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Abstract—Selection of optimal model inputs is a challenge for

non-linear dynamic models. The questions as to which inputs

should be used for model development have been a challenge in

practice. Despite its importance, the literature on comparison of

different methods for choosing inputs for estimating evaporation

from saline water is limited. In this study, used three methods

namely the Gamma test (GT), entropy theory (EnT), and procrustes

analysis (PA) for determining suitable variables for estimating

saline water evaporation using non-linear models of artificial neural

network (ANN). The weather station near Lake Urmia was used for

this experiment. At this station, pans of different concentrations

(500 g/L, 300 g/L, 100 g/L, 50 g/L, 20 g/L, 10 g/L, 5 g/L, and

drinking water) were prepared. In addition to evaporation data,

surface water temperature (measured for each pan separately), air

temperature, mean cloudiness, sunshine hours, mean relative

humidity, mean wind speed, solar radiation, maximum wind speed,

station pressure, mean station vapor pressure, maximum and min-

imum temperatures, and precipitation were also used. Model results

were compared with field measurements and model performance

was evaluated by the coefficient of correlation, root mean square

error, and Nash–Sutcliffe efficiency coefficient. The most impor-

tant variables identified by GT were surface water temperature, air

temperature, mean relative humidity, mean wind speed, mean

station pressure, minimum temperature, precipitation, mean station

vapor pressure, and solar radiation. Also, as can be seen the most

important variables for evaporation from saline water using the

EnT method were water surface temperature, wind speed, and

precipitation. The three important variables in the estimation of

saline water, evaporation selected by the PA method, were air

temperature, sunshine hours, and mean wind speed. According to

results, as the concentration increased, the mean station vapor

pressure and temperature variables had the most influence on saline

water evaporation. The uncertainty of model output was deter-

mined using the 95 percent prediction uncertainty (95PPU or

P-factor) and d-factor. Although ANN-GT and ANN-EnT showed

better goodness-of-fit metrics, ANN-PA had the lowest uncertainty

among the three models in estimating evaporation from saline

water. Generally, the PA method was able to demonstrate accept-

able performance over the other two methods, with the least

number of input variables.

Keywords: Artificial neural network, Evaporation from saline

water, Entropy theory, Gamma test, Procrustes analysis.

1. Introduction

Literature and observations show that a significant

portion of lake water is lost through evaporation in

arid and semi-arid areas (Chattopadhyay et al. 2009;

Biazar et al. 2019). Evaporation from the free water

surface has been measured by direct and indirect

methods. Direct methods include Eddy covariance

(EC) method, Bowen ratio energy balance, and

measurement of water loss with lysimeters or mas-

balance methods (Allen et al. 2011). Indirect methods

include experimental and theoretical equations

(Meyer 1915; Penman 1948; Harbeck 1955; Priestly

and Taylor 1972; Brutsaert and Stricker 1979; De

Bruin and Keijman 1979), and artificial intelligence

(Piri et al. 2009; Kisi et al. 2015; Vaheddoost and

Koack 2019; Ashrafzadeh et al. 2019) and satellite-

based methods (Zhao and Gao 2019; Holmes 2019).

Direct measurement of evaporation is expensive,

cumbersome, and has different sources of error, and

becomes even more difficult for evaporation from

saline water with different concentrations. Climatic

variables, influencing saline water evaporation, not

only vary from station to station, but also vary based
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on the degree of salinity. Therefore, different models

can be derived for saline water evaporation. The rate

of evaporation from saline water surface is usually

less than that from fresh water (Asmar and Ergen-

zinger 1999). Many of the world’s saline lakes are

shrinking, with the result that bird habitats are

undermined, people living around the lakes suffer

with economic losses, and dusty winds are being

caused which threaten people’s health (Wurtsbaugh

et al. 2017).

Many investigators have estimated evaporation

from lake water surfaces (Gianniou and Antonopou-

los 2007; Piri et al. 2009; Hamdani et al. 2018; Wang

et al. 2018a, b, Mor et al. 2018; Ashrafzadeh et al.

2019). The mechanisms of evaporation from saline

water are somewhat different from those from fresh

water. The complexity of the process of evaporation

from water bodies (e.g., lakes, ponds, dams, and

natural reservoirs) and the lack of sufficient and

reliable information are the main obstacles (Sandler

1999; Hamdani et al. 2018). Additionally, the selec-

tion of meteorological variables that influence saline

water evaporation is a difficult task.

This study attempts to find the main important

meteorological variables that affect the rate of daily

evaporation from saline water. This task was per-

formed using three models which were (1) procrustes

approach (PA) (Dinpashoh et al. 2004), Gamma Test

(GT) (Ashrafzadeh et al. 2018), and entropy based

method (EnT) (Ahmadi et al. 2009). Once the vari-

ables were selected, the artificial neural network

(ANN) method was applied to model daily evapora-

tion rate using daily meteorological time series.

Lee (1927) experimentally compared evaporation

from pure water and from brine lake in Nevada, USA,

for different densities and found that the brine water

evaporation in comparison with pure water reduced

by 0.01% for a 1% increase in water specific weight.

Young (1947) compared evaporation from both saline

water (with different concentrations of sodium chlo-

ride) and that from fresh water. Results of this study

did not differ significantly from the findings of Lee

(1927). Kokya and Kokya (2008) analyzed the effect

of salinity of water on evaporation rate from a water

pan in an experimental study near the Urmia Lake by

using Meyer and Harbeck methods, and they devel-

oped these methods. The results showed that the

developed methods could estimate evaporation with

higher accuracy than classical methods. Al-Khalifat

(2008) reported that the average volume of evapora-

tion losses from the Dead Sea was between 2 and 4

billion m3/year using the mass and energy balance

during 1800–2000. He also showed that the decrease

in the lake level over time had resulted in reducing

evaporation rate. Furthermore, the evaporation rate

had decreased due to increasing salinity during the

periods with significantly lower lake water level. Piri

et al. (2009) investigated the evaporation of free

water in hot and dry regions of Iran. In their research,

they used an ANN model to estimate evaporation and

compared the results with two experimental models

(Linacre and Marciano). They used a GT to select the

best input combination for the ANN. Wind speed,

saturation vapor pressure, and mean relative humidity

were selected as the most effective input variables in

estimating evaporation. Results showed the ANN-GT

model outperformed the experimental models.

Moghaddamnia et al. (2009) estimated, sing ANN

and adaptive neuro fuzzy inference system (ANFIS),

evaporation from the free water surface in Iran. They

used data on air temperature, wind speed, saturation

vapor pressure, and mean relative humidity. The GT

was also used to select the effective input variables.

In this study, variables such as wind speed, relative

humidity, and saturation vapor pressure were selected

as the most effective variables by the GT. They used

three empirical models of Hefner, Linkier, and Mar-

ciano to compare the model performances. Results

showed that the intelligence models performed better

than the experimental models. Goyal et al. (2014)

modeled tropical evaporation using ANNs, least

squares-support vector regression (LS-SVR), fuzzy

logic, and ANFIS. They used precipitation data,

maximum and minimum temperatures, maximum and

minimum relative humidity, and sunshine hours.

They also used the GT to select the effective inputs to

improve model performance. Results were compared

with the experimental models of Hargreaves and

Samani and Sphere Stewart, and showed that the

intelligence models performed better than the exper-

imental models. Kisi et al. (2015) predicted the

Urmia Lake water level with the support vector

machine (SVM) model by applying a novel method

based on firefly algorithm (FA). The output of the
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SVM–FA model was compared to the Genetic Pro-

gramming (GP) and ANNs models. Results showed

that the SVM-FA model was superior to others. Shiri

et al. (2016) predicted the water level in the Urmia

Lake using the Extreme Learning Machine (ELM)

method. In their study the ELM method was com-

pared with ANN and GP. Results showed that the

ELM method was better than others. Wang et al.

(2018a, b) evaluated different approaches for esti-

mating evaporation in a small high-elevation lake on

the Tibetan Plateau (TP). They conducted the eval-

uation by using EC observation-based reference

datasets. They used Bowen ratio energy budget,

Penman, Priestley–Taylor, Brutsaert–Stricker and

DeBruin–Keijman, Dalton and Ryan–Harleman,

Jensen–Haise, and Makkink methods. All methods

were significantly improved after parameter opti-

mization, with better efficiency by the former than the

latter. The deBruin method yielded the largest error

due to the poor relationship between evaporation and

the drying power of the air. The good efficiency of

the Makkink approach, with no considerable differ-

ences before and after optimization, indicated the

significance of solar radiation and air temperature in

the estimation of lake evaporation. The Makkink

method was used for long-term evaporation estima-

tion due to the lack of water temperature observations

in lakes on the TP. Wang et al. (2018a, b) carried out

research about global lake evaporation accelerated by

changes in surface energy allocation in a warmer

climate. They reported simulations with a numerical

model of lake surface fluxes, with input data based on

a high-emission climate change scenario (Represen-

tative Concentration Pathway 8.5). In their

simulations, the global annual lake evaporation

increased by 16% by the end of the century, despite

little change in incoming solar radiation at the sur-

face. At the current work, we investigated the effect

of variables on evaporation in different concentra-

tions (fresh water to high saline water) separately.

Seifi and Riahi (2018) estimated daily reference

evapotranspiration using the least square support

vector machine (LS-SVM)-GT, ANN-GT and

ANFIS-GT models in Iran. Results of GT revealed

that three climate variables which were minimum air

temperature, maximum air temperature, and wind

speed were the most important climatic variables, and

the LSSVM model performed better than did ANFIS

and ANN for the same meteorological input vari-

ables. Hamdani et al. (2018) assessed seasonal and

daily evaporation of the deep and brine Dead Sea.

They provided observations in two consecutive years

using the eddy covariance system, meteorological

stations, and a floating station (which measured the

water profile temperature). They found that the peak

of evaporation rate occurring in summer was related

to solar radiation. The winter peak evaporation was

also related to the thermal storage of the lake, and

evaporation due to high vapor pressure combined

with wind and resulting thermal static. They com-

pared several models of evaporation with direct

measurements and showed that the mass transfer

model was more reliable than others. Nozari and

Azadi (2019) predicted the salinity of drainage and

groundwater at various drain depths and spaces using

ANN. Results revealed that ANN had a reasonable

accuracy in the simulation of temporal shallow

groundwater and drainage of water salinities at dif-

ferent drain depths and drain spaces. Guo et al.

(2019) conducted research on long-term changes in

evaporation over Siling Co Lake on the Tibetan

Plateau and its impact on recent rapid lake expansion.

In this study, long-term evaporation over Lake Siling

Co was simulated using a single-layer lake evapora-

tion model, and simulated results were verified

by observation from an EC https://www.science

direct.com/topics/earth-and-planetary-sciences/eddy-

covariance system in the lake. Results showed that

the single-layer lake evaporation model was capable

of accurately simulating lake evaporation on a daily

scale. Ashrafzadeh et al. (2019) estimated evapora-

tion of free water in northern Iran using intelligent

models, ANN and ANN-krill herd optimization

algorithm (ANN-KHA). Maximum temperature,

maximum and minimum relative humidity, rainfall,

wind speed, and sunshine were used. They also used

the GT to select the effective inputs and results

showed that the ANN-KHA model performed better

than did the ANN model.

Since it is difficult to answer which variables are

useful as inputs for modeling (Ahmadi et al. 2009;

Isazadeh et al. 2017; Ashrafzadeh et al. 2019), there

have been insufficient reports on comparing different

techniques for selecting the most effective inputs.
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Although much research has been done on evapora-

tion estimation, most of it does not consider effective

input selection for evaporation modeling. As a result,

the main challenge lies in the evaluation of existing

data and assessing the adequacy of data. Although

modeling improves performance by adding informa-

tion, observations show that adding information

improves model performance only slightly. Modeling

accuracy can be reduced by increasing information.

This is because additional information causes the

model to be overfitted. The overfitted model also

performs well in training but has a very poor per-

formance in testing. Overfitting also occurs when

multivariate models have too much input data. It is

therefore important to know which inputs are effec-

tive in modeling and which are not (Ahmadi et al.

2009). Remesan et al. (2008) used GT in determining

the effective inputs for estimating solar radiation

using local linear regression (LLR) and ANN in the

Brue Catchment in southwest England. Ahmadi et al.

(2009) applied GT, Entropy Theory (EnT), Akaike

Information Criterion (AIC), and Bayesian Informa-

tion Criterion (BIC) in the determination of effective

inputs for solar radiation estimation in the Brue

Catchment in England. They estimated solar radiation

with LLR and ANN and found that the GT had the

best performance. A limited number of studies have

used the procrustes analysis (PA) for the selection of

model inputs. Dinpashoh et al. (2004) used this

approach in selecting variables in a precipitation

climate study in Iran. They found that among the 57

candidate variables, only 12 variables were important

in the regionalization of precipitation records. Nam

et al. (2015) used the PA in the selection of 33

rainfall-related and geographical variables among the

total 42 candidate variables for the delineation of

rainfall in South Korea.

In this study, the PA approach was used in the

determination of evaporation rate from saline water.

Results were compared with those of the GT and EnT

schemes. The main objectives therefore were to: (1)

identify the best combination of climatic variables for

modeling evaporation rate of saline water, (2) iden-

tify the best model among the three candidate models

which were PA, GT, and EnT using performance

criteria.

2. Materials and Methods

2.1. Study Area and Data

Lake Urmia is one of the most significant saline

lakes of the world and Iran’s largest saline lake,

which is at risk of drying up because of excessive

agricultural development, climate change, and irra-

tional construction of dams. Various reports have

been presented regarding evaporation from the lake

surface, with the values generally estimated to be in

the range of 890–1360 mm/year (more than 50%

difference). However, just one centimeter of error in

estimating the evaporation height leads to 30 million

cubic meters of error in calculating the lake water

balance, considering the average lake area of 3000

km2. This shows the necessity of accurately estimat-

ing the evaporation rate from Lake Urmia using

physically-based approaches and accurate observed

data.

For modeling the evaporation rate from saline

water having different salt concentrations, an exper-

imental study was carried out at a location near the

Urmia Lake. Recorded daily data of meteorological

variables used in modeling were: (1) surface water

temperature, (2) mean air temperature (Tmean), (3)

mean sky cloudiness, (4) sunshine hours, (5) mean

relative humidity (RHmean), (6) mean wind speed, (7)

mean air pressure, (8) maximum temperature, (9)

minimum temperature, and (10) precipitation. Mea-

surements at daily scale were used for evaporation

rate of saline water with different concentration

levels. Nine different samples (with salt and water)

were made with different concentrations. The sample

concentrations were 0.2 g/L (as a fresh water), 5 g/L,

10 g/L, 20 g/L, 50 g/L, 100 g/L, 200 g/L, 300 g/L,

and 500 g/L, exposed to free evaporation in the field.

This was accomplished using a sensitive electrical

conductivity meter (Lide 2004). Also, the total

dissolved solids (TDS) was kept unchanged during

measurement. The evaporation rate was measured at

daily scale from March 1, 2019 to June 30, 2019. In

order to keep the water surface clear from algae and

other thin films the water surface was cleaned from

time to time, since any dust precipitation over the

water surface would retard evaporation (El-Dessouky

5602 S. M. Biazar et al. Pure Appl. Geophys.



et al. 2002). The observed evaporation rate was

recorded along with the corresponding climatic data.

First, a place closest to Lake Urmia where a

station could be built was selected for the study (We

used Basmenj weather station). Then, the station was

equipped with Pan Evaporation, and waters with

different concentrations were monitored to measure

the evaporation. Urmia lake salt and distilled water

were used for conducting this experiment, because

the distilled water concentration was known, and it

was possible to easily control the concentration of

Pan Evaporation with electrical conductivity meter.

The water level in all Pan Evaporation was kept near

the Pan Evaporation surface. A separate scale was

prepared for each Pan Evaporation, and the numbers

on them were read every day. Distilled water was

added to the pan every few days to reach the initial

level of water and salinity (El-Dessouky et al. 2002;

Lide 2004). After adding water to the Pan Evapora-

tion, they were stirred with separate plastic tubes

designed for each Pan Evaporation, and then the

tubes were washed using distilled water and the water

used to wash them was poured into the Pan Evapo-

ration again, because it was intended to control the

Pan Evaporation concentrations (On the days when

distilled water was added to the barrels, the scales

were read once before adding the water and once

after adding the water and stirring).

2.2. Theory of Entropy (EnT)

Entropy theory was developed by Shannon (1948)

which states that information reduces uncertainty and

vice versa. Entropy can be used as an index of

quantification of lack of knowledge of system

characteristics. In general, four types of entropy have

Figure 1
Study area
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been introduced in the quantification of information:

marginal entropy, joint entropy, conditional entropy,

and information transfer entropy. In order to select

the suitable set of inputs for modeling evaporation

from saline water, information transfer entropy was

used. The marginal entropy, called H(x), based on a

discrete random variable, x, can be defined as

(Shannon and Weaver 1949):

HðxÞ ¼ �K
Xn

i¼1

PðxiÞ logPðxiÞ ð1Þ

where the value of K is equal to 1, if in Eq. (1) the

logarithm is based on 2.7182; and n is the number of

events with p(xi); (i = 1, …, N).

The entropy for the sum of the two random

independent variables, x and y, can be estimated as

(Ahmadi et al. 2009; Saha and Chattopadhyay 2020):

Hðx; yÞ ¼ HðxÞ þ HðyÞ ð2Þ

In the case of two dependent random variables, x

and y, the joint entropy is less than the sum of the two

distinct entropies (i.e. H(x) ? H(y)).

The information transfer entropy specifies the

mutual relationship between x and y. The information

transfer entropy [denoted by T(x, y)] for the two

dependent variables (i.e. x and y) can be obtained as

(Ahmadi et al. 2009):

Tðx; yÞ ¼ HðxÞ þ HðyÞ � Hðx; yÞ ð3Þ

which can also be estimated as:

Tðx; yÞ ¼ HðxÞ � Hðx yj Þ ¼ HðyÞ � Hðx yj Þ ð4Þ

where H(x|y) denotes the conditional entropy. The

term H(x|y) expresses the residual uncertainty of x

provided that y is known and vice versa.

The calculation of entropy for the M distinct

variables can be generalized in a similar manner

(Harmancioglu and Alpaslan 1992; Singh 2011). In

this case the total entropy for the M independent

variables Xm (m = 1, 2, …M) can be obtained as:

Hðx1; x2; etc:; xMÞ ¼
XM

m¼1

HðxmÞ ð5Þ

For dependent variables, the joint entropy can be

computed as (Harmancioglu and Alpaslan 1992;

Singh 2011; Chattopadhyay et al. 2018):
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Hðx1; x2; etc:; xMÞ ¼ Hðx1Þ þ
XM

m¼1

Hðxm x1; etc:; xm�1j Þ

ð6Þ

In order to select the most suitable variables, the

value of T(x, y) was calculated for all the 14

variables. Then, one of the variables was removed

from the set of x, and T(x, y) was evaluated for this

reduced set. This process was repeated for the other

13 variables. The computed values of T(x, y) were

tabulated for different concentrations of saline water

(i.e. y). For a distinct concentration (for example,

5 mg/L), those variables, for which T(x, y) was more

than that of the corresponding T(x, y) obtained using

the total 14 variables, the redundant variables were

selected and then were removed from the set. Thus,

the most appropriate variables were selected in

modeling saline water evaporation.

2.3. Gamma Test (GT)

GT is a nonlinear approach which supposes that

the observation set is defined by the following

relationship (Durrant 2001):

fðxi � yiÞg; 1� i�Mg ð7Þ

where xi is the input observation vector (here, surface

water temperature, air temperature, …), and yi is the

output of the GT (here, evaporation rate from a dis-

tinct concentration), and M is the total number of

observations (here, total days for which evaporation

was measured). The relationship between the inputs

and output can be expressed as:

y ¼ f xð Þ þ r ð8Þ

where f(x) is the smooth variable and r is the error

term. It is assumed that the mean of the distribution

fitted to r is zero and its variance is limited. The

gamma statistic denoted by ðCÞ expresses the vari-

ance of those observations, which the model is

incapable in its determination. For a distinct input

vector xi, the set N[i, k], for (1 B k B p), is called

the set of closest neighbors.

The gamma test is based on this set (i.e. N [i,k]).

The term X [I,k] is the closest neighbor for ith x (i.e.

xi), such that (1 B k B p), and(1 B i B m). Also p is

the maximum number of neighbors that are usually

assumed to be between 10 and 50. In order to

estimate ðCÞ the values of ðdM kð ÞÞ should be

calculated according to the input data (Evans and

Jones 2002).

dM kð Þ ¼ 1

M

XM

i¼1

xN i;k½ � � xi
�� ��2; 1� k� p ð9Þ

where . . .j j denotes the Euclidean distance

between vector xN i;k½ � and its neighbors. Also, the

value of cM kð Þ can be estimated using the output data

from the following relationship:

cM kð Þ ¼ 1

2M

XM

i¼1

yN i;k½ � � yi

���
���
2

; 1� k� p ð10Þ

where yN i;k½ � is the value of output corresponding to

the kth neighborhood of xi vector. In this manner the

p values for dM kð Þ and the p values for cM kð Þ can be

calculated. Then a relationship between

fdM kð Þ; cM kð Þg would exist as:

c ¼ A dþ C ð11Þ

The value of C statistic is indeed the intercept of

the above mentioned regression model. Also, A is the

slope of the line which shows the complexity of

model derived from data (Isazadeh et al. 2017;

Ashrafzadeh et al. 2018).

2.4. Principal Components Analysis (PCA)

PCA is one of the oldest multivariate methods that

was introduced by Pearson in 1901 and modified later

by Hotelling in 1933 (Hotelling 1933; Jolliffe 1986).

The main idea in PCA is the reduction of dimensions

of data that feature a relatively high correlation (in

terms of modulus). The reduction of dimensions by

converting data into a few new variables, namely

PCs. These new variables are independent of each

other. The first PC can be known as the first

independent variable which has the largest variance

compared with the other PCs. The second PC

incorporates the largest variance following the PC1

among others. In the same role the third PC has a

large variance after PC1 and PC2 among others. The

sum of variances of all the PCs is 100%. In PCA the

first few PCS usually incorporated a large variance

for data which led to easy interpretation of data.
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As stated by Johnson and Hanson (1995), instead

of directly using the input variables, which are

usually dependent on each other, the variables can

be converted to the few independent PCs that can be

subsequently applied for data interpretation. In this

method, only negligible information would be lost

after converting the original variables into the PCS

(Johnson and Hanson 1995).

2.5. Procrustes Analysis (PA)

Assuming p to be the number of total variables,

and k the number of the dominant PCs in PCA, the

PA selects a set of important variables which show

the feature of nearly the whole number of PCs. At the

same time the number of selected variables (q) is

much less than p (total candidate variables) and is

less than k (selected PCs). This property of PA which

at last selects less variables (say q) helps with

interpretation of the whole data. The retained q

variables incorporate the feature of nearly all candi-

date variables. This method was introduced by

Krzanowski (1987) and then applied in hydrology

by Dinpashoh et al. (2004).

In this method, it is necessary to select q as a

number of important variables to be much less than

total candidate variables (i.e. p), that is, q\ \ p. By

the implementation of PCA to original variables the

number of important PCs was selected to be k, in

which k\ p. In PA, the selection of q variables was

done by the minimization of the objective function

denoted by M2. This function can be defined as

follows:

M2 ¼ Trace YY 0 þ ZZ 0 � 2ZQ0Y 0f g ð12Þ

Figure 2 illustrates the general stages of pro-

crustes analysis.

In Fig. 2, X is the matrix of the standardized data

and X is the reduced matrix (standardized), i.e., after

removing a most redundant variable from X. Y is the

output of PCA conducted on X. and Z is the output of

PCA carried out for X. Y is the real feature of original

data, but Z is called the approximate feature of data.

PA evaluates the differences between the two matri-

ces (Y and X) by means of differences between the

sums of squares of the corresponding points in the

two mentioned arrangements. If the variables were

selected precisely, the similarity between the two

Figure 2
The cyclone of variable selection using PA method (Dinpashoh et al. 2004)
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arrangements would be large, therefore, the differ-

ences between the approximate and real configuration

would be less. In Eq. (12), Q is obtained as:

Q ¼ VU0 ð13Þ

where matrices U and V can be obtained using the

singular value decomposition (SVD) of the matrix

Z0Y having dimension of k 9 k. The SVD relation-

ship is as follows:

Z 0Y ¼ U
X

V 0 ð14Þ

where UU0 ¼ Ik, V 0V ¼ VV 0 ¼ Ik, andP
¼ diag r1; r2; . . .; rkð Þ. Ik is the square identity

matrix with dimensions k 9 k.

M2 was determined for any of the subsets

pertaining to the set of variables with at least q

members. The best subset of the variables’ reference

set was selected in a repeated manner by which at last

the lowest amount of M2 was obtained and the

retained variables were defined to be the most

important variables (Krzanowski 1987).

3. Artificial Neural Network (ANN)

ANNs are considered as one of the data process-

ing methods, including input/output processing and

generally one or more hidden layers as their main

components. Even though there are various neural

network architectures, about 90% of them are the

feed-forward type (Coulibaly et al. 2000; Aghelpour

et al. 2019). A feed-forward ANN can have one or

more hidden layers which their nodes are called as

hidden units or nodes. The ANN can solve high

ordered statistical problems by including hidden

layers. The ANN can have several outputs, however,

in the presented study one output was utilized. The

perceptron, the very basic form of an artificial neural

network, is a binary classifier and can be described

using the following equation:

g zð Þ ¼ 1 if z ¼ w � X þ b[ 0

0 otherwise

�
ð15Þ

where g (z) is the Heaviside step function (i.e., a

limited activation function), w is the weight vector,

b is the perceptron parameter deviation, and X is the

input vector. Multilayer perceptron (MLP) networks

learn to simulate the treatment of a wrapped, non-

linear system through learning algorithms and

observed data. There are different kinds of learning

algorithms, the most famous of which is back-prop-

agation (Rumelhart et al. 1988), delta-bar-delta

(Jacobs 1988), quick-prop (Fombellida and Destiné

1992), conjugate gradient (Charalambous 1992), and

Levenberg–Marquardt (Hagan and Menhaj 1994;

Deo et al. 2018; Ashrafzadeh et al. 2019). These

learning algorithms are generally used to detect the

optimal set of MLP model parameters. This study

used the MLP model along with learning algorithm

Levenberg–Marquardt learning algorithm. 1 to 20

neurons in the hidden layer are employed to evaluate

the effects of network structure on its performance in

RS simulation. The ‘‘Trial and Error’’ method has

been used to obtain the optimal neuron. The sigmoid

tangent function is applied to map information from

the input layer to the hidden layer and from the

hidden layer to the output layer (Lagos-Avid and

Bonilla 2017; Naganna et al. 2019; Ashrafzadeh et al.

2020). Moreover, this study used 70% of the data as

the training set and the remaining 30% as the test set.

3.1. Model Performances

Three metrics were applied to assess the model

performances, including the (1) coefficient of corre-

lation (CC), (2) root mean square error (RMSE), and

(3) Nash–Sutcliffe model efficiency coefficient (NS)

as you know One of the most popular evaluation

indices is the Nash Sutcliffe Index, whose range

varies from 1 to negative infinity. The intervals of

0.75 1, 0.36–0.75 and less than 0.36 for this index in a

simulation, respectively, show very good, satisfac-

tory, and poor performance (Nash and Sutcliffe 1970;

Isazadeh et al. 2017; Ashrafzadeh et al. 2018).

CC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
PN

i¼1 xi � xð Þ yi � yð Þ2Þ
ð
PN

i¼1 xi � xð Þ2
PN

i¼1 yi � yð Þ2Þ

s

ð16Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
PN

i¼1 xi � yð Þ2Þ
N

s

ð17Þ

NS ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
PN

i¼1 xi � yð Þ2Þ
ð
PN

i¼1 xi � xð Þ2

s

ð18Þ
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where xi is the ith observed value, x is the mean of

observations, yi is the ith value estimated from the

model, y is the mean of the estimated values, and N is

the number of observations.

3.2. Uncertainty Analysis

In this study we used an approach presented by

Abbaspour et al. (2007) to analyze uncertainty in the

predict evaporation from saline water. In this method,

the percentage of measured data bracketed by 95

percent of predicted uncertainties (95PPU) calculated

by the 2.5th (Xl) and 97.5th (Xu) percentiles of

normal distribution function obtained from n (in this

study 1000) times of the simulation results as follows

Bracketed by 95PPU ¼ 1

k
count jjXl

L � Xl
reg �Xl

U

� �

� 100

ð19Þ

where l is the item number from one to k, Xl
reg is the

observed value on day l, and j is the numerator

parameter of the number of observed values placed

on the 95% prediction uncertainties (95PPU) band. If

all values are within the confidence band of uncer-

tainty, they are then bracketed by 95PPU = 100

(Abbaspour et al. 2007; Isazadeh et al. 2017; Biazar

et al. 2019, 2020).

Also, 95 percent prediction uncertainties (95PPU

or P-factor) and d-factor coefficients were presented

to quantify the authority of calibration and uncer-

tainty analyses (Abbaspour et al. 2007).

Equation (20) was used to determine the average

width of the band (d-factor) index:

d � factor ¼ dx

rx
ð20Þ

where rx is the normal deflection of the observed

data and dx is the average width of the confidence

interval that can be achieved by

dx ¼ 1

k

XK

t¼1

ðXU � X LÞ ð21Þ

where t = 1,…, K is the number of observed data, XU

is the 97.5th percentile of model output, XL is the

2.5th percentile of model output, and K is the number

of observation data.

4. Results

The experiment was conducted in an environment

close to Lake Urmia and the environmental condi-

tions were the same for all pans. In this study, three

methods were used separately to determine the input

variable or select the appropriate input composition

and to estimate evaporation using an ANN. Finally,

results were compared. To estimate the evaporation

by the ANN model, the input variables were selected

based on the performance characteristics of each

method. The performance and specificity of each of

the preprocessing methods are described in Sect. 2.

This means that each of the three methods, depending

on their performance characteristics, had determined

the input variables or appropriate input composition

for estimating evaporation at different concentrations.

Therefore, the variables in the input composition

selected by each of the methods were different for

each concentration in the same way as Asmar and

Ergenzinger (1999).

4.1. Entropy Theory (EnT)

In the entropy section, the effective input vari-

ables were used to estimate evaporation for each pan

separately. Thus, the entropy value was first calcu-

lated for all selected input variables (row 1 in

Table 2). Then, among all input variables one

variable was eliminated and the Entropy Test was

conducted for the remainder of variables. In this

process all input variables were examined by remov-

ing the variables one by one. Then, the output of the

entropy method was included (row 2 to 15 in

Table 2). The first combination (row 1) containing

all the variables was designated as the base, meaning

that the subsequent combinations were compared

with the first combination containing the most

information (all variables). If the entropy value of

the next compound (2–15) was lower than the first

compound, the omitted variable contained informa-

tion that was effective in estimating the evaporation,
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thus it was known as the effective variable (bold

variable).

The entropy values of the information transfer for

different variables in line with estimating water

evaporation with different salinities are presented in

Table 2. In this table, the input data were: water

surface temperature, air temperature, degree of

cloudiness, hours of solar radiation, relative humid-

ity, wind speed, station pressure, maximum

temperature, minimum temperature, precipitation,

air vapor pressure, solar radiation, maximum wind

speed, and the square root of maximum and minimum

temperature (SQRT (Tmaximum - Tminimum)) in

Table 2, As can be seen the three most important

variables for evaporation from saline water using the

entropy method were water surface temperature,

wind speed and rainfall. Air temperature, solar

radiation, and relative humidity were important for

only two different concentrations identified as 10 and

500 g/L for air temperature, 5 and 500 for solar

radiation, and 5 and 300 for relative humidity). On

the other hand, the variables of cloudiness degree,

solar radiation, maximum temperature, and the

square root of maximum and minimum temperature

differences, at any of the concentrations, were not

selected as effective input variables by the

information transfer entropy method. Other variables

were also identified as effective input variables in 3

or 4 compositions by the entropy method.

In this section, the effect of salinity can be

generally investigated by initially selecting water

surface temperature, wind speed, and precipitation as

the primary variables for low concentrations accord-

ing to the entropy method. As the concentration

increased, the station pressure and air temperature

variables were added. At the concentration of 50 g/L,

the mean station vapor pressure variable was also

added to the initial variables according to entropy in

the same way as Anderson (1936).

4.2. Gamma Test (GT)

The GT for each pan was used to determine the

effective input variables to estimate evaporation.

Therefore, first, the GT was performed for all data

(row 1) and then this test was performed based on the

elimination of each of the variables from all available

variables (row 2–15), which is shown in Table 3. In

the first-row GT method, in which all the variables in

the composition were assigned as bases and the next

row or combinations were compared with the first

combination, if the gamma value of the next

Table 2

Summary of entropy values obtained for different inputs of the model in estimating evaporation from saline water with different

concentrations

No. Eliminated parameters Trans-information concentration (g/L)

5 10 20 50 100 300 500 Fresh water

1 – 1.099 2.194 1.893 1.034 1.954 2.014 3.001 2.985

2 Surface water temperature 0.996 1.032 0.781 0.781 0.987 1.458 2.502 1.006

3 Air temperature 1.770 2.097 2.246 2.246 3.001 3.241 1.942 3.127

4 Cloudiness 2.628 3.528 2.421 2.421 2.789 2.945 3.832 3.432

5 Sunshine 3.625 3.625 2.471 2.471 2.471 2.871 3.195 2.994

6 Mean relative humidity 0.708 2.807 2.997 2.997 3.104 1.145 3.731 3.010

7 Mean wind speed 0.785 0.986 1.407 1.407 1.007 1.975 1.035 2.325

8 Station pressure 3.754 1.052 2.123 2.123 2.578 2.418 1.855 3.014

9 Maximum temperature 2.711 3.502 3.001 3.001 2.897 2.145 3.483 3.049

10 Minimum temperature 0.859 1.958 2.914 2.914 3.492 1.921 1.192 3.442

11 precipitation 0.885 0.995 0.874 0.874 0.997 0.878 1.154 2.139

12 Mean station vapor pressure 3.754 3.543 2.784 2.784 1.014 2.244 0.548 2.996

13 Solar radiation 0.911 2.809 3.129 3.129 3.012 3.173 2.476 2.973

14 Maximum wind speed 0.859 1.984 1.454 1.454 0.994 2.098 2.723 2.173

15 SQRT (Tmaximum - Tminimum) 3.285 2.587 3.015 3.015 3.173 3.413 4.000 3.571

The bold values indicate important variables in EnT
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compound (2–15) was greater than the first com-

pound, the omitted variable was known as the

effective variable (bold variable in the table).

Using GT, various combinations of input vari-

ables were identified for different Pans for improving

the evaporation estimation. The important variables

identified by GT were surface water temperature, air

temperature, mean relative humidity, mean wind

speed, mean station pressure, minimum temperature,

precipitation, mean station vapor pressure, and solar

radiation. This result was obtained in the case of six

(or more) out of the eight concentrations (input

parameter) used in this study (Table 3). The use of

GT led to the elimination of mean wind speed for all

the densities (except 20 (g/L) and 500 (g/L) concen-

trations). The parameter denoted by the square root of

maximum and minimum temperature (SQRT (Tmax-

imum - Tminimum)) eliminated by GT for densities of

10, 20, 50 (g/L) and fresh water. Results showed that

maximum temperature had been eliminated just for

three densities, namely 10, 20 (g/L) and fresh water

(Table 3).

As can be seen, the main variables at low

concentrations included the mean relative humidity,

mean wind speed, and air temperature which were

almost the same as Piri et al. (2009). As concentration

increased, surface water temperature, sunshine hours,

station pressure, mean station vapor pressure, and

solar radiation were added to the initial variables.

Wind speed, temperature, and relative humidity were

among the factors that contributed to evaporation

(Moghaddamnia et al. 2009; Biazar et al. 2019). As

the concentration of the solution increased, the salt in

the solution absorbed the sun’s radiation energy and

broke its bonds. Therefore, solar radiation, sunshine

hours, and surface water temperature were added to

the initial variables. Also, at higher concentration, the

soluble salts decreased the free energy of the water

molecules and hence the lowered the saturated vapor

pressure above the saline surface. As the concentra-

tion increased toward supersaturated concentration,

the maximum temperature parameter and the SQRT

(Tmaximum - Tminimum) were added to the input

variables. This indicated that as the concentration

increased, the role of temperature increased.

4.3. Procrustes Analysis (PA)

The PA method was used for detecting the most

effective variables in saline water evaporation. The

PCA model should be applied for data in an iterative

manner. The number of dominant components was

detected by eigenvalue calculation. Those eigenval-

ues, whose values were more than one, were selected

as the most dominant PCs. Results showed that the

first three components had eigenvalues more than 1.

Table 3

Summary of the output of GT for estimating daily evaporation using the normalized option

No. Eliminated parameter in GT The values of Gamma concentration (g/L)

5 10 20 50 100 300 500 Fresh water

1 – 0.030 0.033 0.035 0.036 0.029 0.033 0.025 0.043

2 Surface water temperature 0.036 0.035 0.034 0.040 0.035 0.034 0.030 0.042

3 Air temperature 0.034 0.036 0.034 0.040 0.035 0.030 0.031 0.042

4 mean cloudiness 0.030 0.027 0.031 0.033 0.025 0.030 0.032 0.037

5 Sunshine 0.029 0.034 0.036 0.035 0.033 0.031 0.026 0.042

6 Mean relative humidity 0.036 0.040 0.039 0.039 0.037 0.036 0.032 0.044

7 Mean wind speed 0.028 0.032 0.042 0.044 0.045 0.048 0.034 0.050

8 Station pressure 0.025 0.033 0.035 0.043 0.032 0.035 0.042 0.039

9 Maximum temperature 0.032 0.032 0.034 0.041 0.033 0.036 0.030 0.042

10 Minimum temperature 0.037 0.042 0.041 0.043 0.038 0.037 0.035 0.047

11 Precipitation 0.032 0.038 0.040 0.046 0.035 0.032 0.034 0.047

12 Mean station vapor pressure 0.035 0.035 0.032 0.043 0.038 0.042 0.031 0.041

13 Solar radiation 0.031 0.036 0.036 0.036 0.032 0.033 0.025 0.039

14 Maximum wind speed 0.026 0.030 0.035 0.033 0.026 0.030 0.029 0.035

15 SQRT (Tmaximum - Tminimum) 0.024 0.027 0.032 0.035 0.031 0.041 0.029 0.037

The bold values indicate the important variables in GT
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Therefore, the first three components were selected to

be the most dominant components here. Also, the

number of most important variables in the estimation

of saline water evaporation was chosen to be three.

Bearing in mind that the number of dominant

effective PCs and the number of effective variables

were three, the PA analysis was carried out for data

and the M2 index was calculated for the selection of

important variables. Table 3 shows the most impor-

tant variables which were detected by PA to be

effective in saline water evaporation with different

concentrations.

From Table 4, it can be seen that, for example, in

the 20 (g/L) concentration, the three important

variables in the estimation of saline water were air

temperature, sunshine hours, and mean wind speed

same as Wang et al. (2018a, b), respectively. This

result is valid for the other five concentrations,

namely 50, 100, 300, 500 g/L, and ‘‘Fresh Water’’

too. Similarly, sunshine hours, mean wind speed, and

maximum temperature were the effective variables in

evaporation from water with concentration of 10 (g/

L). The best combinations of variables for the

estimation of saline water evaporation with different

concentrations are represented in Table 4.

Depending on the dataset used, the PA method

first classifies the data and then selects the variable

that contains the most variance in each data set.

Therefore, the selected variable from each category is

most similar to its members, thus using the selected

variable can represent other variables in each

category.

As can be seen from the results, the wind speed

variable was recognized as the effective input

variable by almost all three methods, the same as

Mor et al. (2018). This may be due to the fact that the

station studied was near the lake and humidity was

high in the area and because of high wind speed in the

area, this variable was able to show its effect well.

The physical effect of wind speed is to reduce the

moisture content in the region and increase the

evaporation rate, so the wind speed is also a good

representative of maximum wind speed, relative

humidity, and saturated vapor pressure. Another

variable that can be considered as an effective input

variable in evaporation modeling is the air temper-

ature and surface water temperature which were

selected by the GT and EnT at most concentrations.

However, the PA’ method identified air temperature

as an effective input variable rather than surface

water temperature. The reason is that depending on

the physical conditions and the variance of data, air

temperature can be representative of surface water

temperature. It should be noted that the most

important energy source for warming the environ-

ment is solar radiation (Dinpashoh et al. 2019; Biazar

and Ferdosi 2020), and in fact, the physical effect of

solar radiation is the increase in ambient temperature.

The temperature itself is also an effective factor in

evaporation. Thus, the temperature can somehow

reflect the physical effect of solar radiation and

represent variable solar radiation. Sunshine hours can

also be a good representative of the variable cloudy

and rainy weather. In fact, the longer the sunshine

hours, the lower the cloudiness, and the lower

cloudiness degree will also bring about a decrease

in humidity.

In saline water, stratification is carried out at high

concentrations and the lower part has the highest

Table 4

Optimal input variables selected, based on PA for each saline water concentration

Concentration (g/L) The main effective variables in evaporation

5 Air temperature Mean wind speed Solar radiation

10 Sunshine hours Mean wind speed Maximum temperature

20 Air temperature Sunshine hours Mean wind speed

50 Air temperature Sunshine hours Mean wind speed

100 Air temperature Sunshine hours Mean wind speed

300 Air temperature Sunshine hours Mean wind speed

500 Air temperature Sunshine hours Mean wind speed

Fresh water Air temperature Sunshine hours Mean wind speed
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concentration possible. It should be noted that the

sunlight penetrating the pan will pass through the first

and second layers and fall into the third layer at high

concentrations, which is why the temperature was

very high in the pan with high concentrations-the

same as Rabl and Nielsen (1975), Hull et al. (1988),

and El-Sebaii et al. (2011). In fact, salts or high

concentrations of the solution absorb and store the

sun’s energy. The second layer acts as an insulator for

the third layer, which reduces the water surface

temperature (the first layer) and increases the tem-

perature at the bottom of the pan (the third layer) at

high concentration, the same as Kurt et al. (2000),

Suárez et al. (2010), and Ruskowitz et al. (2014).

This will reduce the release of water molecules into

the saline water. In saline waters, the first layer has

the lowest concentration compared to the other two

layers, but the soluble salts in this layer decrease the

free energy of water molecules. According to the

second law of thermodynamics, the increase in ionic

activity due to the presence of ions in the solvent and

the chemical potential of the solvent will cause the

evaporation of saline waters, especially the saline

waters, not following the usual models of evapora-

tion. As a result, it reduces the rate of conversion of

water molecules from liquid to gas, and reduces the

vapor pressure, as is known, evaporation takes place

whenever there is a deficit between a water surface

Evaporative losses Reflect Radiation

Upper Convective Zone

None- Convective Zone 

Lower Convective Zone

Temperature losses

Figure 3
Where Pans were divided into three parts: UCZ (Upper Convective Zone), NCZ (No-Convective Zone) and LCZ (Low Convective Zone)
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and the overlying atmosphere and sufficient energy is

available. This will be neutralized as the concentra-

tion decreases, and the energy from sunlight is being

distributed more evenly throughout the pan. Also, the

concentration in the first layer decreases from super

salty to freshwater, respectively, which increases the

temperature in the surface layer of water, thereby

increasing evaporation from saline to freshwater. As

mentioned earlier, the climate was the same for all

pans. Therefore, according to the above discussion,

the physical effect of concentration of the solutions

was mainly on the temperature changes, so that the

surface temperature of the saline water was observed

to be lower than the freshwater surface temperature

for the above-mentioned reasons. Evaporation mea-

surements in this study were performed for each

concentration separately so that the effect of the

concentration factor was considered on the volatility

values themselves.

4.4. Modeling Results

The best input combinations were identified by

GT, EnT, and PA, and then ANN was used for

evaporation estimation. Table 5 shows the results of

performance measures of the intelligent models with

different scenarios, namely, ANN-GT, ANN-EnT and

ANN-PA. As seen from Table 5, the ANN-GT model

showed better performance in the estimation of daily

saline water evaporation as compared with the other

two models. This result was obtained, based on the

performance measures (RMSE, CC, and NS), which

is valid for all salt concentrations [except 20 (g/L)].

One of the uncertainties of statistical and intelligent

models is the use of iterations in calculations. The

coefficients such as the d-factor and p-factor can be

calculated based on the results of each iteration, each

representing part of the uncertainty of each model.

Therefore, to determine the uncertainty band after a

thousand times iteration in each model, a 95%

probability band was obtained for each pan. Although

the model ANN-GT revealed better performance than

Table 5

Test results and uncertainty analysis of ANNs models

Models Concentration (g/L) R RMSE (mm/day) NS d-factor p-factor Model structurea

ANN-GT 500 0.88 1.64 0.75 1.88 0.86 (14-10-1)

300 0.88 1.83 0.68 1.37 0.64 (9-5-1)

100 0.85 2.62 0.71 1.24 0.64 (12-5-1)

50 0.95 2.01 0.85 0.90 0.55 (9-2-1)

20 0.93 2.04 0.86 1.42 0.82 (8-8-1)

10 0.93 1.97 0.86 1.34 0.82 (9-8-1)

5 0.98 1.23 0.95 1.23 0.91 (9-17-1)

Fresh water 0.94 1.81 0.88 0.91 0.68 (4-10-1)

ANN-EnT 500 0.88 1.74 0.72 1.16 0.68 (9-2-1)

300 0.87 1.68 0.73 1.16 0.64 (5-7-1)

100 0.87 2.62 0.71 1.24 0.55 (5-9-1)

50 0.92 2.28 0.81 1.07 0.50 (7-3-1)

20 0.94 1.92 0.87 0.76 0.64 (4-2-1)

10 0.94 1.86 0.87 1.23 0.77 (5-8-1)

5 0.96 1.60 0.92 0.74 0.68 (7-4-1)

Fresh water 0.92 2.06 0.84 1.04 0.68 (4-13-1)

ANN-PA 500 0.88 1.69 0.71 1.10 0.59 (3-8-1)

300 0.83 1.85 0.67 0.99 0.55 (3-3-1)

100 0.86 2.53 0.73 1.12 0.55 (3-7-1)

50 0.92 2.24 0.82 0.66 0.50 (3-2-1)

20 0.96 1.71 0.90 1.43 0.77 (3-13-1)

10 0.92 2.03 0.85 0.85 0.59 (3-8-1)

5 0.95 1.80 0.90 0.92 0.77 (3-9-1)

Fresh water 0.93 1.91 0.86 0.70 0.50 (3-4-1)

aModel structure for example (14-10-1), It means: 14 input, 10 hidden and one output nodes or neuron
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Figure 4
Uncertainty of ANN-GT, ANN-EnT and ANN-PA in estimation of evaporation from saline water
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ANN-EnT and ANN-PA, however, ANN-PA showed

lower uncertainty than the other two, because the

values of the d-factor measure obtained for ANN-GT

and ANN-EnT were larger than ANN-PA. However,

as can be seen from Table 5 and Fig. 4, the values

obtained here for the d-factor and 95% PPU (i.e.

p-factor) indicated the lower uncertainty of ANN-PA

model in all the tested concentrations [except 20 and

5 (g/L)] (Table 5 and Fig. 4). Results of uncertainty

analysis for different salt concentrations are shown in

Fig. 4. As can be seen from Fig. 4, ANN-GT and

ANN-EnT had a wider 95% PPU band than ANN-

PA. This implies that the obtained values of d-factor

for the ANN-GT and ANN-EnT models were greater

than for ANN-PA. According to Fig. 4, almost all

models showed that the higher the bandwidth of 95

PPU, the greater the d-factor, and the lower the

bandwidth, the lower the d-factor, the same as

Abbaspour et al. (2007), and Noori et al. (2011).

The lowest bandwidth also belonged to the ANN-PA

model for concentrations of 50 g/L with a P-factor of

0.45 and a d-factor of 0.66. The highest d-factor

belonged to the ANN-GT model for a concentration

of 500 g/L with a d-factor of 1.88 and a p-factor of

0.86. One reason for the high uncertainty in this

model may be due to the number of input variables

selected by the gamma test-the same as Isazadeh

et al. (2017). As mentioned in the GT section, for the

concentration of 500 g/L all variables except the

precipitation variable were selected as inputs. Com-

parative diagrams of calculated and observed values

are given in Fig. 4, which shows the proper overlap

between the estimated and observed diagrams.

Besides, according to the NS index, given the high

values of this index, which in most models were in a

very good range, it can be concluded that the

performance of the models was acceptable. Gener-

ally, results with lower uncertainty are more reliable

in the estimation of hydrologic variables (Khaledian

et al. 2020; Isazadeh et al. 2017; Ghorbani et al.

2016; Noori et al. 2011; Yang et al. 2008; Abbaspour

et al. 2007).

5. Conclusion

Model input selection is a complicated process,

especially for non-linear dynamic models. This study

introduced a new input selection method, PA, for the

estimation of daily evaporation from saline water with

different concentrations. This work is conducted for

daily estimation of saline water evaporation using

three intelligent models (with different scenarios)

which are ANN-GT, ANN-EnT and ANN-PA. The

outputs of these models were compared with the

corresponding measured evaporation. The amount of

evaporation was measured separately for each pan

(each pan had different concentrations). As in the
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Kokya and Kokya (2008) study, the concentration was

kept constant throughout the experiment. It should be

noted that the amount of concentration affected the

amount of evaporation and evaporation increased

from the high-concentration pan toward the low-

concentration pan (Al-Khlaifat 2008). The effect of

concentration is included in the evaporation values

themselves. And the purpose of this study was to

determine the best input variables. Moreover, the

selection of effective Inputs for saline water evapo-

ration using PA, GT and EnT can be regarded to be the

novelty of this study. The most important variables

identified by the GT were surface water temperature,

air temperature, mean relative humidity, mean wind

speed, mean station pressure, minimum temperature,

precipitation, mean station vapor pressure, and solar

radiation. Also, as can be seen the most important

variables for evaporation from saline water using the

EnT method were water surface temperature, wind

speed, and precipitation. The three important vari-

ables in the estimation of saline water selected by the

PA method were air temperature, sunshine hours, and

mean wind speed. As the concentration increased, the

mean station vapor pressure and temperature variables

had the most influence on saline water evaporation.

The performances of models were evaluated by using

the RMSE, CC, and NS measures. The limitations of

these measures are in their inability to assess uncer-

tainty. Therefore, uncertainty of the models used was

evaluated using the p-factor (95% PPU) and d-factor.

Although ANN-GT was found to be a powerful model

in the estimation of evaporation, however, it failed to

select the optimal input combinations with lowest

uncertainties (Noori et al. 2011). Having lower

uncertainty is reported to be the primary criterion in

the selection of most suitable model in hydrologic

practical applications. This study employed the men-

tioned two measures (p-factor and d-factor) in

uncertainty analysis. Results of this study are inter-

preted, based on the evaluation of uncertainty in

addition to model performance measures. Although

there are numerous questions that need to be addres-

sed yet, this work will hopefully stimulate more

investigation in input selection methods in model

development for hydrological processes, climate

simulation, and evapotranspiration estimation. The

authors will suggest to develop different scenarios for

ANN models to remove bias and increase sufficiency

in other researches. Generally, according to the results

the PA method was able to demonstrate accept-

able performance over the other two methods, with the

least number of input variables, in addition to reduc-

ing the uncertainty of the ANN model. It can be

concluded that by reducing the number of variables as

well as selecting the input combination that is a good

representative of the effective variables in the evap-

oration estimation, the model complexity can be

reduced and a good estimate of saline water evapo-

ration can be made.
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