proposed

Approach

Since mmaxobs is the largest earthquake observed in

the zone, we know that all other earthquakes

observed over the period T of the catalogue are less

or equal than this value. We use this information to

write the likelihood function as the probability that

the largest magnitude in the time interval T is less

than mmaxobs:

Lðobs mmaxj Þ ¼ Gðmmaxobs mmaxj Þ ð10Þ

Equation (10) is the most general approach and

can be applied even if mmaxobs is outside considered

completeness interval T.

This is illustrated in Fig. 2 where the maximum

magnitude occurred before 1600 which is considered

as completeness period for magnitude 6 and above in

this example. The method does not require any

special consideration of completeness periods as long

as mmaxobs is in the completeness period of the

duration T and this is generally the case. It can be

used if mmaxobs is outside the considered duration

T(mmaxobs) of the catalogue. This formulation of the

likelihood will be adopted in the following

applications.

In what follows, we present the EPRI (Cornell

1994) approach and highlight the advantages of the

new method proposed here.

2.4. EPRI Method

Cornell (1994) has developed a Bayesian updating

approach where the likelihood function expresses the

probability that all magnitudes in a set of N

observations are less than mmaxobs. This method has

been promoted by EPRI and is also the recommended

USNRC (2012) approach. The likelihood function

reads:

Lðobs mmaxj Þ ¼ FMðmmaxobsÞN ð11Þ

It is noteworthy that this expression (no excee-

dance for N observations) is close to the expression

used to derive the GEV given by Eq. (3).

Using the equation for the GR law, we obtain

L obs mmaxjð Þ ¼ FM mmaxobsð ÞN

¼ c
0 mmax �mmaxobs
1

ðe�bm0�e�bmmax ÞN
else

(

ð12Þ

where the constant c depends on mmaxobs and m0 is

the chosen low-magnitude threshold (m0=4.5 in

EPRI-1994). The data used for the EPRI-1994

method is illustrated in Fig. 3.

The EPRI-1994 Bayesian updating approach uses

only the number of observations between m0 and

mmaxobs and does not explicitly account for duration

over which the N observations are made.The period

over which these earthquakes can be considered in

the updating depends on their completeness periods.

This approach is applied to events in the complete-

ness period of m0 where the total number of non-

exceedances is known, and to magnitudes in the

completeness intervals for larger events. This is

illustrated in Fig. 3 where the violet dots represent

events with magnitudes lager than m0 in the com-

pleteness period of m0 and the black lines indicate the

completeness intervals for larger events. When

applying the EPRI method, then all events above

the black curves are considered.The method proposed

here, based on expression (10), is a more rigorous

application of extreme value statistics. Since it

Figure 2
Illustration of approach II) for the construction of the likelihood

function. mmaxobs can be outside the completeness interval. The

year of completeness for mmaxobs is assumed to be 1600
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associated the largest observed magnitude to its

completeness period, it leads to smaller confidence

intervals and a more accurate estimate. It is referred

to as the improved likelihood function in what

follows.

3. Validation with Simulated Catalogues

3.1. Convergence and Accuracy of Bayesian

Updating Approach

First of all, we apply the methodology to simu-

lated catalogues for an assessment of the accuracy

and the convergence of the estimation for given

periods of observation. For the simulated catalogues,

we chose values for the GR parameters that are close

to those of the French most active regions. The

parameters assumed for the truncated GR law

parameters used to simulate the catalogues are:

mmin = 4.5, b = 0.79, k0 = 0.8. The mmax value

depends on the study cases. We use the prior

distribution for French active zones developed by

Ameri et al. (2015) with the following characteristics

(see also Drouet et al. 2020):

• Truncated normal distribution

• mean Mw = 6.8, std = 0.4

• upper truncation at Mw = 7.5, lower truncation at

Mw = 5.5

We compare the results obtained with this prior to

the cases where a lognormal prior or a Gaussian prior

without truncation are assumed.

The case with magnitude uncertainty, depending

on the date of the events, will be considered in a

second step. The following two series of studies are

conducted:

1. We assess the feasibility and accuracy of the

estimations for different values of mmax. Since, in

contrast to the observed earthquake data, the mmax

value is known for the simulated catalogues, we

can compare mmax estimated as the mean of the

posterior density function to the ‘‘true’’ value. To

check a possible bias and assess variability of the

estimations, we compute N = 1000 catalogues for

each study case considering T = 266 years and

compute the posterior mean as an estimator for

mmax. Tables 1 and 2 show the mean value of the

N estimated posterior means and the standard

deviation (std) for true mmax values increasing

from Mw = 6.0 to Mw = 7.2. If the mean is close

to the true value and the dispersion, expressed by

the std is small, then this means that the applica-

tion of this method to observed data (one

catalogue) provides estimations close to the true

value. Note that in the application to the French

catalogue presented in the following section, the

considered duration is actually 266 years.

2. We analyze the convergence of the estimations by

increasing the period of observation to

T = 500 years and T = 1000 years. To assess the

variability, we compute again N = 1000 cata-

logues for each study case with mmax = 6.5. and

mmax = 7.0. The reference results for

T = 266 years are given in Tables 1 and 2.

Tables 3 and 4 show the results for T = 500 years

and T = 1000 years, respectively.

The results show that the Bayesian updating

provides an accurate estimate of the maximum

magnitude for observation periods available in

France. The mean of the mmax values estimated over

the N catalogues is very close to the true value

indicating that there is no significant bias. The

Figure 3
Illustration of the EPRI method for the construction of the

likelihood function. The number of earthquakes in the complete-

ness period of m0 is marked in violet, the vertical red line indicates

the completeness interval for m0 and mmaxobs is marked by the red

dot. The black lines show the completeness period as a function of

magnitude to compute the number N in the EPRI-1994 method
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estimates converge towards the true value if T is

increased and if there is no uncertainty in the

magnitudes. For T = 1000 years, the variability of

the estimate is negligible (the std decreases to ± 0.02

for magnitude ranges expected in France) and the

estimated mean is equal to the true value. The error or

spread of the estimations (expressed here by the

Table 1

Mean and std of the posterior means for 1000 catalogues, true mmax = 6.0 (left) and mmax = 6.5 (right) considering the 3 different priors for

T = 266 years

prior Trunc. 
normal

lognormal normal

mean 6.02 6.02 6.02

std 0.04 0.04 0.04

prior Trunc. 
normal

lognormal normal

mean 6.57 6.56 6.56

std 0.09 0.09 0.10

Table 2

Mean and std of the posterior means for 1000 catalogues, true mmax = 7.0 (left) and mmax = 7.2 (right) considering the 3 different priors for

T = 266 years

prior Trunc. 
normal

lognormal normal

mean 6.99 7.00 7.00

std 0.14 0.15 0.15

prior Trunc. 
normal

lognormal normal

mean 7.10 7.13 7.13

std 0.16 0.18 0.18

Table 3

Mean and std of the posterior means for 1000 catalogues, true mmax = 6.5, T = 500 years (left) and T = 1000 years (right)

prior Trunc. 
normal

lognorm
al

normal

mean 6.52 6.52 6.52

std 0.05 0.05 0.05

prior Trunc. 
normal

lognormal normal

mean 6.50 6.50 6.50

std 0.02 0.02 0.02

Table 4

Mean and std of the posterior means for 1000 catalogues, true mmax = 7.0, T = 500 years (left) and T = 1000 years (right)

prior Trunc. 
normal

lognormal normal

mean 7.00 7.01 7.01

std 0.10 0.11 0.11

prior Trunc. 
normal

lognormal normal

mean 6.98 7.01 7.01

std 0.06 0.06 0.06

5650 I. Zentner et al. Pure Appl. Geophys.



standard deviation) always decreases when the period

of observation is increased.

The analyses also show that the particular choice

of the prior distribution (among Gaussian, lognormal

and truncated Gaussian alternates) does not have a

significant impact on the result in this case. In

particular, the estimations of the posterior mean

computed with the Gaussian and the truncated

Gaussian priors are very close. This is because the

data has a major impact on the posterior. The close

agreement of the posterior mean with the known

mmax implies that the estimation is robust, consistent

with Jaynes (2007).

3.2. Accounting for Period-Dependent Magnitude

Uncertainty

Earthquake magnitudes reported in catalogues are

inevitably affected by uncertainties that are expected

to be higher for the historical events. A value of 0.1

can be considered as the magnitude uncertainty for

recent well studied events. However, such uncertainty

is expected to increase for historical events and to

change over time with the oldest events being

characterized by the largest uncertainties. Accord-

ingly, we introduced a Gaussian error term with time-

dependent standard deviation. The std are 0.5, 0.35,

0.25 for events that occurred respectively before

1900, 1950, 1975 and 0.1 for the more recent events.

These values are generally in agreement with the

values given in the French catalogue FCAT17

(Manchuel et al. 2017) and the RESORCE database

(Akkar et al. 2014) for French events. Note that

magnitude uncertainties are also expected to be

magnitude-dependent with small magnitudes being

characterized by larger uncertainties. However, for

purpose of mmax definition, where the interest is

mostly on the largest events in the catalogue,

uncertainties on small magnitudes are less relevant.

The simulations show that magnitude uncertainty

leads to a systematic overestimation of mmax. The

latter increases if the magnitude uncertainty

increases. The overestimation of mmax is due to

the fact that the observed mmaxobs of a set of

earthquakes is generally higher than the ‘‘true’’

mmaxobs when magnitude uncertainty is included

(because it becomes highly likely that mmaxobs

would be governed by an overestimated magnitude

due to uncertainty). This leads to a bias in the

estimations.

This issue can be analyzed with the simulated

catalogues by introducing the magnitude uncertainty

and by comparing the observed mmaxobs to the true

mmaxobs (without magnitude uncertainty). The numer-

ical analyses showed that the relative bias, that is the

observed mmaxobs/true mmaxobs, does not change

considerably for different true mmax values but it

does depend on the degree of magnitude uncertainty.

The bias becomes more significant when the magni-

tude uncertainty increases. The simulation shows a

bias (observed mmaxobs/true mmaxobs) of 4.5% when

considering uncertainty. An illustration of the origin

of the bias is given in Fig. 4.

Obviously, without considering magnitude uncer-

tainty, the mmaxobs value cannot exceed the true mmax,

which equals 7.0 in this example. However, the

observed mmaxobs can be larger than the true mmax

within its stated error. Moreover, when the true

mmaxobs value is underestimated due to uncertainty

this does not mean that mmaxobs is underestimated by

that same amount because the second largest magni-

tude might be larger and then be considered as

mmaxobs. This is why, when considering higher

magnitude uncertainty, then the observed mmaxobs is

generally higher than the true mmaxobs which can lead

to a considerable overestimation of mmax.

In consequence, not only the parameter uncer-

tainties but also the bias has to be accounted for in the

Bayesian updating procedure. The approach adopted

here is detailed in what follows.

We consider uncertainty related to the GR recur-

rence parameters b; k0, duration T and mmaxobs.

We evaluate the marginal posterior distribution by

integrating the parameter uncertainty in the likeli-

hood function as:
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We consider here GR-statistics for French most

active regions covering the French Alps and Pyrenees

and corresponding to the seismotectonic domain D-1

identified by national PSHA by Drouet et al. (2020)

as illustrated in Fig. 5 (upper right graph). The GR

parameters derived for magnitudes larger than Mw ¼
4:0 in EDF (2017) are shown in Fig. 5. According to

their study, the mean estimate and the std of the GR

parameters a and b are, respectively:

• �a ¼ 4:1 and ra ¼ 0:13

• �b ¼ 0:79 and rb ¼ 0:05

The GR curves are shown in Fig. 5 (upper left

figure). The GR parameters are estimated using the

Penalized Maximum Likelihood method by USNRC

(2012) which account for uncertainties on earthquake

location, magnitude and completeness periods

through the use of synthetic catalogues and

introduces a prior b-value to constrain the slope of

the GR model. In agreement with these results we use

a bivariate Gaussian distribution to express the joint

law f ða; bÞ of the two GR parameters.However, the

correlation coefficient determined for French domain

D-1 is close to unity which means a « nearly perfect

correlation» of the two parameters. Note that this is

not always the case and although a and b parameters

are expected to be correlated (Ordaz and Faccioli

2018) the level or correlation depends of the specific

zone under consideration.

In the light of these results, we assume perfect

correlation. The two perfectly correlated Gaussian

random variables b and log10k0 are then expressed as:

b ¼ ln 10ð Þ �bþ ln 10ð Þrbe ð14Þ

�f mmax obsjð Þ ¼ c

Z
L obs mmax; b; k0j ;ð Þf 0 mmaxð Þf b; k0;mmaxobsð Þf Tð Þdbdk0dmmaxobsdT

L obs mmax; b; k0jð Þ ¼ exp �k0T
exp �bmmaxð Þ � exp �bmmaxobsð Þ
exp �bmmaxð Þ � exp �bmminð Þ

� �� 	 ð13Þ

Figure 4
Illustration of the case where the a true mmaxobs and the observed mmaxobs do not belong to the same event and b where they do. The green

stars represent the ‘‘perfect’’ catalogue without uncertainty while the blue stars are obtained when introducing period-dependant magnitude

uncertainty
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log10k0 ¼ �aþ rae � mminð �bþ rbeÞ
¼ �aþ mmin

�bþ ðra þ mminrbÞe ð15Þ

where e is a centered normalized (unit variance)

Gaussian random variable. We adopt a Gaussian

distribution for the uncertainty related to mmaxobs We

furthermore assume a uniform distribution for the

completeness year T, with the interval �T � 50years,

where �T is the mean value.

The parameter uncertainty in the likelihood func-

tion of Eq. (13) is propagated using the Latin

Hypercube Sampling approach (LHS). On the one

hand, the uncertainty on the duration and the GR-

parameters does not change the position of the peak

of the likelihood function but it results in functions

more or less concentrated towards that value. On the

other hand, the uncertainty on mmaxobs has an impact

on the position of the peak and leads to a broadening

of the latter. This is illustrated for the application to

French data in Fig. 9.

First, the impact of the uncertainty on the

estimates of mmax is quantified by assessing the mean

and std of the difference between the observed

mmaxobs and the true mmaxobs using the simulated

catalogues. Secondly, the approach is applied to

estimate mmax for the simulated catalogues.

Figure 5
Gutenberg-Richer parameters for French active domain ‘‘D1’’ encompassing the Alps and Pyrenees. (Top-left): Observed exceedance rates

(blue circles for individual solutions from synthetic catalogs sampling uncertainties, see main text) compared to modeled G-R curves (gray

lines for individual solutions). The mean G-R curve is shown in black and compared to the solution defined by Johnston et al. (1994) for SCR

shown in purple. The red color refers to the solution obtained with the original catalogue. (Top-right): Map of the seismicity considered in the

analysis. Only the epicenter shown as red circles are selected for the calculation after applying the completeness criteria. (Bottom-left):

Statistics of the a-values (per 1E6 km2) and b-values obtained through the Monte-Carlo sampling (gray circles). The percentiles 2, 16, 50, 84,

98th are shown as squares. (Bottom-right): Analysis of the correlation of the individual G-R solutions (gray circles)
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The results obtained with 5000 artificial cata-

logues are shown in Fig. 6 where the bias, that is the

mean of the difference between true and observed

values, and its std are shown as a function of the true

mmaxobs. According to these results, the std can be

considered constant while the bias depends on the

value of the true mmaxobs. The bias is a systematic

error that has to be accounted for in the estimation

procedure. Moreover, these simulations provide the

uncertainty relative to the observed mmax in terms of

the std of the difference between the true mmaxobs and

the observed mmaxobs.

In consequence, mmaxobs in Eq. (13) is modelled

as a Gaussian random variable with mean and std

equal to the values determined by means of the

simulations and shown in Fig. 6.

In what follows we show the impact of accounting

for the bias and uncertainty on mmaxobs in the

estimation procedure. We consider GR parameters

of domain D1 assuming a true mmax equal to

Mw = 7.0. We adopt again the prior distribution for

active French regions with parameters as introduced

in Sect. 3. Figure 7 illustrates, for an example

catalogue, the prior and the posterior estimates of

the mmax distribution for the case when uncertainty is

neglected (left figure) and when considering uncer-

tainty (right figure). As expected, considering

uncertainty enlarges the likelihood function and in

consequence the posterior distribution and allows for

a smoother shape of the latter. The posterior mean (or

Bayes estimator) is now close to the mode of the

distribution.

The numerical results with and without consider-

ing uncertainty are shown in Table 5, where the mean

and the std of the Bayes estimator is given for 1000

simulated catalogues. In particular, we compare the

ideal case where the magnitudes in the catalogue are

perfectly known (true simulated mmax) to the case

Figure 6
Mean and std of the difference between the observed mmaxobs and

the true mmaxobs estimated from 5000 catalogues

Figure 7
Illustration of posterior pdf and Bayes estimator with and without considering magnitude uncertainty for mmax = 7.0
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where the magnitudes in the catalogue are not

perfectly known. In the latter case, Table 5 shows

that the introduction of the uncertainty on the

parameters and, in particular on mmaxobs, allows us

to improve the estimations (last column of Table 5).

The posterior mean is close to the true mmax and the

std of the estimations (over 1000 catalogues)

decreases from 0.28 to 0.16 which is close to the

lowest possible value obtained with the perfect data.

It has to be pointed out that the issue of magnitude

uncertainty is unavoidable, and not specific to the

new approach presented here but it also needs to be

accounted for in the EPRI updating procedure (as

discussed in USNRC 2012) as well as in any other

method where a set of extreme magnitudes is

considered. In those cases, not only the uncertain of

the largest observed magnitude but the uncertainty of

the full set of magnitudes used for the estimation of

mmax has to be accounted for according to their

occurrence time.

In what follows, we apply the EPRI-1994 method

and the new Bayesian updating approach to French

data from catalogue FCAT17 with and without

considering magnitude uncertainty. The impact of

magnitude and GR parameter uncertainty is then

further analyzed and discussed.

4. Estimation of the Maximum Magnitude

Distribution Using Data from French Active

Zones

The methodology is now applied to determine the

maximum magnitude for French domain D1 con-

taining the most active regions in France as shown in

Fig. 5 (upper right). The data available for this

domain according to FCAT17 catalogue is plotted in

Fig. 8. The largest observed magnitude in the domain

is mmaxobs ¼ 6; 7, and it occurred within the com-

pleteness period T (1750 according to the lower

bound given by Drouet et al. 2020), highlighted by

the vertical red bars. The values for the GR param-

eters are those introduced in the previous section. We

consider the truncated Gaussian distribution for

French active regions developed by Ameri et al.

(2015) for the prior distributions of mmax, as intro-

duced above. The Authors used the European

earthquake catalogue (Stucchi et al. 2012) and the

mmax regionalization developed for the European

Seismic Hazard Model, ESHM13 (Woessner et al.

2015) in order to develop two prior mmax distribu-

tions applicable to low and active seismic regions in

France. The statistical approach adopted by Ameri

et al. (2015) to develop the priors follow the one

employed by EPRI-1994 and more details can be

found in Ameri et al. (2015). We also refer to Drouet

et al. (2020) who applied these priors in the EPRI-

type Bayesian approach to determine mmax in the

framework of the generation of probabilistic seismic

hazard maps for France.

Beside the prior developed by Ameri et al. (2015),

we tested other prior distributions; in particular the

lognormal and the not-truncated Gaussian distribu-

tion. We will compare results for the initial Gaussian

Table 5

Estimated mmax for GR parameters of domain D1 assuming a true

mmax Mw=7.0 with and without improved likelihood function for

1000 simulated catalogues.

No

uncertainty

(true

simulated

mmax)

Catalogue with

magnitude

uncertainty only

Catalogue with

magnitude uncertainty

and improved likelihood

function

Mean 6.99 7.27 7.02

Std 0.15 0.29 0.16

Figure 8
Earthquakes contained in the catalogue corresponding to French

domain D1 identified in the upper-right graph of Fig. 5. Vertical

red bars highlight the completeness period for mmaxobs
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and the truncated Gaussian prior distribution to assess

the sensitivity of the estimations on this choice.

When considering uncertainty in the likelihood

function according to Eq. 13, then the value of mmax

has to be known in order to pick the correct bias

correction value in Fig. 6, but in a realistic case this

valued is not known from the start. An iterative

procedure is applied, where the initial value for the

bias is chosen according to the results without con-

sidering uncertainty. The bias is then updated to be in

agreement with the new estimation of mmax. The

iterations continue until the mmax used for bias cor-

rection coincides with the estimated mmax. Tests

performed by the authors showed no dependence on

the choice of the initial estimation as long as it

remains in the range of reasonable values.

In what follows we show the results for the two

cases:

• New approach with improved likelihood function

according to Eq. (10)

• New approach with improved likelihood function

and accounting for parameter uncertainty in

expression (13)

For comparison, we also compute the estimations

for EPRI-type approach with likelihood function

based on expression (12) (as in Drouet et al. 2020).

Figure 9 compares the likelihood functions corre-

sponding to the EPRI method (light blue dashed) and

the proposed method based on the cdf of extremes

without uncertainties (solid blue) and when

accounting for uncertainties (solid magenta). The

improved likelihood function proposed here makes

better use of available information and it is tighter

around the observed mmax as compared to the EPRI

likelihood function. The introduction of uncertainties

on recurrence parameters and mmaxobs in the new

approach leads to a broadening of the likelihood

function. The likelihood functions are normalized for

comparison. Since the likelihood functions are not

proper in the sense that they cannot be normalized by

integration of the pdf to infinity, we have chosen a

pragmatic normalization based on the peak value (the

same peak value for all functions) to facilitate visu-

alization and comparison.

Figure 10 compares the posterior pdfs and the

Bayes estimator corresponding to the EPRI method

(Fig. 10a), N = 149 events) and the proposed method

based on the cdf of extremes (Fig. 10b),

T = 266 years), in both cases uncertainties in the GR

parameters are neglected.

Figure 11 shows the prior and the updated dis-

tributions of mmax for the improved likelihood

function when considering uncertainties of the GR

parameters and the completeness period of mmax.

The introduction of uncertainty allows for a more

physical representation of possible values of maxi-

mum magnitudes, the likelihood function is smoother

and the density of the updated mmax distribution is

more centered on the Bayes estimator. Due to the

uncertainty related to the observed mmaxobs, the

likelihood function with uncertainty also allows for

maximum magnitude values below the observed one,

although higher magnitude values become more

likely.

The Table 6 summarizes the statistics of the

posterior distribution of mmax for the three methods

where the mean, median and 5%, 95% Bayesian

Intervals (BI), that is the fractiles 5%, 95% of the

posterior distribution are given. First of all, Table 6

confirms that the truncated prior and the untruncated

prior distributions provide very similar results and

thus only small sensitivity of the updating on the

particular choice of the prior. This means that the

data carries sufficient information for meaningful

updating.

Figure 9
Comparison of likelihood functions from the EPRI method

(N = 149 events) and the proposed method (T = 266 years) with

and without considering uncertainties
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5. Summary and Conclusions

We have developed a methodology for estimating

the probability distribution (epistemic uncertainty) of

the maximum magnitude by Bayesian updating using

the analytical expressions of the extreme value dis-

tribution. For application purposes, we have adopted

the truncated Gutenberg-Richter law assuming

Poissonian occurrence of earthquakes. The uncer-

tainties on the maximum observed magnitude in the

catalogue and the GR parameters have been inte-

grated in the updating procedure. The approach

remains applicable when other distributions than the

truncated GR law are assumed since the analytical

expressions can be derived for any distribution as

long as Poisson occurrence is assumed. In the

Bayesian approach, the information from similar

Figure 10
Comparison the prior and the updated distributions of mmax using the EPRI method (N = 149 events) and the proposed method

(T = 266 years) without considering uncertainties

Figure 11
Prior and the updated distributions of mmax when considering the

improved likelihood function with parameter uncertainties

Table 6

Statistics of the posterior distribution of mmax with and without

considering uncertainties on GR parameters and mmaxobs for

truncated Gaussian prior distribution: mean, median and 5%, 95%

BI

Method Mean Median 5% BI 95% BI

New approach, no

uncertainties

6.87 (6.88) 6.82 (6.82)

6.71 (6.71) 7.21(7.24)

New approach, with

uncertainties

6.72 (6.73) 6.70 (6.71)

6.25 (6.25) 7.22 (7.27)

EPRI, no uncertainties 6.91 (6.92) 6.85 (6.86)

6.71 (6.71) 7.28 (7.33)

The results for the truncated Gaussian prior are given in parenthesis
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tectonic regions and expert judgment is introduced by

a prior distribution of the maximum magnitude. The

new method combines the distribution of extreme

values of the truncated GR law with the Bayesian

updating approach. Regarding the time intervals used

for the derivation of the extreme value distribution,

the analyses showed that the same result is obtained

when considering a set of time intervals and their

mmaxobs or when considering only one time interval

and the associated mmaxobs.

The proposed method is more rigorous and out-

performs the EPRI/USNRC Bayesian updating

approach for the following reasons. The duration-

based formulation of the likelihood proposed here

performs better than the EPRI approach because it

associates mmaxobs to its completeness period which is

a stronger constraint on mmax than the number of

events that can be used in the EPRI method. Only the

completeness period of mmaxobs is required, so that

there is no need to determine and use the complete-

ness periods for smaller events and to introduce the

associated uncertainties. This makes the approach

easy to implement and to apply. The analyses con-

ducted with simulated catalogues demonstrated the

capability of the Bayesian updating approach to

correctly estimate mmax. Eventually, simulated cata-

logues demonstrate the possibility to estimate mmax

with the proposed method and for periods of obser-

vation available in France. The results were

insensitive to the truncation of prior distribution,

however it is important to investigate alternative

priors and to conduct further sensitivity analyses.

Finally, this study highlights the crucial importance

of accounting of uncertainties of earthquake cata-

logues magnitudes. Introducing uncertainty in the

process allows for a more physical and unbiased

representation of possible values of maximum mag-

nitudes. In this case, the likelihood function is

smoother and the density of the updated mmax dis-

tribution is more centered around the Bayes

estimator.
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Zöller, G., & Hainzl, S. (2007). Recurrence time distributions of

large earthquakes in a stochastic model for coupled fault

systems: The role of fault interaction. Bulletin of the Seismo-

logical Society of America, 97(5), 1679–1687.
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