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Abstract—Accurately estimating total organic carbon (TOC)

from suites of well logs is essential as it is too costly and time

consuming to take direct measurements from core samples in many

wells. Unfortunately, the several methods developed over recent

decades, based on various correlations and correlation-based

machine learning methods, do not provide universally reliable,

accurate or easily auditable TOC predictions. A method is devel-

oped and its viability evaluated exploiting a promising correlation-

free, data-matching routine. This is applied to published well-log

curves, with supporting mineralogical data and measured TOC, for

two wells penetrating the Lower Barnett Shale formation at distinct

settings within the Fort Worth Basin (Texas, U.S.). The method

combines between 5 and 10 well log features and evaluates, on a

supervised learning basis, multiple cases for nine distinct models at

data- record-sampling densities ranging from one record for every

0.5 ft to one record for every 0.04 ft. At zoomed-in sampling

densities the model achieves TOC prediction accuracies for the

models combining data from both wells of (RMSE B 0.3% and

R2 C 0.955) for models involving 6 and 10 input variables. It is the

models involving six input variables that have the potential to be

applied in unsupervised circumstances to predict TOC in sur-

rounding wells lacking measured TOC, but that potential requires

confirmation in future multi-well studies.

Keywords: Well log TOC estimates, data-matching machine

learning, zoomed-data interpolation, correlation-free feature

selections, model transparency, data record sample densities.

1. Introduction

Since the recognition in the 1940s that oil yield

from shales was linked to their Uranium contents

which was recorded by gamma-ray (Gr) well logs

(Beers 1945; Swanson 1960) there has been intense

interest in developing accurate methods to predict

organic matter (OM) content and source rock prop-

erties from single or multiple well log curves. OM

has quite distinctive petrophysical properties from the

inorganic minerals that dominate sedimentary rocks,

as well as its distinctive chemistry dominated by

hydrogen (H) and carbon (C). Its lower density and

acoustic velocity (higher travel time) and higher

resistivity and H content mean that the basic wireline

logs, Gr, bulk density (Pb), resistivity (Rs), neutron

(Np) and acoustic travel time (DT recorded from a

P-sonic log), can all be used to an extent as indicators

of OM, total organic carbon (TOC) and other source

rock properties (Meyer and Nederlof 1984; Mann

1986; Fertl and Chilingar 1988).

The most accurate way to obtain TOC values

from profiles through rock formations is through

laboratory measurements on samples from well-bore

cores, side-wall lateral-cores and drilling cuttings. To

obtain such measurements is time consuming and

costly and only provides intermittent sample analysis.

The attraction of being able to somehow convert

continuous wireline or measurement-while drilling

(MWD) log curves into reliable TOC and other

source rock parameters is, therefore, clear to see.

Many methods have been proposed, tested and are

applied with respect to TOC estimation. All have

limitations and many fail to provide consistent

accuracy.

Schmoker (1979, 1981, 1993) and Schmoker and

Hester (1983) with his colleagues (Schmoker and

Hester 1983; Hester and Schmoker 1987) provided an

early and relatively simple but effective method

based on bulk density (Pb) linear regressions. El

Sharawy and Gaafar (2012) summarize the various

well-log relationships in Smoker’s equations some of

which involve Gr to indicate the presence of OM. Pb

is a viable log to select because of the high contrast

between shale and OM densities. Non-organic shale1 DWA Energy Limited, Lincoln, UK. E-mail:
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typically has a matrix density of close to 2.7 g cm3

and that contrasts significantly with OM density

of * 1.3 g cm3. These methods provide reasonable

results in homogeneous formations and are useful

quick-look tools to apply, but in heterogeneous or

highly laminated formations the results become

unreliable.

Multi-variate regression analysis, first applied to

predict TOC from several wireline log curves by

Mendelson and Toksoz (1985), continues to be

widely applied with local success (e.g., Verma et al.

2016; Alshakhs and Rezaee 2017). However, the

established correlations typically work well for one

location, but cannot be reliably applied universally.

Passey et al. (1990) proposed the popular delta-

log-resistivity method (DLogR) for estimating TOC

from well logs. Log-scale resistivity (in the range

0.2–2000 mV) and linear-scale sonic logs (in the

range (40–140 ls/ft) are overlain following the

establishment of the baseline Rs to DT relationship

and thermal maturity. Separation of the log overlays

can then be calibrated to TOC for certain ranges of

thermal maturity. As with Pb regressions the method

works well in some formations but not others. Passey

et al. (2010) extended these relationships to more

thermally mature zones appropriate shale gas

resources evaluations. As the relationships apply to a

limited range specific conditions with some linear

assumptions, the single formula typically used to

calculate DLogR is restricted to limited conditions

(e.g. Alizadeh et al. 2018), although approximations

can be made. Another key over-simplification of the

method is that it assumes that the matrix of the

kerogen-rich and kerogen-poor shale fractions of a

formation have the same matrix log responses. This is

clearly not always the case.

Various attempts have been made to improve or

modify the DLogR method with limited success, e.g.

by incorporating Pb values (Huang et al. 2015).

Cheng et al. (2016) combined the DLogR method

with a shale volume (Vsh) calculation to identify

organic-rich shale lithofacies from gamma ray cor-

rected for Vsh continuously from well logs.

Although, Pb-regression and DlogR methods have a

tendency to overestimate rather than underestimate

TOC compared to measured data in some formations,

that is not always the case. Smectite-rich shales tend

to display low resistivity due to the influence of high

bound water contents. Mallick and Raju (1995)

showed that the DlogR method did not work in areas

experiencing conditions beyond its correlations. Zhao

et al. (2016) provided examples showing the DlogR
method providing inconsistent results in marine

shales of the Sichuan Basin (China).

Others, particularly well-logging companies, have

proposed full-scale petrophysical formation evalua-

tion attempting to derive accurate porosity values to

accurately estimate the amount of TOC and/or kero-

gen present (Herron 1988; Boyer et al. 2006; Herron

et al. 2011). These methods are time consuming and

have to overcome challenges of clay and Vsh quan-

tification in shales, and the inability of Np and Pb to

distinguish between porosity and kerogen. In prac-

tice, this means that additional data from specialist

well logs (e.g., NMR and SpectroLith) which are only

available on a few wells. In wells where natural

gamma ray spectral log data is available the U and

U/Th ratio can be used to estimate OM and TOC, as

higher U/Th corresponds to higher TOC (Luffel et al.

1992; Wang 2013). However, the limited availability

and high-cost of such logs means that such an

approach is not suitable to the bulk of wells with only

basic well-log data available.

Since the 1990s (Huang and Williamson 1996)

there have been many attempts to demonstrate that

various machine learning methods represent the way

forward to overcome the challenges with linear and

multi-variate correlations and direct TOC measure-

ments. These methods are able to use all the well logs

available (typically, Gr, Pb, Rs, Np, DT), but require

extensive training and testing with multiple samples

to verify the reliability of their predictions. Artificial

neural network (ANN) have been most widely

applied (Arbogast and Utley 2003; Alizadeh et al.

2011, 2018; Kadkhodaie et al. 2009; Khoshnoodkia

et al. 2011; Bolandi et al. 2015; Tabatabaei et al.

2015, 2017). Some have applied statistical clustering

to distinguish lithofacies prior to applying ANN to

predict TOC for specific lithofacies (e.g. Sfidari et al.

2012). Others have applied combined neuro-fuzzy

methods to calculate OM (Kamali and Mirshady

2004). Some have also applied ANN to well log data

to predict a broader range of pyrolysis source rock

metrics, e.g. S2 peak value (Alizadeh et al. 2018), or
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thermal maturity measures, e.g., vitrinite reflectance

(Kadkhodaie and Rezaee 2017).

Support vector regression (SVR) has also been

applied to predict TOC from multiple well logs (Liu

et al. 2013; Tan et al. 2015) and shown to outperform

ANN predictions applied to the same dataset but with

coefficient of determination (R2) less than 80%. Shi

et al. (2016) demonstrated that an extreme learning

machine (ELM) method and an ANN applied to the

same dataset achieved broadly similar level of TOC

prediction accuracy (R2 from 0.88 to 0.93), but the

ELM model executed much more rapidly.

There are some drawback with these regression-

based machine-learning techniques. One is that their

correlations are not transparently developed involv-

ing hidden layers or intricate and difficult-to decipher

intermediate steps. Moreover, they are prone to over-

fitting data in ways that are not easy to identify.

Applied to laminated and heterogeneous formations

their training and testing subsets may not adequately

sample all sub-layers of a formation.

In this study, an optimized data-matching,

machine-learning technique, the transparent-open-

box algorithm, (TOB) is proposed (Wood 2018) to

predict TOC from a suite of well logs and core data

for two published Barnett Shale (Texas) well log

sections. Significantly, this method does not involve

the use of any correlations, but rather exploits, in a

highly transparent manner, the local relationships

between poorly-correlated and well-correlated vari-

ables. This study primarily seeks to validate this

novel method for TOC prediction from well logs.

Figure 1
Workflow for applying TOB for total organic carbon prediction from well-log data
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Future work is planned to apply the algorithm and its

application methodology to predict TOC in multiple

wells across a basin.

2. Methods

2.1. Barnett Shale Data for Wells A and B

The Barnett Shale is a TOC-rich prolific shale-gas

producing formation of Mississippian age distributed

across the Bend Arch-Fort Worth Basin with its well

documented tectonic history (Walper 1982), lithofa-

cies distribution and stratigraphic framework

(Abouelresh and Slatt 2012). It is the basin that

launched todays prolific shale gas industry (Jarvie

et al. 2007). The Barnett shale is deepest towards the

northeast reaching more than 1000 ft (305 m) in

thickness with substantial limestone interbeds but

thins on to the Chappel shelf to less than 50 feet in

places (Pollastro et al. 2007). The formation made up

of organic-rich shales that alternate with thin shal-

low-marine limestones (Singh et al. 2008). Wells A

and B (Verma et al. 2016) from which the data

evaluated in this study is derived are situated in the

northeast of the basin where most gas production

comes from the lower part of the formation. Well B is

some 30 miles (48 km) west-south-west of Well A.

Both wells, for the Lower Barnett Shale (LBS) have

extensive TOC measurements taken on rock samples

by Rock–Eval, have a basic suit of well log data (Gr,

Table 1

Range, mean and units for the Barnett Shale variables measured in Wells (A and B, Verma et al. 2016)

Data sources Variable Symbol Units Min Max Mean

Standard logs recorded Gamma ray Gr API 22.5 241.0 142.3

Bulk density (RHOB) Pb g/cm3 2.39 2.73 2.54

Resistivity (deep—RTD) Rs ohm m 4.9 2074.9 182.4

Neutron porosity (NPHI) Np fraction (v/v) 0.02 0.36 0.19

Acoustic /P-sonic travel time Dt ls/ft 50.4 98.1 77.5

Core measurements Quartz Qz volume % 0.28 58.93 25.23

Limestone Ls volume % 0.00 59.14 11.26

Clay Cy volume % 0.37 59.98 36.80

Dolomite Dl volume % 0.00 49.41 3.53

Calculated petrophysical metric Brittleness index BI fraction (v/v) 0.01 0.90 0.39

Core measurements Total organic carbon TOC volume % 0.75 6.95 3.79

Table 2

Correlation matrix for Barnett shale variables recorded in wells A and B (Verma et al. 2016)

R Gr Pb Rs Np Dt Qz Ls Cy Dl BI TOC

Gr 1 - 0.1422 0.0906 0.4285 0.0368 0.1597 - 0.2258 0.2512 0.0759 - 0.0451 0.2740

Pb 1 - 0.1060 - 0.3552 - 0.7044 - 0.4032 0.3107 - 0.1286 0.2447 - 0.119 - 0.38

Rs 1 - 0.2209 - 0.0919 0.2747 - 0.0833 - 0.0904 0.0935 0.2804 0.2299

Np 1 0.5902 - 0.0634 - 0.1474 0.3324 - 0.1728 - 0.355 0.1187

Dt 1 0.1742 - 0.2417 0.1751 - 0.2113 - 0.042 0.1385

Qz 1 - 0.5035 0.0303 - 0.1997 0.6146 0.5097

Ls 1 - 0.6669 0.0924 - 0.139 - 0.661

Cy 1 - 0.319 - 0.434 0.4947

Dl 1 0.3593 - 0.221

BI 1 0.1091

TOC 1

For input abbreviations see Table 1
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Pb, Rs, Np, DT) and Fourier-transform infra-red

(FTIR) mineralogical measurements (volume per-

cent) for quartz, limestone, clay and dolomite (Qz,

Ls, Cl, Dl) all displayed as log versus depth curves

(Verma et al. 2016). They calculate DLogR and use

the mineralogical data to calculate the Brittleness

index (BI) using the Wang and Gale (2009) ratio,

which includes measured TOC along with the four

Figure 2.
a Gamma ray (Gr), b bulk density (Pb), c resistivity (Rs), d neutron porosity (Np), e P-sonic travel time (Dt), and f brittleness index (BI)

values for Barnett Shale wells A and B (data for 2000 depth intervals derived from Fig. 4 of Verma et al. 2016).
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mineral volumes in its denominator and quartz plus

dolomite in the numerator. Both BI and DLogR along

with the mineralogical and petrophysical data for

both wells are displayed as log-depth curves. For this

study 11 variables (Gr, Pb, Rs, Np, DT, Qz, Ls, Cl,

Dl, BI and measured TOC) were digitised and

initially each curve is sampled 1000 times across

the depth intervals of interest. For the two wells

studied the depth intervals of interest encompass the

Lower Barnett Shale (Well A 8000–8470 ft; Well B

6490–6790 ft). This provides a resampling of each

log curve at every 0.47 ft for well A and a sample for

each well-log curve for well B at every 0.30 ft. That

sampling density is sufficient to provide a meaningful

starting point resolution for TOC prediction analysis.

For thicker zones of interest, clearly, a greater

number of resamples would be necessary to achieve

that resolution. This dataset was then assessed in

various combinations and sampling densities by

interpolating between the original 1000 points sam-

pled on each log curve. This made it possible to test

the ability of the TOB algorithm to predict TOC for

the LBS, evaluating both wells separately and

together.

2.2. Transparent-Open-Box Optimized Data

Matching

A step-by-step implementation procedure for

TOB is detailed in Wood (2019a). The workflow

for this algorithm adapted for TOC estimation from

well logs is displayed in Fig. 1. A key feature of the

Figure 3
Core mineralogy volume measurements for a quartz, b clay, c limestone, and d dolomite for Barnett Shale wells A and B (data for 2000 depth

intervals derived from Fig. 9 of Verma et al. 2016)
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algorithm is that its evaluation is divided into two

stages, each providing an informative and useful

estimate that work together to expose cases of

overfitting. Each data record evaluated contains all

the variable values for a simple depth interval.

TOB Stage 1 assesses matches between records in

a small, evenly distributed subset designed to tune the

algorithm with a larger subset available for solution

training. It does so, seeking the best ten (Q = 10)

matches, which are those with the lowest sum of the

squared difference (VSEjkÞ between the input vari-

ables. Step seven (Fig. 1) is the key procedure for

TOB Stage 1 and is calculated with Eq. (1)

X
VSEjk ¼

Xn¼N

n¼1

VSE Xnð Þjk� Wnð Þ; ð1Þ

where n is one of N input variables, VSE Xnð Þjk is the
variable-squared error (VSE) or difference for

variable Xn, j refers to the jth record in the tuning

subset, k refers to the kth record in the training subset,

Each record j is matched against all records in the

training subset,
P

VSEjk is sum of (VSE) differences

for all N input variables for each (j) record in the

tuning subset matched against all data records (k) in

the training subset.

Wn weights (0\Wn B 1) are multiplied with the

VSE for each of N variables. Each input variable

weight = 0.5 for TOB stage 1. This removes bias

towards any input variable. For most applications,

such as TOC prediction, it is appropriate to set the

weight for the dependent variable (i.e. variable

N ? 1) to zero so it does not influence data matching

or solution tuning.

The training subset consists of data records not

selected in a particular run for small tuning subset or

to be held separately (testing subset) to independently

Table 3

Summary of TOC prediction models evaluated for Barnett Shale wells A and B

Model # Barnett Shale well models evaluated with TOB and solutions compared

Model description Sampling scale of data records Solutions compared Q

Well A: 5 basic well logs only 1 sample per 0.47 ft TOB Stage 1 10

1 8000–8470 ft 0.47 Stage 2 Best:1F1 2

1000 data records Average of 45 Stage 2 runs 3.8

Well A: 10 input variables 1 sample per 0.47 ft TOB Stage 1 10

2 5 logs ? 4 mineral volumes ? BI Stage 2 Best:5G2 2

1000 data records Average of 45 Stage 2 runs 2.5

Well A: 10 input variables 1 sample per 0.47 ft TOB Stage 1 10

3 5 logs ? 5 mineral to log ratios Stage 2 Best:4G1 2

BI not included as an input 1000 data records Average of 45 Stage 2 runs 2.8

Well A: 10 input variables 1 sample per 0.047 ft TOB Stage 1 10

4 5 logs ? 4 mineral volumes ? BI 0.047 Stage 2 Best:1E2 2

Zoomed (8376 to 8470 ft) 2000 data records Average of 49 Stage 2 runs 4

Well A: 5 input variables 1 sample per 0.047 ft TOB Stage 1 10

5 5 basic logs only 0.047 Stage 2 Best:2F1 4

Zoomed (8376–8470 ft) 2000 data records Average of 50 Stage 2 runs 4.2

Well B: 5 basic well logs only 1 sample per 0.3 ft TOB Stage 1 10

6 6490 to 6790 ft 0.3 Stage 2 Best:2F3 6

1000 data records Average of 45 Stage 2 runs 6.1

Well B: 10 inputs 1 sample per 0.3 ft TOB Stage 1 10

7 5 logs ? 4 mineral volumes ? BI Stage 2 Best:3G1 3

1000 data records Average of 45 Stage 2 runs 2.5

Well A ? B: 10 inputs Well A (1 sample/0.47ft) TOB Stage 1 10

8 5 logs ? 4 mineral volumes ? BI Well B (1 sample/0.3ft) Stage 2 Best:4E3 2

2000 samples Average of 45 Stage 2 runs 2.9

Well A ? B: 6 inputs Well A (1 sample/0.094ft) TOB Stage 1 10

9 5 logs ? Stratigraphic height Well B (1 sample/0.06ft) Sensitivity Best:T14 3

10,000 data records Average 49 B Stage 2 solutions 2.79

Vol. 177, (2020) Total Organic Carbon Predictions from Lower Barnett Shale 5457



test and verify the solutions generated by the tuning

subset. The suitable sizes of the tuning and testing

subsets are established by trial-and-error sensitivity

analysis. For the Barnett shale well datasets used in

this study, such sensitivity analysis suggested tuning

datasets with about 135 data records (* 13.5% of the

dataset) and testing subsets with about 100 data

records (* 10% of the dataset) were sufficient to

provide repeatable levels of accuracy from five

different sample-selection cases. That left about 765

data records (* 76.5% of the dataset) in the training

subset to be used for data matching. The samples

included in the tuning and testing subset are selected

without replacement, so that the same data record

cannot appear in more than one of the subsets in any

specific sample selection case. The samples selected

for the tuning and testing subsets are also spread as

widely across the dependent variable range as

possible. Data records for those subsets are not

selected randomly as this could cluster data records in

certain sections of the dependent variable distribution

and leave other areas unsampled in some cases. Also,

sampling is configured for five distinct sample

selection cases in a way that avoids the same data

records being selected for more than one tuning or

testing subset involved in those cases.

The computed fraction that each of the highest-

ranked matches contributes to the calculated stage 1

prediction (Step 9 Fig. 1) is calculated using the

relative magnitude of their
P

VSE values from Eq. 1.

This is established with Eq. 2.

fjq ¼
X

VSEjq=
Xr¼Q

r¼1

X
VSEjr

" #
ð2Þ

Table 4

Statistical measures of TOC prediction accuracy achieved by the nine models evaluated with the TOB algorithm involving Barnett Shales

wells A and B

Model # Solutions compared Statistical measures of TOC prediction accuracy for best TOB stage 2 solution for each model (i.e.,

best of 45 solutions derived for each model applied to all data records involved in the model)

RMSE (%) MSE APD% AAPD% SD (%) R R2

TOB Stage 1 0.7238 0.5239 - 8.20 20.11 0.7241 0.8722 0.76077

1 Stage 2 Best:1F1 0.6726 0.4524 - 6.10 16.57 0.6729 0.8902 0.79250

Average of 45 Stage 2 runs 0.7022 0.4936 - 6.69 17.21 0.7022 0.8798 0.77416

TOB Stage 1 0.4321 0.1867 - 2.41 9.99 0.4319 0.9569 0.91570

2 Stage 2 Best:5G2 0.3342 0.1117 - 0.99 5.15 0.3343 0.9740 0.94869

Average of 45 Stage 2 runs 0.3530 0.1249 - 0.97 5.44 0.3530 0.9709 0.94267

TOB Stage 1 0.4843 0.2346 - 3.70 11.89 0.4846 0.9456 0.89411

3 Stage 2 Best:4G1 0.3796 0.1441 - 1.38 6.66 0.3798 0.9664 0.93383

Average of 45 Stage 2 runs 0.4071 0.1662 - 1.86 7.56 0.4073 0.9611 0.92367

TOB Stage 1 0.0252 0.0006 - 0.05 0.23 0.0252 0.9998 0.99963

4 Stage 2 Best:1E2 0.0132 0.0002 - 0.01 0.06 0.0132 0.9999 0.99989

Average of 49 Stage 2 runs 0.0229 0.0006 - 0.04 0.24 0.0229 0.9999 0.99973

TOB Stage 1 0.1053 0.0111 - 0.16 0.60 0.1053 0.9967 0.99332

5 Stage 2 Best:2F1 0.0184 0.0003 - 0.01 0.12 0.0184 0.9999 0.99980

Average of 50 Stage 2 runs 0.0334 0.0013 - 0.03 0.19 0.0334 0.9996 0.99919

TOB Stage 1 0.6424 0.4126 - 4.54 13.43 0.6421 0.8639 0.74626

6 Stage 2 Best:2F3 0.5082 0.2583 - 2.05 8.72 0.5085 0.9167 0.84035

Average of 45 Stage 2 runs 0.5364 0.2881 - 1.94 8.76 0.5366 0.9074 0.82349

TOB Stage 1 0.3560 0.1267 - 2.29 6.66 0.3550 0.9611 0.92374

7 Stage 2 Best:3G1 0.1939 0.0376 - 0.58 2.93 0.1940 0.9884 0.97686

Average of 45 Stage 2 runs 0.2166 0.0471 - 0.73 2.53 0.2166 0.9854 0.97097

TOB Stage 1 0.4105 0.1685 - 2.41 8.63 0.4106 0.9568 0.91552

8 Stage 2 Best:4E3 0.2967 0.0880 - 0.91 3.74 0.2968 0.9774 0.95538

Average of 45 Stage 2 runs 0.3117 0.0974 - 1.06 4.70 0.3118 0.9750 0.95062

TOB Stage 1 0.1180 0.0139 - 0.31 1.37 0.1180 0.9964 0.99291

9 Sensitivity Best:T12 0.0419 0.0018 - 0.03 0.48 0.0419 0.9996 0.99910

Average 49 Stage 2 solutions 0.0634 0.0045 - 0.04 0.53 0.0634 0.9988 0.99770
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q = qth highest-ranked training record related to

the jth tuning record, r = rth highest-ranking training

record related to the jth tuning record.

There are Q total specified high-ranking data

matches considered for each jth tuning record

fq = fractional contribution to sum of the squared

errors of qth highest-ranked training record related to

the jth tuning record

These fractional contributions are adjusted to sum

to 1 (
Pq¼Q

q¼1 fq ¼ 1).

The highest-ranked training record match is that

with the lowest
P

VSEjk.

That highest ranked match also has the smallest

value of fq.

The training record with lowest value of fq must

provide the largest share to the TOC prediction of the

jth tuning record. For this to occur, it is necessary to

multiply by 1� fq
� �

in Eq. (3):

XNþ1ð Þpredictedj ¼
Xq¼Q

q¼1

XNþ1ð Þq� 1� fq
� �h i

; ð3Þ

where XNþ1ð Þq = TOC of qth high-matching training

record, XNþ1ð Þpredictedj = predicted TOC value for jth

tuning record.

TOB Stage 2 involves optimization to identify the

most favourable weights (each Wn is allocated a real

number between 0 and 1) that reduce the VSE values

for each variable. Equation (1) is re-evaluated for the

top Q of the ten best-matching records selected for

the stage 1 predictions. In Stage 2, the value of Q can

fluctuate. An optimum Q value (2 B Q B10) is

identified that minimizes root-mean-squared error

(RMSE) between predicted and measured TOC. This

is step 11 (Fig. 1). Wn values are adjusted to

determine what fraction each input variable will

contribute to the TOC prediction of each (j) tuning

record. Equation (1) to Eq. (3) are re-evaluated to

derive the TOB Stage 2 predictions.

2.3. Optimizers Applied for TOB Stage 2 Prediction

A customized firefly optimizer (Wood 2019b)

facilitating metaheuristic profiling (Wood 2016) and

coded in visual basic for applications (VBA) is used

Table 5

TOB Stage 2 optimum solutions for TOC prediction derived by the nine models evaluated involving Barnett Shales wells A and B

Weights applied to squared differences of input variables for TOB stage 2 optimized solutions (i.e., best of 45 or more solutions derived for

each model)

Model # 1 2 3 4 5 6 7 8 9

Solutions

compared

Stage 2

Best:1F1

Stage 2

Best:5G2

Stage 2

Best:4G1

Stage 2

Best:1E2

Stage 2

Best:2F1

Stage 2

Best:2F3

Stage 2

Best:3G1

Stage 2

Best:4E3

Sensitivity

Best:T12

Q 2 2 2 2 4 6 3 2 3

GR wt 0.06470 0.45976 0.00000 0.05485 0.41302 0.00000 0.00000 0.00023 0.00000

Pb wt 0.22394 0.00000 0.15105 0.00147 0.00000 0.00000 0.01141 0.00000 0.00000

Rs wt 0.99941 0.00000 0.01091 0.00325 0.00000 0.54382 1.00000 0.89613 0.00000

Np wt 0.04835 0.00000 0.12199 0.00399 0.53091 0.01845 0.02016 0.05175 0.25000

DT wt 0.24755 1.00000 0.19805 0.04781 1.00000 0.04972 0.00000 0.13307 0.20000

Qz wt N/A 0.00000 N/A 0.00364 N/A N/A 0.01423 0.95501 N/A

Ls wt N/A 0.17776 N/A 0.00221 N/A N/A 0.00310 0.00081 N/A

Cy wt N/A 0.00000 N/A 0.40988 N/A N/A 0.00000 0.03654 N/A

Dl wt N/A 0.00000 N/A 0.98416 N/A N/A 0.00895 0.27057 N/A

BI wt N/A 0.47068 N/A 0.00089 N/A N/A 0.00000 0.00980 N/A

Gr/Pb N/A N/A 0.00000 N/A N/A N/A N/A N/A N/A

Gr/Rs N/A N/A 0.71571 N/A N/A N/A N/A N/A N/A

Cy/Pb N/A N/A 0.00000 N/A N/A N/A N/A N/A N/A

Qz/Pb N/A N/A 0.00983 N/A N/A N/A N/A N/A N/A

Cy/Np N/A N/A 1.00000 N/A N/A N/A N/A N/A N/A

Sth N/A N/A N/A N/A N/A N/A N/A N/A 0.60000
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for TOB Stage 2 evaluations. Also, two of Microsoft

Excel’s Solver optimizers, generalized reduced gra-

dient (GRG) and evolutionary (Frontline Solvers

2020) are run to verify the results. This combination

of optimizers has proved to be effective at providing

a complementary range of near-optimum solutions

around the global minimum for each TOB Stage 2

case evaluated.

Based on sensitivity analysis, tuning subsets with

between 135 and 150 data records, spread across the

entire data set range of TOC, were found to generate

statistically repeatable TOC predictions (TOB stage 1

and 2) for the well-log datasets evaluated in this

study. These were assessed with testing subsets of

100 data records that were held separately and not

involved in the tuning or training subsets or in any

way contributing to the solution-tuning process. For

each model evaluated 5 distinct cases were consid-

ered. In each case, different sets of data records are

assigned to the tuning and testing subset, and what

records remain in each case go into the training

subset. For each case three optimizers were executed

three times, resulting in 45 TOB Stage 2 tuned

solutions. Those 45 optimized solutions were then

applied to the entire dataset to establish an average

prediction accuracy and to identify the case that

produced the best overall TOC predictions for each

model. Also, those 45 solutions for the testing subset

were compared with the five TOB Stage 1 solutions

(one for each case) for the testing subset. That

comparison is focused on distinguishing the few

optimized solutions that exhibited overfitting.

2.4. TOC Prediction Accuracy Statistical Measures

Assessed

It is revealing to assess prediction accuracy of

machine learning methods using several distinct

statistical measures. The measures recorded for this

study are:

• Root mean square error (RMSE)—objective func-

tion of the TOB optimizers.

• Mean square error (MSE).

• Percent deviation between measured and predicted

values (PD).

• Average percent deviation (APD).

• Absolute average percent deviation (AAPD).

• Standard deviation (SD).

• Correlation coefficient (R) between measured and

predicted values.

• Coefficient of determination (R2).

The precise formulas used to calculate these

statistical accuracy measures are well known (Wood

2019a).

3. Characterization of the Barnett Shale Sampled

by Wells A and B

Tables 1 lists the value ranges, means, symbols

and units of ten input variables available for TOC

prediction. Five of those input variables are derived

from the standard well log data curves available for

many oil and gas wells drilled (i.e., Gr, Pb, Rs, Np,

Dt, see Table 1 for symbol definitions). Four of the

other five input variables are mineralogical data

(volume percent) derived from core analysis (i.e., Qz,

Ls, Cy, Dl, see Table 1 for symbol definitions). The

final input variable is the Brittleness Index (BI)

originally defined using mineralogical variables only

(Jarvie et al. 2007) and later modified to include TOC

in the denominator (Wang and Gale 2009) as

expressed in Eq. (4):

BI ¼ Qz þ Dlð Þ = Qz þ Dl þ Ls þ Cl þ TOCð Þ:
ð4Þ

It is Eq. (1) that Verma et al. (2016) used to

calculate BI and express it as a distinct log curve for

Wells A and B (their Fig. 4). BI is clearly not inde-

pendent of TOC, but because TOC in wells A and B

is less than 7 volume percent, it makes a very minor

contribution to BI calculated using Eq. (4).

The correlation matrix between these variables

(Table 2) reveal that none of the standard well log

metrics correlates strongly with TOC (i.e., the highest

correlation coefficient is - 0.38 between bulk den-

sity, Pb, and TOC). On the other hand, three of the

mineralogical variables (Qz, Ls and Cl) display better

correlations with TOC, with Ls having the highest

correlation coefficient (0.66) with TOC. The low

correlation coefficient (0.11) between BI and TOC

testifies to the very small influence that TOC in the
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denominator of the BI formula, as applied, has on the

BI value.

Variable relationships with TOC are non-linear

displaying substantial scatter, There is occasional

clustering associated with some of the input variables

compared to TOC. These relationships are displayed

in Figs. 2 and 3. These generally poor correlation

relationships make it difficult for correlation-based

machine learning methods (e.g. ANN, LSSVM.

multi-linear and non-linear regression) to derive

accurate predictions of TOC. The TOB method, by

avoiding the involvement of correlations is able to

exploit other aspects of the input variable distribu-

tions to derive its TOC predictions. For some

datasets, it is appropriate to consider the resistivity

variable in logarithmic terms, particularly where data

values range over several orders of magnitude. This

serves to maximise the separation of actual and nor-

malized values in the lower end of the lower

resistivity scale and diminish the impact of very high

values. As the resistivity for the lower Barnett shale

in the two wells studied varies only between about 5

and 2075 X-m, a normal resistivity scale is sufficient.

Sensitivity analysis comparing results with normal-

and logarithmic-scaled resistivity showed insignifi-

cant differences. In datasets where resistivity values

vary between fractions of ohm-m and tens of thou-

sands of ohm-m, it would be more appropriate to use

logarithm resistivity values for TOC prediction

analysis.

4. Results

4.1. TOB Models Applied to Barnett Shale Wells

A and B to Predict TOC

Nine models with different input feature selection

and/or record sampling density were constructed for

evaluation with the TOB algorithm with a view to

establishing accurate predictions of TOC from well

log data with or without assistance from core

mineralogy data. These nine models are summarized

in Table 3 and distinguished as follows:

Model 1—Well A five input features only (GR,

Rs, Pb, Np, DT) 1000 data records (covering the

interval 8000–8470 ft);

Figure 4
TOC versus sequence number for well A Models, 1, 2 and 3. The data records associated with prediction errors of ±[ 1% TOC are

distinguished
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Model 2—Well A ten input features selected (GR,

Rs, Pb, Np, DT, Qz, Ls, Cy, Dl, BI) 1000 data records

(covering the interval 8000–8470 ft);

Model 3—Well A ten inputs features selected

including ratios between well-log variables and core

mineralogy volumes (GR, Rs, Pb, Np, DT, Gr/Pb, Gr/

Rs, Cy/Pb, Qz/Pb, Cy/Np) 1000 data records (cover-

ing the interval 8000–8470 ft);

Model 4—Well A ten input features selected (GR,

Rs, Pb, Np, DT, Qz, Ls, Cy, Dl, BI) 2000 data records

(covering the interval 8376–8470 ft), a zoomed-in

section of the Model 2 variables across the lower

Well A depth interval, sampling all ten input

variables for that section ten times more densely

than in Model 2;

Model 5—Well A five input features selected

(GR, Rs, Pb, Np, DT) 2000 data records (covering the

interval 8376–8470 ft), a zoomed-in section of the

Model 1 variables across the lower Well A depth

interval, sampling all five input variables for that

section ten times more densely than in Model 1;

Model 6—Same as Model 1 but for well B

(6490–6790 ft);

Model 7—Same as Model 2 but for well B

(6490–6790 ft);

Model 8—Same asModels 2 and 7, but combining

the 1000 records of each well to form a combined

Figure 5
TOC versus sequence number for well A Model 4 (zoomed-in case

for interval 800–1000 using 5 well log inputs). The 16 of 2000 data

records associated with prediction errors of ±[ 0.1% TOC are

distinguished

Figure 6
TOC versus sequence number for the combined Well A and B

dataset of Model 8. The 34 of 2000 data records associated with

prediction errors of ±[ 0.1% TOC are distinguished
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2000-record integrated model incorporating both

wells A and B;

Model 9—Combining 5000 samples from each of

wells A and B using six input variables, the five basic

well logs and stratigraphic height, with both wells

sampled 5 times more densely than Model 8 to form a

combined 10,000-record integrated model.

A summary of the prediction accuracies achieved

for specified optimum solutions used to evaluate

Models 1 to 10 with the TOB algorithm is provided in

Tables 4 and 5.

For each of the nine models more than 45

optimized (TOB Stage 2) solutions were established

and TOC prediction accuracies derived. Table 4

displays the average TOC prediction accuracies

achieved by all these solutions together with the

TOB stage 1 and best TOB Stage 2 solutions.

Comparison of the best TOB Stage 2 solutions for

Models 1 and 6 indicates that using only the five

basic well log variables as inputs TOB achieves TOC

prediction accuracies that are useable (RMSE of

0.51% (Well B) and 0.67% (Well A); R2 of 0.84

(Well B) and 0.79 (Well A). The higher accuracy

achieved for Well B is likely to be a consequence of

the more closely spaced sampling. one sample per

Figure 7
TOC versus sequence number for the combined well A and B

dataset of Model 9. The 34 of 10,000 data records associated with

prediction errors of ±[ 0.316% TOC are distinguished

Figure 8
TOC predictions versus interpolated measured data for Model 9.

The prediction accuracy is high for this denser data record

sampling (one sample per 0.09ft for well A and 0.06ft for well B).

The 34 significant prediction errors mentioned in the text for TOB

Stage 2 solution (a) are clearly visible. Only two of those errors are

associated with well B. The TOB Stage 1 solution (b) itself

achieves high accuracy, but with 236 records displaying TOC

prediction errors of ±[ 0.316% TOC
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0.3ft for Well B versus one sample per 0.47ft for

Well A However, TOC prediction accuracy is much

improved for these sampling densities for the

10-variable evaluations provided by Models 2 and 7

(RMSE of 0.19% (Well B) and 0.33% (Well A); R2

of 0.98 (Well B) and 0.95 (Well A). Model 3 for well

A uses a different set of 10 variables (i.e., basic well

logs plus some ratios between selected mineralogical

variables and the basic well logs) but fails to match

the TOC prediction accuracy achieved by Model 2.

The absence of BI as an input variable in Model 3

may be contributing to the slight reduction of TOC

prediction accuracy for Model 3 (RMSE of 0.38%; R2

of 0.93) versus Model 2.

Figure 4 identifies the TOC prediction errors

of ±[ 1% for the 5-variable and 10-variable models

for well A with one sample per 0.47ft (121 data

records for Model 1; just 25 data records for Model 2;

and, 39 records for Model 3). This highlights the

improvements in accuracy achieved by adding the

mineralogical data as input variables. For the

10-variable models for Well A it is apparent (Fig. 4b,

c) the majority of the significant TOC prediction

errors are located in the lower part of the Barnett

Shale (i.e. in sequence interval 800–1000). In partic-

ular, it is within the rapidly changing TOC laminated

section of that lower interval that the 10-variable

models struggle to predict accurately at one sample

per 0.47 ft.

Models 4 and 5 demonstrate that by substantially

increasing the sample density for the lower interval of

Well A (i.e., the sequence interval from 800 to 1000

is resampled for all variables at one sample for all

variables every 0.047 ft) the TOC prediction accu-

racy for that interval is dramatically improved for

5-variable Model 4 and 10-variable Model 5. The

finer sampling density achieved by interpolation

between all log values used in Models 1 and 2,

enables the TOB algorithm applied to the zoomed-in

Models 4 and 5 to generate no prediction errors

of ±[ 1% for sequence 800 to 1000. This is

particularly encouraging for the 5-variable Model 4,

as it suggests that with finer sampling, using just the

basic well log inputs, highly accurate TOC predic-

tions can be achieved (RMSE of 0.02%; R2 of

0.9998). Figure 5 identifies the TOC prediction errors

of ±[ 0.1% for the 5-variable Model 4 (well A)

with one sample per 0.047ft. The best solution for

that model involves just 16 prediction errors of ±[
0.1% in the 2000 data records predicted (Fig. 5),

with the maximum prediction error of 0.28% TOC

associated with record number 888.

4.2. Models Considering Wells A and B Jointly

to Predict TOC

Model 8 combines the data for well A (from

Model 2) and well B (from Model 7) for the

10-variable inputs and normalizes the records as a

single 2000-record dataset. That combined dataset is

then evaluated with the TOB algorithm to predict

TOC achieving an accuracy intermediate between

that achieved by Models 2 and 7. The accuracy

achieved by model 8 is RMSE of 0.03%; R2 of

0.95584. Model 8 generates only 34 TOC prediction

errors of ±[ 1% TOC and these are primarily

located in the Well A interval 800 to 1000 (Fig. 6),

as they are in Model 2. Only eleven of the records

with errors of prediction errors of ±[ 1% TOC are

in the well B section of the combined model.

Model 8 demonstrates that a single TOB stage 2

solution can accurately predict TOC in a dataset

incorporating the 10-variable inputs of both wells A

and B. This is encouraging as it suggests that other

wells drilled through the Lower Barnett Shale could

also have their TOC predicted with reasonable

accuracy using that TOB Stage 2 solution.

It is relatively straight forward to use the data in

model 8 to test records from Well A against the Well

B dataset and vice versa. However, the TOB predic-

tions generated in this way are poor; RMSE * 1.2%;

R2 * 0.35 on average for both wells predicted in that

way. This is not surprizing as the two wells are drilled

into quite distinct part of the Fort Worth Basin. The

wells are 48 km apart with well A located in the

deeper northeast part of the basin, and well B located

towards the shallower western flank of the basin. As

those wells have quite distinctive well log curves and

lithology when compared in detail, it is not surprizing

that the log curves from one of those wells are not

very accurate in their predictions of TOC in the other

well. However, for wells drilled in similar basin

settings to each of those wells, it should be expected

that more accurate TOC predictions could be made in

5464 D. A. Wood Pure Appl. Geophys.



this way. Multi-well studies are required to confirm

the prediction accuracy that could be achieved by the

TOB algorithm for nearby wells or wells located

comparable lithological and basin settings.

If predictions of other wells are to be possible

then it would be more relevant to attempt to do this

with the basic well log suite with or without

additional stratigraphic information. This is so

because there are just a few wells with comprehen-

sive core analysis to provide the mineralogical data

required for the 10-variable model 8. Those few well

tend to already have adequate TOC measurements

from cores. On the other hand, there are many wells

drilled into the Barnett shale for which only basic

well log data is available and no mineralogical and

TOC measurements from cores. It is these wells that

need to have their TOC contents predicted from their

basic log data curve, if possible.

Model 9 builds on the knowledge gained from the

zoomed in 5-input variable Model 4 and develops a

more modest zoomed-in sampling for both wells. It

samples the complete section of each well with 5000

data records and combines them into a 10,000-record

model. For well A that is a density of one data record

every 0.094 ft. For well B that is a density of one data

record every 0.060 ft. One additional variable is

added to the basic well logs ((GR, Rs, Pb, Np, DT,

StH), which is stratigraphic height (StH) measured as

a fraction between 0 and 1 (0 being the base of the

Barnett shale; 1 representing the top). StH can be

calculated for all Barnett shale wells, so it is a useful

general indicator of stratigraphic position within the

section that is readily exploited by the TOB algo-

rithm. Thus, Model 9 is a 6-input variable model

zoomed in five times from the scale used for Model 8

and excluding all mineralogical variables. The TOB

Stage 2 TOC prediction accuracy achieved by model

9 is RMSE of 0.04%; R2 of 0.9991. The best TOB

Stage 2 solution for Model 9 generates only 34 TOC

prediction errors of ±[ 0.316% TOC (equivalent to

a squared error of 0.1) with all but two of them within

the thinly laminated or rapidly changing zones of

well A (Fig. 7).

The measured versus predicted values for model 9

are displayed in the Fig. 8a, b. The TOB stage 1

solution (Fig. 8b) for model 9 does most of the work

in generating accurate TOC predictions, itself

achieving accuracy of RMSE of 0.12%; R2 of

0.9929. It is this model (i.e., the 10,000 records and

the best TOB solution) that has the most potential to

be used in the prediction of TOC in those surrounding

wells for which only basic well log data is available

and no core mineralogy or TOC measurements exist.

5. Discussion

The objective of this study is to demonstrate that

the TOB optimized data matching algorithm is

functionally capable of predicting TOC from well log

data to high degrees of accuracy on a supervised

learning basis. Clearly, the analysis presented show

that it is effective at accurately predicting TOC from

comprehensive well log and mineralogical data,

based on the analysis of two individual wells (A and

B) spaced 48 km apart penetrating the Lower Barnett

Shale. The greater the sampling density of the input

log curves, the greater the TOC prediction accuracy

achieved within each individual well on a supervised

basis.

However, for the method to be of practical use it

needs to be able to predict TOC in wells on an

unsupervised basis, i.e., provide credible estimates of

TOC for those many wells in which there is only a

basic suit of well log data available, but without

measured TOC values available from core analysis.

To do this, the data records of those ‘‘known’’ wells

with detailed core measurements and comprehensive

well log curves, e.g. wells A and B, together with

their optimized TOB solution(s), can potentially be

used as reference sets against which the ‘‘unknown’’

wells can be matched to provide TOC solutions.

TOB is a data matching technique, so the

unknown wells need to be reasonable similar to the

known wells in terms of lithology and stratigraphic

sequence sampled for meaningful data matches to be

established. For certain basic log responses to be

comparable in known and unknown wells, the logged

sections also need have experienced similar burial

and compaction histories. This means that each

known well, or reference set of wells, is only likely to

provide TOC predictions of meaningful accuracy for

unknown wells within a certain limited distance from
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it, based on lateral geological environment

variabilities.

As explained in Sect. 4, wells A and B are in quite

different basin settings. The well sections logged by

those wells differ in current depth by about 1500 feet

and the LBS is 470 ft thick in well A compared to

300ft thick in well B. Consequently, matching those

wells against each other does not result in TOC

prediction of sufficient accuracy. However, combin-

ing wells A and B data in a single TOB reference set

(e.g. Models 8 and 9) has greater potential to provide

credible predictions for unknown wells located

between them, or at least in the vicinity of each of

those wells.

Model 9 has the greatest potential to be of prac-

tical use in predicting TOC for unknown wells

penetrating the LBS in the north-eastern part of the

Fort Worth Basin. Unknown wells without TOC

measurements are unlikely to have the mineralogical

data available that is required to match with the

10-variable solution provided in Model 8. On the

other hand, the 6-variable dataset for both wells A

and B (Model 9), involving just the basic well log

curves and stratigraphic height metric, is a dataset

that many unknown surrounding wells would possess

the necessary basic log data required for record

matching. This study has focused on TOC. However,

the same TOB methodology could potentially be

applied to predict other source rock attributes, such as

the Rock–Eval S2 peak values, from well logs, with

or without mineralogical data inputs. Future multi-

well studies are required to demonstrate that this can

be conducted effectively and provide credible TOC

(and other source rock attribute) predictions for the

unknown wells.

6. Conclusions

The optimized data-matching, transparent open

box (TOB) algorithm, can successfully establish

highly accurate total organic carbon (TOC) predic-

tions from suites of well logs, with or without the

support of detailed mineralogical data, on a super-

vised learning basis for one or more wells. Applied to

two well sections (A and B), 48 km apart, penetrating

the Lower Barnett Shale (LBS) in the north-eastern

part of the Fort Worth Basin, TOB achieves

increasing TOC prediction accuracy (RMSE from

0.7% improving to\ 0.01% TOC; R2 from 0.793

improving to 0.999) as the sampling density of the

log curves increases from one data record for

each * 0.5-ft interval to one record for each *
0.04-ft interval. TOB can also be successfully tuned

to accurately predict TOC for a combined dataset of

both wells A and B together for a 10-input-variable

model (RMSE = 0.3%TOC; R2 = 0.955) sampled

with data records every 0.4 ft, and a 6-input-variable

model (RMSE = 0.04% TOC; R2 = 0.999) sampled

at with data records every 0.075 ft. The 6-input-

variable, combine-well model involves the five basic

well logs (Gr, Pb, Rs, Np, DT), with fractional

stratigraphic height making up the sixth input vari-

able from the base of the LBS. It is the 6-variable

model that has potential to be used practically to

predict TOC in surrounding wells, in comparable

basin settings, for which only the basic suite of logs is

available. This non-correlation, data- matching tech-

nique has the potential to offer a credible alternative

to the various multi-variate regression models and

correlation-based machine learning methods for pre-

dicting TOC from well logs in an accurate,

consistent, reliable and transparent manner. Future

multi-well studies are required to confirm that

potential and to establish the TOC prediction accu-

racy that might be achieved when applied in

unsupervised circumstances.
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