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Abstract—Reference evapotranspiration (ETo) is considered as

an essential component in hydrological and agro meteorological

processes. Its accurate estimation becomes an imperative in the

planning and management of irrigation practices. ETo estimation

also plays a vital role in improving the irrigation efficiency, water

reuse and irrigation scheduling. The conventional physical model

of Penmen Montieth (PM56) developed by Food and agriculture

organization (FAO) has been recommended worldwide for ETo

estimation. This model was firstly used in this study to determine

ETo by using required meteorological data and obtained results

used as referenced values. Afterward, five data machine learning

algorithms/data driven models, support vector machine (SVM),

multilayer perceptron (MLP), group method of data handling

(GMDH), general regression neural network (GRNN) and cascade

correlation neural network (CCNN), were applied to estimate ETo

values. The climatic data of maximum and minimum temperatures,

wind speed, average relative humidity and sunshine hours of six

stations from Pakistan was used to train and test data driven model.

Data driven models were also applied on other climatic stations

without training data which lie in China, New Zealand and USA to

further validate and investigate their performance. Comparison

results indicated that model efficiency (ME) and correlation coef-

ficient (r) of SVM were obtained (ranges: ME = 95–99%;

r = 0.96–1) maximum for all the selected stations. Alternatively,

model errors (RMSE = 0.016, MSE = 0.0001 & MAE = 0.08) for

SVM were found minimum in comparison to GMDH, MLP, CCNN

and GRNN. In addition, all data driven models show enough

divergence from hyper arid to high humid climate except SVM

which shows almost identical results for all the climatic zones in

comparison to standard FAO-PM56 method. Finally, it can be

concluded that SVM could be considered as a reliable alternative

method for ETo estimation among data driven models.

Keywords: Reference evapotranspiration, machine learning

algorithms, cross validation, climatic regions.

1. Introduction

The agriculture sector is found to be the huge

water consumer in most of the countries. The quantity

of water withdrawal from total amount in developing

counties is nearly estimated 81% while accounted

71% globally. In addition to use, more than 55% of

World’s fresh water withdrawals are utilizing for

irrigation purposes (Amarasinghe and Smakhtin

2014). It is impossible to yield large amount of food

without the irrigation crop field in order to fulfill

world’s population needs (Lumia et al. 2005).

Researches relevant with enhancement of water pro-

ductivity and improvement of irrigation water

management have attained higher importance in

irrigation field (Barker et al. 1999). Irrigators and

farmers can make real time decision for irrigation on

basis of crop water requirements. The amount of

water required to irrigate crop field for entire period

is called crop water requirements (ETc) which can be

estimated by multiplying crop coefficient (Kc) with

reference evapotranspiration (ETo). Moreover, values

of Kc for a particular crop can be determined by

dividing crop-ET with the ETo value (Allen et al.

1998). Therefore, accurate quantification of ETo is

direly needed in determining crop water requirements

to overcome less and excessive irrigation problems.

As we know, the amount of water given at right time

is called irrigation scheduling which seems
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impossible without accurate estimation of ETo. Dif-

ferent techniques and methods have been applied for

ETo estimation which include direct, indirect and data

driven methods (Karimaldini et al. 2011). The esti-

mation of ETo through lysimeter is considered as the

best choice but difficult mainly because of cost

intensive, labor intensive and requires huge amount

for properly setup. Consequently, indirect and data

driven methods were developed to estimate ETo by

using meteorological data. The indirect methods

developed for estimation of ETo includes: (1)

empirical and semi empirical Eq. (2) Pan-evaporation

method (3) energy budget method (4) mass transfer

Eq. (5) combination Eq. (6) radiation base methods.

These methods are found in Xu and Singh (2002) and

McMahon et al. (2013).

Food and Agriculture Organization (FAO) of

United Nations has introduced one of the illustrious

and well-known indirect standard method for ETo

estimation. This method involves incorporation of

Penman–Monteith equation which was modified and

reformed by Allen et al. (1998) as a reference

equation (FAO-PM56). This equation (FAO-PM56)

is influenced and controlled by various climatic,

aerodynamic and surface resistance parameters.

These comprise of maximum and minimum air

temperature, maximum and minimum relative air

humidity, wind speed and solar radiation, saturation

vapor pressure deficit, slope vapor pressure curve

and psychometric constant. There is an anomaly to

air temperature available at the most weather sta-

tions, the remaining variables are often incomplete

and not always found reliable for many locations

(Rahimikhoob 2010). This point may be not valid

for developed countries, but seems a big challenge

in case of developing countries like Pakistan, where

quantity and quality of data remain always ques-

tionable. Trajkovic and Kolakovic (2009) stated that

reliable weather data sets of radiation, relative

humidity, and wind speed are usually limited in

developing countries.

Concerning and regarding the above contexts,

there are myriad factors including physical, social

and the environmental conditions in case of physical

models influencing ET estimation which is the

foundation of indirect methods. In addition, the

geographic data (latitude, longitude, altitude) is also

required for the local adjustment of the different

weather parameters e.g. atmospheric pressure,

extraterrestrial radiations (Ra) and daylight hours

(N) in FAO-PM56 equation. Additionally, the

experimental approaches or field measurement efforts

are usually time consuming, labor-intensive and post

processing output process. Subsequently, it is quite

difficult to formulate the ETo equation to overcome

these effects that can produce reliable and verified

results (Ventura et al. 1999; A. R. Pereira and Pruitt

2004; Lopez-Urrea et al. 2006; Gavilan et al. 2007).

A few software solutions, namely, DailyET (Hess

1996), Cropwat 8.0 (Swennenhuis 2009) and ETo

calculator (Raes 2009) are efficaciously used to cal-

culate ETo. These software packages are based upon

empirical and semi-empirical equations which require

numerous climatic and geographic parameters.

Moreover, these software packages will not yield

results if even one of the parameter is not available.

Thus, the data driven models based on different

machine learning algorithms may be utilized as sub-

stitute models because of several advantages, for

example, no required information of inner framework

factors, easier answers for multi-variable issues and

realistic calculation. These are innovative approaches

which based on computational intelligent system to

overcome imprecision and vulnerability in producing

results (Chaturvedi 2008; Huang et al. 2010).

The main issue with modeling ET process is its

non-linear dynamic and high complexity nature. In

this regard, data driven models can be considered and

contemplated as proper methods for ETo estimation.

Their ability to deal with complex problems by using

only available set of data made them superior to

conventional methods. Furthermore, there is also no

need to give geographical information or local

adjustment in these data driven models. The follow-

ing literature provides a comprehensive comparison

among data driven models and conventional methods

in hydrological studies especially for ETo estimation.

Among various data driven models, artificial

neural networks (ANNs); adaptive neuro-fuzzy

interference system (ANFIS); gene expression pro-

gramming (GEP) have been widely applied for ETo

estimation and proved best choice over indirect

methods. Various studies reported in literature which

used ANN for ETo estimation and found best
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performance for ANN data driven model in com-

parison to indirect methods (Kumar et al. 2002;

Sudheer et al. 2003; Trajkovic 2005; Kim and Kim

2008; Landeras et al. 2008; Traore et al. 2010). The

potential for the use of ANNs was examined by

Rahimikhoob (2010) to estimate ETo based on air

temperature data under humid subtropical conditions

on southern coast of Caspian Sea. It was claimed that

ANN model found superior in comparison to indirect

empirical equations. In addition to ETo estimation,

ANFIS model was also investigated in parallel to

other methods (Kişi and Öztürk 2007; Doğan 2009;

Cobaner 2011; Aytek 2009; Kisi and Zounemat-

Kermani 2014). Kişi and Öztürk 2007 have applied

ANFIS model for ETo estimation in Los Ageles, city

of southern California. They concluded that ANFIS

can be considered as a good approach in estimating

ETo. Aytek 2009 has investigated the potential of

coactive adaptive neuro fuzzy interference system

(CANFIS) in three stations for estimating daily ETo.

The results obtained with CANFIS were further

compared with some empirical formulas. The study

finally affirmed the CANFIS performance is superior

as compared to the conventional methods. In similar

manner, Karimaldini et al. (2011) have also examined

ANFIS approach for estimating ETo in arid condition

by using limited climatic data. The findings con-

firmed the utmost performance of ANFIS over

conventional empirical equations (calibrated FAO-

PM56, Hargreaves, Priestley-Tailor, Makkink, and

Blaney-Criddle). Cobaner (2011) examined two types

of ANFIS based on grid partition (G-ANFIS) and

subtractive clustering (S-ANFIS) methods in model-

ing ETo by using daily climatic data. The results were

compared with different types of ANNs and three

empirical models. He claimed that S-ANFIS was

performed better than ANNs and empirical formulas

in estimation of ETo. In addition, the study Kisi and

Zounemat-Kermani (2014) have also applied

G-ANFIS and S-ANFIS models in estimating ETo

with daily climatic data. They found ANFIS models

superior to the corresponding conventional methods.

Due to good generalization ability and attractive

interference, gene expression programing (GEP)

attained the higher significance in many hydrological

studies e.g. stage–discharge curve, prediction in

monthly precipitation (Azamathulla et al. 2011; Kisi

and Sanikhani 2015). In addition to literature, the

performance of GEP was also investigated in mod-

eling ETo by using climatic variables (Shiri et al.

2014b, 2014a, 2014c; Guven et al. 2008; Traore and

Guven 2012). The studies claimed that the GEP

model could be considered as an alternative tool to

the selected conventional methods for ETo

estimation.

Nowadays, support vector machine (SVM) and

self-organizing networks (SONs) are also considered

as the emerging tools in solving complex problems

among the data driven models with an efficient out-

comes (Asefa et al. 2006; Carpenter and Grossberg

1991, 1992; Lu and Wang 2005; Jorguseski et al.

2014; Østerbø and Grøndalen 2012; Peng et al. 2013).

Group method of data handling (GMDH) and cascade

correlation neural networks (CCNN) are found as the

robust data driven models because of their tendency

to develop direct relationship between input and

output layers without the hidden layer as required in

case of ANNs (Sherrod 2008, Sherrod 2010). Appli-

cation of SVM, GMDH and CCNN models found in

literature is presented thereafter.

Collobert and Bengio (2000) investigated the

SVM model for large scale regression poblems. It is

claimed that time consumed in performing the anal-

ysis (training and testing phases) using SVM model

was less than the other selected algorithms. The study

Huang et al. (2002) also investigated the performance

of SVM model. They found that the classifiers used in

SVM model have more tendencies to solve complex

non-liner problems as compared to the other classi-

fiers. Kisi (2013) investigated the capability of SVM

model for estimating the ETo by using daily climatic

data in two stations of Califormia. The comparison

results showed that SVM model performed better

than the selected empirical equations. Kisi and Cimen

(2009) investigated the potential of SVM model in

ETo estimation using daily meteorological data and

compared the results with empirical models (CIMIS

Penmene, Hargreaves, Ritchie and Turc methods).

They claimed that SVM performed better than

empirical models and coud be empolyed as an alter-

native tool in estimating ETo Shiri Nazemi et al.

(2014a, b, c) applied heuristic approaches (including

SVM) in comparison to the empirical and semi-em-

pirical equations for estimation of ETo. The

Vol. 177, (2020) Comparative Assessment of Reference Evapotranspiration Estimation 4481



comparison results confirmed the superiority of

heuristic approaches to the existing conventional

methods. Tabari et al. (2013) investigated the capa-

bility of ANFIS and SVM in potato ETc estimation.

The results of ANFIS and SVM were also compared

with the empirical equations. They found that SVM

model performed better than ANFIS and corre-

sponding applied empirical equations.

Diamantopoulou et al. (2011) examined the potential

of back propagation algorithm (BPANN) and CCNN

in estimating the daily ETo using weather data

obtained from automatic weather stations (AWS) of

Northern Greece. The results indicated that CCNN

performed better than BPANN and selected empirical

equations. Therefore,it could be considered as an

appropriate tool in modeling ETo process. In another

study, Awari (2018) also investigated the capability

of CCNN in the estimation of ETo. The comparison

results indicated that CCNN performed best than the

other selected methods. Najafzadeh et al. (2014)

investgated the potential of GMDH and SVM in

estimating the scour depth below the pipelines and

compared the results with empirical equations. The

comparison results showed that the GMDH per-

formed better than SVM and could be successfully

empolyed as an alternative tool to the existing con-

ventional methods. To the best knowledge of the

authors, there is not any publised article in the liter-

ature which investigate the performance of GMDH

model in ETo estimation.

Thus, it can be perceived from the above citations

that data driven models are oftern found best for ETo

estimation. But most of the stuides do not apply

devloped data driven modelson other locations,

which arise a question reagrding models’s per-

froamnce. Nowadays, this practice is not justified for

data driven modelsin deterinninng their perforamnce

by incorporating similar data in trainning and testing

phases. Therfore, a new practice must be followed to

investigate and authenticate model’s performance.

According to the knowledge of authors, there is no

study conducted in Pakistan that applies data driven

modelsfor ETo estimation. The mian aims of this

study were: (1) to determine the ETo using globally

accepted method (FAO-PM56) across a range of

climatic regions (2) to investigate the potential of

different data driven models(i.e. SVM, GMDH,

CCNN, MLP and GRNN) for ETo estimation (3) to

compare ETo estimation of PM 56 method with that

of data driven models.

2. Materials and Methods

2.1. Location and Data Collection of Studied

Regions

Pakistan expands north-east to south-west from

23.5 to 37 N and 60 to 75 E in south-west Asia

over world map. It is bordered with Afghanistan in

north-west, Iran in west, China in far north-east and

India in east. The total area of Pakistan is nearly

about 80 mha out of which only 37 mha is available

for raising crops. A variety of climatic conditions

exists in Pakistan. The weather of northern and north-

western parts is quite cool because of the presence of

snow-packed mountains. Plains of Punjab province

are located in the center and are quite hot and semi-

arid in nature. Highlands of Balochistan province

have cold climate but arid in nature and the coastal

areas located in south are warm and humid. Temper-

ature of colder regions located in north falls below

freezing point during winter months while a high

temperature of about 40 C prevails during summer

months in the semi-arid and arid desert regions of

Pakistan with a peak approaching 50 C frequently.

The northern and western highlands of Pakistan

receive an annual rainfall of 1500 mm and 500 mm

respectively while desert area receives very less

rainfall. Thus, climatic distribution of Pakistan is arid

to semi-arid, except a short stretch of temperate in

north with wide variations.

The climatic data of six selected cities located in

various climatic regions of Pakistan, was used in

current study for a duration of 30 years (1987–2016).

The data includes long term monthly average values

of minimum temperature (Tmin), maximum temper-

ature (Tmax), average relative humidity (R.Hmean),

sunlight hours (N), and average 24 h. wind speed (U).

This dataset was divide into sections. First section

contains 70% of the data (1987–2007) and used to

train each selected model while remaining 30% of the

data (2008–2016) employed to test the developed

models. The performance of one machine learning
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based model could be hardly justified if applied to

only one location/country. To further test the validity

of the developed models, the climatic data of five

more cities located in New Zealand, China and USA

was also used. It is pertinent to mention here that the

data of six cities located in Pakistan was used to train

and test the developed models while the data of five

cities located in three countries of New Zealand,

China and USA was only used to test the developed

models. The details of the data of different cities

located in Pakistan, New Zealand, China and USA is

given in Table 1.

The location of six selected climatic stations of

Pakistan is presented in Fig. 1a while Fig. 1b shows

the climatic stations of other selected countries. All

selected climatic stations of Fig. 1a and b are

classified into six climatic zones which can be seen

in Table 2. In addition, classifications of these

selected climatic stations are based on global aridity

index (Todorovic et al. 2013). This index can be

calculated by dividing the mean yearly precipitation

(P) to the mean yearly ETo. Additionally, the humid

region is further categorized into warm, mild and

high humid climatic zones. The division of these

zones is based on average annual rainfall and mean

temperature data. This is due to the fact that climatic

conditions that lie in humid regions can easily be

fathomable.

2.2. Adopted Methodology

2.2.1 FAO-PM56 Method

This method is universally accepted as a standard

method for the estimation of ETo. It is a physical

method which requires numerous climatic parame-

ters. The method is based on combine equations

which estimate ETo values. The mathematical rela-

tion to estimate ETo by using climatic parameters is

given in Eq. 1.

ETo ¼
0:408D Rn � Gð Þ þ c� 900

Tmeanþ273
� U2 � es � eað Þ

Dþ c 1þ 0:34u2ð Þ
ð1Þ

wherein Rn, and G are net radiation (MJ /m2/day) on

crop surface and soil warmness flux density (MJ/

m2/day), respectively. Additionally, Tmean, U2, es, ea,

emin, emax, D and c are means of maximum and

minimum air temperatures (�C), air speed (m/s),

saturation vapor pressure (kPa), actual vapor pressure

(kPa), saturation vapor pressure at minimum air

temperature, saturation vapor pressure at maximum

air temperature, slope vapor pressure curve (kPa/�C)
and psychrometric constant (kPa/�C), respectively.

As the value of G is smaller than Rn, it may be taken

as zero. The value of D can be determined by uti-

lizing the procedure which is enlightened by Gocić

et al. (2015). The complete derivation of PM equation

either in case of complete or missing data can be

found in Allen et al. (1998).

2.2.2 Multilayer perceptron (MLP)

MLP is frequently used neural network in solving

complex classification problems. In this network,

input is given to network along with target output and

weights are adjusted in such a way that network can

generate target output with several attempts. The

MLP structure consists of an input, a hidden and an

output layers. Each layer contains a number of

neurons that are linked in same pattern with neurons

inside the subsequent layer. Each neuron carries a

number of predictor variables from previous layer

and outputs to the following layer. Each layer plays a

significant role in the overall performance of struc-

ture. The neurons of one layer are linked to the

Table 1

The geographic description of selected climatic regions

Sr.

no

Study Site Coordinates Elevation Duration

Country City Lat Long m Years

(DD) (DD)

1 Pakistan Multan 30.2 71.45 122 1987–2016

Faisalabad 31.41 73.11 184

Islamabad 33.72 73.06 540

Jacobabad 28.28 68.43 61

Peshawar 34.01 71.54 331

Skardu 35.3 75.68 2228

2 New Zealand Auckland

36.84 174.76 196 2015–2018

3 China Harbin 45.74 126.63 140 2011–2014

4 USA Belleville 89.98 38.52 133 2015–2018

Big Bend 87.87 42.05 182.4

Dixon

Springs

89.39 40.63 165

Vol. 177, (2020) Comparative Assessment of Reference Evapotranspiration Estimation 4483



Figure 1
a Location of the six selected climatic stations in Pakistan. b Location of the selected climatic stations in other countries
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neurons existed in other layer through a specific

connection called weights. These weights are made

accountable to carry results from one to another layer.

Output of each neuron within input layer will become

an input for the hidden layer. Furthermore, output of

each neuron from hidden layer converts into an input

for every neuron inside output layer. A structure of

MLP neural network with one hidden layer can be

seen in Fig. 2a. A function is utilized to process input

data among the neurons of each layer known as

activation function. Moreover, the sigmoid and linear

functions are utilized to process input data from input

to hidden layer and hidden to output layer, respec-

tively. The network can be trained by adjusting

weights through an error back propagation process

explained by Hassanpour Kashani et al. (2008). The

present study utilizes scaled conjugate gradient

(SCG) method which can be swiftly performed twice

Table 2

Division of climate zones, respective precipitation to ETo ratios

Climate zone Ratio P/ETo Climate zone Ratio P/ETo

Hyper-arid (H.A) \ 0.05 Dry sub humid (D.H) 0.51–0.65

Arid (A) 0.05–0.20 Moist sub humid (M.H) 0.66–1.0

Semi-arid (S.A) 0.21–0.50 Humid (H) [ 1

Stations Climatic zone Stations Climatic zone

Multan H.A Harbin High Humid

Jacobabad H.A Belleville H

Faisalabad S.A Big Bend Warm humid

Islamabad D.H Dixon Springs Mild humid

Peshawar S.A Auckland H

Skardu H

Figure 2
Development of MLP model for ETo estimation

Vol. 177, (2020) Comparative Assessment of Reference Evapotranspiration Estimation 4485



as compared to Conjugate gradient and converging up

to 20 times than scaled conjugate gradient (Sherrod

2008). Møller (1993) has explained SCG algorithm in

detail. development of MLP model is described in the

next lines. five meteorological variables (Tmax, Tmin,

R.Hmean, N, U) are fed in an input layer as predictor

variables. calculated ETo is used as a target variable

in an output layer. The mapping of input–output

relationship with MLP model is presented in Fig. 2b.

Six neurons are selected in hidden layer after tuning

the neurons. The V-fold cross validation is presently

applied to check and validate input data. essential

parameters for the development of MLP model are

given in Table 3.

2.2.3 General Regression Neural Networks (GRNN)

Specht (1990) has proposed a method that allows to

contrive and formulate the weighted- neighbor

method. A general regression neural network

(GRNN) can be utilized for regression problems

while probabilistic neural network (PNN) is imple-

mented to solve classification problems. This study

employs GRNN network in order to estimate ETo by

using meteorological variables. Architecture of

GRNN model is shown in Fig. 3.

Development of GRNN model to predict ETo is as

followed: Five meteorological variables, (Tmax, Tmin,

R.Hmean, N, U) are used as predictor variable while

ETo is obtained as a target variable. Gaussian

function is chosen as a kernel function which is

considered one of the best yet among invented

(Sherrod 2008). Eliminating neurons frequently min-

imize the error of developed model. The procedure to

eliminate redundant neurons is considered slow. This

is an iterative process due to the fact that model needs

to be assessed with each persisting neuron to

determine the best one as a way to eliminate. Thus,

leave on out validation (LOO) with minimize error

method is employed to find optimal number of

Table 3

Parametric values of MLP model after tuning

Parameters Values Parameters Values

Number of layers 3 Number of iterations 5,000

Min to max neurons 2–20 Convergence tolerance (1.000e-005)

Neurons in hidden layer 6 Minimum improvement delta (1.000e-006)

Hidden layer function Sigmoid Minimum gradient (1.000e-007)

Output layer function Linear Maximum execution time 0

Figure 3
Configuration of GRNN model
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neurons. The essential parametric values for GRNN

model are given in Table 4.

2.2.4 Support Vector Machine (SVM)

Eventually, the concept and idea of learning machine

is suggested by Turing (1950). Support vector

machine is scrutinized and regarded as a supervised

learning model which is built on statistical learning

theory. The statistical learning theory is familiarized

and made conversant by Vapnik (1998). Support

vector regression (SVR) is frequently used to narrate

SVM approach. SVR has capability to apply struc-

tural risk minimization principle in a reliable way. It

is an inductive principle for model selection which is

used for finite training data sets. It describes a general

model of capacity control and provides a relationship

between space complexity and quality of fitting the

training data. Moreover, it emphasizes on an upper

bound instead of training error in the data set.

Minimum value of upper bound produces a best

model. Based on this principle, SVR achieves an

optimum network structure. More details regarding

this principle can be found in Wu et al. (2008). The

main objective of SVM modeling is to find optimal

hyper plane which isolates the clusters of vector. This

can be accomplished by separating variables using

linear and non-linear dividing. The division of

attributes in non-linear case is more complex than

linear case. Furthermore, the separation in high

dimensional case is easier than low dimensional.

Figure a–d illustrate the pictorial view of linear,

complex, low and high dimensional cases, respec-

tively (Han and Kamber 2001; Markowetz 2003).

The vectors adjoining to hyper plane are termed as

support vectors.

This study employs two kinds of SVR, namely,

epsilon (€) and neuron (Nu). There is no general

method to determine model of the largest capacity in

order to estimate ETo except iterative method. After a

large number of iterations, it was found that €-SVR

performed good than Nu-SVR. Therefore, €-SVR is

used in SVM model for present study. The accuracy

of SVR model depends upon following parameters:

penalty factor(C), gamma (¥), P, Nu etc. In addition,

there is a dire need to determine proper optimal

values for these parameters to achieve satisfactory,

better and acceptable results. For example, large

value of C creates over fitting problem while a small

value of C causes under-fitting the model. Therefore,

it is mandatory to select optimal values for all

parameters to obtain reliable and better results. Grid

and pattern (GAP) search are concurrently applied in

this study in order to find optimal parametric values.

A grid search tries to attempt values of each

parameter across the specified search range. This

can be done by using geometric steps. A pattern

search starts at the center of search range and makes

trial steps in each direction for each parameter. More

comprehensive details about these searching methods

can be found in Sherrod (2008). The attributes

(predictor variable) in SVM model are meteorolog-

ical variables while ETo is selected as predicands

(target variable). Four kinds of kernel functions

(linear, RBF, polynomial and sigmoid) are concerned

and applied with V-fold cross validation method. It is

used to construct an efficient model. In addition,

number of parameters in SVM model largely depends

upon the applied kernel function. Thus, Table 5

provides epigrammatic details about the development

of SVM model. It also shows optimal values for all

required parameters which are needed corresponding

Table 4

Tuning parameters of GRNN model

1. Network parameters

Minimum sigma value 0.001 Search step 20

Maximum sigma value 10 Kernel function Gaussian

Unnecessary removing Neurons method Minimize error Cross validation LOO method

2. Additional parameters

Number of Iterations 10,000 Convergence tolerance 0.006737

Minimum improvement delta 0.002478 Minimum gradient 0.00091

Maximum execution time 0
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to applied function. Moreover, number of parameters

which do not show any contribution in the develop-

ment of SVM model regarding kernel function is

represented by symbol ‘‘X’’ and can be seen in

Table 5.

2.2.5 Group Method of Data Handling (GMDH)

GMDH model was developed by Ivakhnenko (1968).

This algorithm presents a unique approach to the

problem of modeling and even a new philosophy to

scientific research. It is used in various fields such as

data mining, prediction and complex system model-

ing etc. Li et al. (2017) found GMDH better than

other classical forecasting algorithms. A schematic

diagram of GMDH is shown in Fig. 5. The network

starts with just input neurons. The main layer (at the

top) presents one contribution for every indicator

variable. Each neuron within second layer draws its

inputs from two of the input variables. In similar way,

the neurons within third layer draw their inputs from

two of the neurons inside preceding layer. This

procedure proceeds until second final layers fetch

their inputs to the ultimate layer. The final layer (at

the lowest) draws its two inputs from past layer and

produces a single value that’s the output of network.

Additionally, the links between neurons inside this

network are not fixed. It can be observed in Fig. 5

that neuron at the left end of third layer is linked with

an input variable rather than output of preceding

layer. Thus, current study applies GMDH model in

order to draw a relationship between climatic vari-

ables and ETo. Five meteorological variables,

symbolically, Tmax, Tmin, RHavg, U, N are used as

Figure 4
Schematic diagram of SVR model
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predictor variables. The output layer generates ETo as

a target value. Various types of functions such as

linear, quadratic, cubic, asymptotic etc. (Table 6) are

used in GMDH model to improve model’s accuracy.

combination of two quadratic functions (1 variable

and 2 variable) is applied in the training and testing

process for estimation of ETo. results generated with

this combination of functions were found the best

among other functions. Table 6 indicates essential

parametric values for development of GMDH model.

2.2.6 Cascade Correlation Neural Network (CCNN)

Primarily, a CCNN model includes the most effective

input and output layers without a hidden layer. Every

input is attached to each output neuron by way of a

connection with an adjustable weight. Each output

neuron receives its input as weighted sum from all of

input neurons alongside the bias value. At that point,

yield neuron sends this weighted input sum through

its transfer function to withdraw final output as shown

in Fig. 6a. A simple CCNN also shows good

performance in case of small data. A hidden layer

is introduced into CCNN model for solving large data

set and complex problems. Neurons are delivered to

hidden layer one after another. Every new hidden

neuron gets a connection from each of the inputs and

every pre-present hidden neuron. The hidden neu-

ron’s input weights train and then fixed. Simplest

output connection weights train over and over. Each

new neuron, consequently, provides a new one hid-

den unit to the network. This prompts the formation

of an effective powerful high-order function which

includes identifier and deep network with a big vari-

ety of inputs to output neurons. Now, the

neurons inside hidden layer do not change, once

they have been brought. It is known as a cascade

because output from all neurons already inside

network feeds into the new neurons. A complete

structure of CCNN model which is used in the current

study has illustrated in the Fig. 6(b). It can be

observed that the ETo values are obtained as target

outputs in CCNN model after giving meteorological

parameters as predictor variables. Mixture of Sig-

moid and Gaussian functions is employed as a kernel

function in the hidden layer. In the CCNN model,

advance parameters are also used with training

parameters which enhance the predictive accuracy

Table 5

Optimal ranges of parameters for SVR model

Models Kernel Function Optimal ranges of model parameters

e-SVR C P c Nu Coef0 Degree

Linear 0.001–78 0.001–58 X X X X

RBF 0.001–78 0.001–58 0.001–58 X X X

Polynomial 0.001–78 0.001–58 0.001–58 X 0–100 1

Sigmoid 0.001–78 0.001–58 0.001–58 X 0–100

Nu-SVR Linear 0.001–78 X X 0.001–0.6 X

RBF 0.001–78 X 0.001–58 0.001–0.6 X

Polynomial 0.001–78 X 0.001–58 0.001–0.6 0–100 1

Sigmoid 0.001–78 X 0.001–58 0.001–0.6 0–100

Figure 5
Structure of GMDH model
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and minimize the error. Table 7 provides essential

parametric values for CCNN model to generate

reliable results.

2.2.7 Weaknesses of FAO-PM56 Method vs

Strengths of Numerical Methods

The concept of ETo has been widely discussed and

used for decades (Doorenbos and Pruitt 1977; Pereira

et al. 1999). Allen et al. (1998) introduced a clear

definition of FAO-PM56 method for estimation of

ETo. One of the most important reasons for advocat-

ing a simpler method than FAO-PM56 is the

substantial likelihood for inaccuracy in weather data

measurement and collection, especially for the

developing countries and meteorological stations

managed by non-experts. In these situations, the

accuracy of data and especially for more advanced

parameters such as radiation and humidity, can be

very low (Droogers and Allen 2002). Table 8 shows

data requirements for FAO-PM56 and data driven

models. It can be seen in Table 8 that FAO-PM56

depends upon several parameters which is not easily

accessible especially in the developing countries.

Alternatively, data driven models only depend upon

climatic parameters and require less parameter in

comparison to FAO-PM56 method.

3. Model Performance Evaluation

The goodness of fit is assessed through a set of

indicators that are used to compare all the pairs of

observed and model-predicted values of selected

variables. Nine performing indicators are selected in

this study to evaluate the performance of MLP,

GRNN, GMDH and CCNN models. These include

square of Pearson correlation coefficient (r2), linear

regression coefficient (R2) model efficiency (M.E),

mean absolute error (MAE) and root mean square

error (RMSE), scatter index (SI) which are defined as

follows (Legates and McCabe 1999; Alazba et al.

2011; Mattar and Alamoud 2015; Mattar et al. 2015)

Table 6

Essential parameters and list of functions for GMDH model

Parameters Values

Minimum number of network layer 04

Maximum polynomial order 16

Convergence tolerance 1.000e-004

Functions to use GMDH model

Functions Equations Functions Equations

Linear 1 variable y ¼ p1 þ p2x1 Ratio 2 variables y ¼ p1 þ p2
x1
x2

Linear 2 variables y ¼ p1 þ p2x1 þ p3x2 Asymptotic 1 variable y ¼ p1þp2
x1þp3

Linear 3 variables y ¼ p1 þ p2x1 þ p3x2 þ p4x3 Gaussian 1 variable y ¼ p1þp2exp � x1�p3ðð Þ2
p4

Quadratic 1 variable y ¼ p1 þ p2x21 Logistic 1 variable y ¼ p1þp2
p1þexp �p3 ðx1�p4Þðð Þð Þ2

Quadratic 2 variables y ¼ p1 þ p2x1 þ p3x21 þ p4x2 þ p5x22 þ p6x1x2 Exponential 1 variable y ¼ p1 þ p2exp p3 x1 þ p4ð Þð Þ
Cubic

1 variable

y ¼ p1 þ p2x1 þ p3x21 þ p4x31 Product 2 variables y ¼ p1 þ p2x1x2

y = output variable; x1, x2, x3………. = input variables; p1, p2, p3……… = constant factors; maximum iterations = 10,000; execution

time = zero

r2 ¼
n �

Pn
i¼1 ETobs � ETest

� ��� �� �
�

Pn
i¼1 ETobs

� �
�

Pn
i¼1 ETest

� �� �� �



n �
Pn

i¼1 ðETobsÞ
� �2

h i
�

Pn
i¼1 ETobs

� �� �2
h i

� n �
Pn

i¼1 ðETestÞ
� �2

h i
�

Pn
i¼1 ETest

� �� �2
h ir ð2Þ
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R2 ¼
Pn

i¼1ðETobs � ETobs

� �
� ETest � ETest

� �� �2

Pn
i¼1ðETobs � ETobs

� �
� ETest � ETest

� �� �

ð3Þ

M:E ¼ 1�
PN

i¼1ðETobs � ETsimÞ
PN

i¼1ðETobs � ETobsÞ
ð4Þ

MAE ¼
XN

i¼1

jETobs � ETsimj
N

ð5Þ

MAPE ¼ 100%

N

XN

i¼1

ETobs � ETest

ETobs

	
	
	
	

	
	
	
	 ð6Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ðETobs � ETestÞ2

N

v
u
u
t ð7Þ

SI ¼ RMSE

ETmean

ð8Þ

wherein, ETobs, ETest, ETobs., ETest., ETmean are

observed value, estimated value, average of observed

value, average of estimated value, mean of observed

Figure 6
a CCNN simple Structure with no hidden layer. b Illustrative CCNN model for ETo prediction
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value of ETo, respectively and N represents total

number of observations. Further two coefficients,

namely, skewness (Cs) and variation (CV) are also

used in present sdy to distinguish the data.

Cs ¼
Pn

i¼1 Oi � lð Þ3

n � 1ð Þ � r3
ð9Þ

C:V ¼ r
l

ð10Þ

Here, Oi, n, r, and l represent observed data,

number of data points, standard deviation and mean

value of data set, respectively. Cs determine the

symmetry of distribution and r measures amount of

variation in the given data set (Bland and Altman

1996).

4. Results and Discussions

4.1. Experimental Data

The values of meteorological data on monthly

basis are used to develop data driven models. Data

sets used for data driven models based on climatic

data are divided into two subsets. These include

training and testing data sets. Training data set of

each climatic station includes 70% of observed data

while testing data set contains 30% of observed data

collected in the period of years. The climatic data

duration corresponding to each climatic station is

given in Table 1. Moreover, Table 9 shows the value

of statistical parameters of climatic data such as

minimum, maximum, mean, standard deviation and

skewness coefficient values of the selected countries.

Additionally, averages of aforementioned parameters

for six selected cities of Pakistan are estimated and

presented in Table 9. Likewise, averages of statistical

parameters of meteorological parameters for other

locations used in the current study are also given in

Table 9.

4.2. Performance Analysis

At the beginning, data driven models are trained

with extracted data from the FAO-PM56 equation. As

a baseline for comparison of the performance of SVM

with other data driven models, the same training and

testing data set was considered for stations of

Pakistan. To estimate FAO-PM56 ETo values, r2,

RMSE, MAE and ME are used in comparison

between the FAO-PM56 ETo and predicted values

of SVM, GMDH, GRNN, CCNN and MLP models.

The performing indices, R2 and RMSE of testing data

set for each selected city of Pakistan are presented in

Fig. 7a and b, respectively. To present results in

elegant way, abbreviations of the selected cities of

Pakistan are used for graphical representations. These

are followed as: Faisalabad (Fsd), Multan (Mul),

Table 8

Data requirements for the applied ETo methods (Standard (FAO-PM56) method vs. Data driven models)

Required parameters Tmin Tmax R.H U N Rn es ea emin emax Other factors (D, Z and c)

FAO-PM56 Method 4 4 4 4 4 4 4 4 4 4 4

Data driven models 4 4 4 4 4

Table 7

Training and advance parameters of CCNN model

1. Training parameters

Minimum neurons 0 Candidate neurons 21

Maximum neurons 26 Candidate epochs 200

Cross fold 04 Cross validation V fold method

2. Advance parameters

Regularization parameters Weight decay Epsilon Mu

Candidate 0–0.001 1000–0.01 1–2

Output 0–0.001 1000–0.01 1–2
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Islamabad (ISD), Jacobabad (Jac), Peshawar (Pes)

and skardu (Skr). It can be observed in Fig. 7a that

SVM model looks superior to other numerical

computing models in all the selected cities of

Pakistan. However, GMDH and GRNN models show

almost equal outcomes in comparison to MLP model.

In addition, CCNN model generates low r2 values

except in Faisalabad city. It is evident from Fig. 7a

that all models have acceptable square of Pearson

correlation coefficient (r2), which is higher than 90%.

It means that there is no over fitting of training and

testing data of the numerical computing models. In

other words, the data driven models capture all

nonlinearity of ETo, which is the main advantage of

data driven models. Likewise, it can be seen in

Fig. 7b that SVM model generates low RMSE value

for the selected cities of Pakistan which varies from

0.13 to 0.50 mm/month. On contrary, GMDH,

GRNN, MLP and CCNN models show high value

of RMSE. Although GRNN and MLP models gen-

erate high value of RMSE as compared to SVM

model but have performed well in comparison to

GMDH and CCNN models for all the selected cities

of Pakistan. The RMSE values for all the chosen

cities of Pakistan by employing GRNN and MLP

models varies from 0.7 to 0.70 and

0.18–0.81 mm/month, respectively. Thus, it can be

concluded that SVM model has more capability

among all other numerical computing models to

predict accurate ETo in various climatic regions.

However, GRNN and MLP models also show good

performance in comparison to GMDH and CCNN

models for all selected cities of Pakistan. The

summary performance indices, M.E MAE, MAPE,

SI, of various approaches towards estimating ETo for

various climatic zones of Pakistan can be seen in

Table 10. It can be observed in Table 10 that model

efficiency of all the data driven models in various

climatic zones of Pakistan was found greater than

90%. As it can be seen model efficiency is higher for

SVM model as compared to the use of other models

in each climatic zone of Pakistan. However, MLP

model looks superior in comparison to GRNN,

CCNN and GMDH models in Multan, Peshawar

and Skardu climatic stations. In contrast, GMDH

model shows good performance as compared to MLP,

Table 9

Statistical parameters of selected countries used in current study

Countries Data Source Variables Mean S.D Min Max Cs

Pakistan Tmax 26.81 1.1 19.4 34.22 - 0.42

Tmin 12.48 1.87 4.65 20.32 - 0.07

https://www.pmd.gov.pk/ R.Havg 45.17 1.98 38 56 0.775

U 139.64 2.6 78.37 250.9 - 0.31

N 7.33 2.88 6 8 - 0.12

New Zealand Tmax 17.39 4.82 8.10 27.00 0.02

Tmin 6.82 3.84 - 0.80 15.40 - 0.06

https://www.niwa.co.nz R.Havg 89.37 6.00 73.90 99.70 - 0.42

U 125.40 2.49 69.12 172.80 - 0.12

N 4.85 1.77 1.54 9.39 0.25

China Tmax 10.57 3.63 - 16.20 31.40 - 0.30

Tmin 0.33 4.49 - 26.10 20.70 - 0.22

https://www.cma.gov.cn/en2014/ R.Havg 53.11 5.92 25.90 73.00 - 0.36

U 199.15 4.36 111.50 335.20 0.69

N 5.94 1.72 0.90 9.90 - 0.37

USA Tmax 14.22 3.29 - 4.57 30.01 - 0.11

Tmin 10.40 4.08 - 11.63 25.68 - 0.15

https://www.isws.illinois.edu R.Havg 71.57 4.80 59.87 89.33 0.59

U 6.09 1.56 3.23 9.23 - 0.03

N 4.98 2.1 1.25 9.70 0.12

Tmax maximum air temperature (oC), Tmin minimum air temperature (oC), N sunlight hours (h), U air speed at 2 m height (km/day), RHavg

average 24 h. relative humidity (%)
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CCNN and GRNN models in Islamabad and Jacob-

abad cities. Furthermore, CCNN model has greater

value for M.E in Multan city as compared to MLP

and GMDH models while it shows slightly better

performance than GRNN model. Table 10 further

supports our above discussion and expresses the

performing indices of all numerical computing

methods for each climatic station of Pakistan. Addi-

tionally, SVM model has attained 99 percent value

for M.E in order to estimate ETo. Moreover, Table 10

also demonstrates M.E value for SVM approach in

selected climatic stations of Pakistan which lies

between 95 and 100 percent. In general, the results

indicate that SVM approach has the best estimating

capability for ETo estimation. similar results were

obtained by Shrestha and Shukla (2015) for tropical

environment. Two indicators, namely, MAE and SI

are further calculated to endorse the selected numer-

ical computing methods for each climatic station.

These two indicators have values range from 0 to 1. If

value approaches to 0, it shows the perfect fit of

model. Alternatively, model shows less predictive

accuracy when its outcome reaches to 1. It can also

be observed in Table 10 that MAE and SI indices

have least values for SVM model in each climatic

station of Pakistan. In addition, SVM model has 0

values for SI while it shows minimum value of MAE

as compared to the other models in each selected

cities of Pakistan. According to the results depicted in

Table 10 that MLP has smaller values for SI and

MAE in comparison of GRNN, CCNN and GMDH

models in Multan, Peshawar and Skardu climatic

stations. On the other hand, MLP, CCNN and GRNN

models generate higher values for MAE and SI as

compared to GMDH model in Islamabad and Jacob-

abad cities. Additionally, CCNN has lower values of

SI and MAE than MLP, GMDH and GRNN models

for Multan city. above whole discussion could be

summarized as all selected data driven models except

SVM do not maintain consistency of their results in
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each climatic zone which can be clearly observed in

Table 10. This may be due to the fact that the climatic

parameters in training process for all selected models

excluding SVM generate higher residual values

which become responsible to reduce their efficiencies

in order to estimate ETo. Furthermore, GMDH, MLP,

CCNN and GRNN show acceptable values for all

performing indices (M.E, MAE, MAPE and SI) in

each selected climatic stations of Pakistan. An

inclusive detail about each data driven model

regarding performing indices for selected climatic

stations of Pakistan is given in Table 10. In addition

to summarized discussion, the model efficiencies

(M.Es.) of SVM model for FSd, Jac, Mul, Pes and Skr

are 95.4%, 99.06%, 99.36%, 98.7% and 99.64%,

respectively that stipulate the supremacy of SVM

among other applied data driven models. Surpris-

ingly, the efficiency of SVM for ISD station is lower

as compared to other models but the least value of

error (i.e. MAPE = 7.63%) further assist the afore-

mentioned remarks regarding consistency and

strength. The performance of each data driven model

depends upon its training algorithm. It is difficult to

decide which data driven model has the best perfor-

mance except applied in different conditions

especially in case of climatic studies. Although data

driven models always performed better than local

calibrated physical model or conventional methods

(Karimaldini et al. 2011; Aytek 2009; Tabari and

Talaee 2013). But mostly, it was found that the model

Table 10

Performance parameters for ETo assessment in Pakistan using selected approaches

Climatic stations Numerical methods Training Algorithms (for optimal model structure) Performing indices

M.E MAE MAPE SI

FSD SVM Grid and pattern search 95.4 0.42 8.57 0.11

GRNN Random/mixture of transfer function 93.92 0.50 10.18 0.14

GMDH Equation combination/function type 91.53 0.52 9.85 0.15

CCNN Conjugate gradient 94.54 0.49 12.77 0.15

MLP Nguyen widrow/scaled conjugate gradient 90.11 0.58 10.35 0.16

ISD SVM Grid and pattern search 95.1 0.21 7.63 0.07

GRNN Random/mixture of transfer function 96.14 0.21 7.81 0.07

GMDH Equation combination/function type 97.39 0.21 8.46 0.06

CCNN Conjugate gradient 97.11 0.23 8.99 0.10

MLP Nguyen widrow/scaled conjugate gradient 95.33 0.28 10.56 0.08

JAC SVM Grid and Pattern Search 99.06 0.14 4.04 0.04

GRNN Random/mixture of transfer function 97.48 0.24 6.48 0.07

GMDH Equation combination/function type 98.38 0.19 6.14 0.05

CCNN Conjugate gradient 98.2 0.21 6.56 0.11

MLP Nguyen widrow/scaled conjugate gradient 97.74 0.24 6.26 0.06

MUL SVM Grid and pattern search 99.36 0.13 4.33 0.03

GRNN Random/mixture of transfer function 97.66 0.24 6.58 0.07

GMDH Equation combination/function type 98.15 0.24 7.58 0.04

CCNN Conjugate gradient 99.12 0.16 5.74 0.07

MLP Nguyen widrow/scaled conjugate gradient 99.24 0.15 4.29 0.04

PES SVM Grid and pattern search 98.7 0.20 4.36 0.08

GRNN Random/mixture of transfer function 96.99 0.39 6.69 0.12

GMDH Equation combination/function type 96.58 0.46 8.76 0.19

CCNN Conjugate gradient 96.58 0.46 8.76 0.19

MLP Nguyen widrow/scaled conjugate gradient 98.34 0.29 5.92 0.09

SKR SVM Grid and pattern search 99.64 0.08 4.27 0.03

GRNN Random/mixture of transfer function 99.4 0.11 4.69 0.03

GMDH Equation combination/function type 98.74 0.17 5.76 0.04

CCNN Conjugate gradient 95.75 0.17 6.25 0.06

MLP Nguyen widrow/scaled conjugate gradient 99.3 0.12 4.86 0.04

The maximum iterations for optimal model structure was chosen 10,000 and execution time was zero
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considered as the best for one climatic region does

not produce efficient result in another climatic

condition. This is due to fact that the model optimal

structure determined by using data driven model

based on machine learning algorithms are of critical

importance. Determination of the optimal structure of

data driven model seems impossible without iteration

process. Hence, various types of training algorithm

with a number of iterations have been used to

determine the best fitted optimal structure. In addition

to use of training algorithms, the number of itera-

tions, convergence value and execution times are

considered as the prime parameters. Thus, data driven

models based on some advanced machine learning

algorithms e.g. pattern and search training algorithm

in SVM model and/or equation combinations (linear,

polynomial, quadratic) in GMDH model were applied

in this study in order to investigate the performance.

4.3. Results of Developed Machine Learning Models

in Other Climatic Regions

In section, developed data driven models were

tested on five other stations located in China, New

Zealand and USA (Illinois State) by using 4-year

climatic data. The climatic data of these stations is

also comprised of same meteorological input param-

eters. The statistical average values of all

meteorological variables for selected countries cal-

culated and presented in Table 8. Geographical

description and data duration of each climatic station

is mentioned in Table 2. climatic characteristics of

these stations can be seen in Table 3. ETo values of

these stations were estimated by FAO-PM 56 stan-

dard equation. Selected data driven models, SVM,

GMDH, MLP, CCNN and GRNN, directly applied on

these climatic stations to estimate ETo values without

using their data in training phase. The performance

indices, namely, CV, RMSE, r, and MSE are

calculated for each station to investigate their

performance. results of each data driven model are

summarized in Table 11. As the results indicated

(Table 11), the SVM model had the best performance

in Auckland station (r = 0.99, RMSE = 0.09

mm/day, CV = 0.17 and MSE = 0.12 mm/day)

among other models. However, the models GMDH

and MLP had performed equally well with r = 0.98

and RMSE = 0.13 mm/day in the test phase. results

generated with GRNN and CCNN models are com-

paratively lower than SVM, GMDH and MLP

models. The GRNN model had yielded results as

r = 0.97, RMSE = 0.12 mm/day, CV = 0.19, MSE =

0.15 mm/day while CCNN model had generated

r = 0.96, RMSE = 0.15 mm/day, CV = 0.23 and

MSE = 0.22 mm/day, respectively. It can be evi-

dently observed that RMSE values of GRNN and

MLP models are remained identical i.e.

0.12 mm/day. In addition, the correlation between

observed and predicted values for all data driven

models had persisted above 0.95, although SVM

model attains value equivalent to 1. Likewise, SVM

model shows good performance for the Harbin station

which is located in china country and have extremely

cold climatic conditions. The values of r = 1 and

RMSE = 0.10 mm/day makes SVM an ideal model

for this climatic station while the values for CV and

Table 11

Results of each applied data driven model in testing phase for other

five selected climatic stations

Climatic

Stations

Numerical

methods

Performing indices

CV RMSE r MSE

Auckland SVM 0.17 0.11 0.99 0.09

GRNN 0.19 0.12 0.97 0.15

GMDH 0.17 0.11 0.98 0.13

CCNN 0.23 0.15 0.96 0.22

MLP 0.17 0.12 0.98 0.13

Harbin SVM 0.03 0.10 1.00 0.03

GRNN 0.17 0.43 0.96 0.18

GMDH 0.12 0.30 0.97 0.09

CCNN 0.18 0.46 0.95 0.21

MLP 0.06 0.15 0.98 0.06

Belleville SVM 0.13 0.016 0.99 0.0001

GRNN 0.17 0.021 0.96 0.0005

GMDH 0.12 0.015 0.98 0.0002

CCNN 0.13 0.026 0.95 0.0003

MLP 0.17 0.022 0.94 0.0005

Big Bend SVM 0.16 0.019 0.97 0.0002

GRNN 0.24 0.025 0.92 0.0007

GMDH 0.18 0.021 0.97 0.0004

CCNN 0.23 0.026 0.91 0.0007

MLP 0.34 0.039 0.92 0.0015

Dixon Spring SVM 0.15 0.025 0.96 0.0003

GRNN 0.22 0.022 0.90 0.0005

GMDH 0.19 0.037 0.93 0.0014

CCNN 0.25 0.029 0.89 0.0008

MLP 0.21 0.023 0.92 0.0005

The maximum iterations for optimal model structure was chosen

10,000 and execution time considered as zero
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Figure 8
The ETo values estimated by the FAO-PM56 and other models in the test phase
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Figure 9
Scatter Plot for Harbin city (ETo of FAO-PM56 vs data driven models)
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Figure 10
Scatter Plot for Auckland city (ETo of FAO-PM56 vs data driven models)

Vol. 177, (2020) Comparative Assessment of Reference Evapotranspiration Estimation 4499



y = 0.7752x + 0.8356
R² = 0.8596

0

2

4

6

8

0 1 2 3 4 5 6 7 8

C
C

N
N

 E
T

o 
(m

m
/m

on
th

)

FAO PM 56 ETo (mm/month)

y = 0.7848x + 0.6257
R² = 0.935

0

2

4

6

8

0 1 2 3 4 5 6 7 8

SV
M

 E
T

o 
(m

m
/m

on
th

)

FAO PM 56 ETo (mm/month)

y = 0.4508x + 1.9079
R² = 0.8349

0

2

4

6

8

0 1 2 3 4 5 6 7 8

M
L

P 
E

T
o 

(m
m

/m
on

th
)

FAO PM 56 ETo (mm/month)

y = 0.7729x + 0.8167
R² = 0.8449

0

2

4

6

8

0 1 2 3 4 5 6 7 8

G
R

N
N

 E
T

o 
(m

m
/m

on
th

)

FAO PM 56 ETo (mm/month)

y = 0.8099x + 0.6604
R² = 0.8915

0

2

4

6

8

0 1 2 3 4 5 6 7 8

G
M

D
H

 E
T

o 
(m

m
/m

on
th

)

FAO PM 56 ETo (mm/month)

Figure 11
Scatter Plot for Big Bend city (ETo of FAO-PM56 vs data driven models)
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Figure 12
Scatter Plot for Belleville city (ETo of FAO-PM56 vs data driven models)
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Figure 13
Scatter Plot for Dixon Spring city (ETo of FAO-PM56 vs data driven models)
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MSE equal to 0 further legitimate it. It should be

noted that r term provides information for the linear

dependence between observations and corresponding

estimates. Furthermore, MLP and GMDH models

provide closer ETo estimates to the benchmark ETo

than GRNN and CCNN models. The values of r and

RMSE for both MLP and GMDH models are greater

than GRNN and CNN models. However, MLP model

had performed better as compared to GMDH model.

As shown in Table 9, GMDH model generates

exactly twice values for CV and RMSE which are

followed as 0.12 and 0.30 mm/day, respectively.

Although, the performance of GRNN and CCNN

models are shown lower in comparison to SVM, MLP

and GMDH models but yield good results in com-

parison to Auckland station. In addition, MSE value

for each model is categorically zero while the value

of correlation coefficient had attained 0.95 or above.

Generally, it can be concluded from the performance

evaluation indicators that SVM had the best perfor-

mance and superior to other data driven models. The

MLP model with a RMSE of 0.15 mm/day and MSE

of 0.06 mm/day has provided the second best ETo

estimates. In contrast, the CCNN model has the

highest error rates (RMSE = 0.46 mm/day and

MSE = 0.21 mm/day). The outcomes of all data

driven models are found in Table 11 for Belleville,

Big Bend and Dixon Spring stations. According to

the performance statistics, SVM model with extreme

less values of CV, r and RMSE (CV = 0.13–0.16,

r = 0.96–0.99 RMSE = 0.016–0.025 mm/day) is

considered as the best among other data driven

models for the Belleville, Big Bend and Dixon Spring

stations. In addition, for all aforementioned climatic

stations, SVM model has zero value for MSE which

further supports its supremacy. It can also be inferred

from results in Table 11 that the second best model

for estimation of ETo can be considered as a GMDH

model. The outcomes of GMDH model are more

precise as compared to MLP, GRNN and CCNN

models. In addition, this model yields more accurate

ETo with increasing correlation coefficient from 0.96

to 0.99 and decreasing RMSE and MSE values from

0.025 and 0.0003 to 0.016 and 0.0001, respectively.

From above analysis, it can be generally concluded

that the performance of SVM model is superior to

MLP, GMDH, GRNN and CCNN models for all five

selected climatic regions situated in USA, China and

New Zealand. As mentioned earlier and can be seen

from Table 4, radial basis function (RBF) was the

best kernel for SVM model. Tabari et al. (2012) had

found RBF as a best kernel function among others for

all developed SVM models. A precise selection of

kernel function is responsible for the given data set to

provide feature space for its separation This unique

feature creates a boundary between SVM and other

previously developed algorithms (Bray and Han

2004). Furthermore, Table 11 also revealed that

GMDH is comparatively superior to MLP in Auck-

land while produces lower results as compared with

MLP model in Harbin stations. In addition, MLP

model had the best performance in Harbin station but

generates poor results for Belleville and Big bend

stations with increasing values of CV and RMSE

from 0.17 and 0.022 to 0.34 and 0.039, respectively.

However, GMDH model could be endured the second

best model in order to estimate ETo. Consequently, it

may be evident that GMDH model has utmost

performance as compared to MLP, GRNN and

CCNN models but inferior to SVM model. Moreover,

GRNN model generates more reliable results than

CCNN model by decreasing values of RMSE from

0.021 to 0.43 mm/day. Additionally, the values of

correlation coefficient for CCNN model are decreas-

ing from 0.96 to 0.89. Finally, it can be concluded

that MLP is the third best model while GRNN and

CCNN models are ranked as fourth and fifth best

model for estimation of ETo.

The mean monthly ETo of five selected stations

estimated by data driven model and FAO-PM56

method to authenticate model’s performance. The

hydrographical form of ETo values for five selected

stations can perceptibly be seen in Fig. 8. Initially,

ETo values were observed as low and then increased

gradually when number of months increased. But

after certain interval, ETo goes in downward direction

from peak value. Similarly, this could be happened

for all intervals and observed lower and higher peaks

of ETo. Surely, this trend could be indicated winter

and summer seasons. In winter season, temperature

recorded minimum and relative humidity was max-

imum, the value of ETo estimated minimum.

Alternatively, for summer season, temperature

recorded maximum and relative humidity was
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minimum, ETo value estimated maximum. To further

check the underestimation and overestimation of ETo,

data driven models against FAO-PM56 method was

compared. It can be perceived from Fig. 8 that MLP

and CCNN models indicate overestimation while

values of GRNN and GMDH models remain under

peak of FAO-PM56 ETo values for the Harbin

station. For SVM data driven model, estimated ETo

is trailing well with FAO-PM56 ETo values. In

contrast, overestimation for MLP, GRNN and GMDH

models in comparison to FAO-PM56 ETo values was

observed in Auckland station. However, the values of

SVM model closely overlap with the standard FAO-

PM56 ETo values. Likewise, ETo estimated by SVM

model agrees with the FAO-PM56 ETo and follows

same trend in both Big bend and Belleville stations as

observed in Fig. 8. Conversely, results of MLP model

look extremely below from the FAO-PM56 ETo

values in Big bend station while remain equal with

other models for Belleville station. Additionally,

GMDH model has performed better than GRNN and

CCNN models in both cities. This also authenticates

our results for GMDH model indicated in Table 11.

For Dixon Spring station, all data driven models

generate smooth peaks for ETo values as compared to

FAO-PM56 method. This also indicates that these

data driven models only deal with available data set

and do not affect with other myriad factors. The

deviation of ETo values for SVM among data driven

models was very minute and more close that

estimated by FAO-PM56 method. Thus, it can be

concluded from earlier discussion that SVM model

performed the best in all climatic conditions for ETo

estimation. However, GMDH model generates reli-

able results as compared to MLP, GRNN and CNN

models, therefore ranked as the 2nd best model.

While MLP, CCNN and GRNN models ranked 3rd

place to 5th, respectively in the estimation of ETo.

The linear regression test facilitates the extension of

statistical analysis. Figures 9, 10, 11, 12, 13 indicates

ETo estimates of all data driven models in form of

scatter plots for each station. In these plots, ETo

estimated by the FAO-PM56 method are plotted

against with numerical estimated ETo values, in the

form of scatter plots. It can be observed that there is a

linear pattern of points for all applied data driven

models. There were some misplaced estimated points

which correspond to incorrectly estimated ETo data,

with some high values for all methods except SVM

model. similar results were observed in Tabari et al.

(2012). This may be due to intermittent character of

ETo distribution and deviate from trend line. It can be

observed in Fig. 9 that data driven models generate

acceptable R2 values for the Harbin station (China)

ranges from 94 to 98%. For SVM, MLP and GRNN

data driven models, R2 value found in equal (i.e.

98%) while CCNN and SVM models have 94% nad

95% repectively. Likewise, ETo values estimated by

data driven modelsin comparison to FAO-PM56

methods for Auckland (New Zealand) is shown in

Fig. 10. As indicated, SVM models performed the

best with the highest value of R2 (i.e. 95%) as

compared to other data driven models. MLP and

GRNN models performed equal while CCNN model

generates loewest (i.e. 92%) value for Auckland

station. In simialr manner, comparison of applied

numrical models against the standard FAO-PM56

method for Big Bend, Belliville, Dixon Spring

(Illinios state, USA) are presented in Fig. 11,

Fig. 12 and Fig. 13, respectively. SVM and GMDH

Table 12

Comparison of FAO-PM56 and data driven models between monthly averages value of ETo for selected stations

Countries Stations PM-method CCNN GMDH MLP GRNN SVM

Pakistan Skardu 3.395 3.368 3.389 3.370 3.355 3.390

USA Belleville 3.825 3.570 3.780 3.630 3.499 3.820

Big bend 3.391 3.487 3.378 3.655 3.332 3.389

Dixon Spring 3.491 3.124 3.370 3.289 3.026 3.490

New Zealand Auckland 2.176 1.879 2.017 1.980 1.799 2.164

China Harbin 2.510 2.384 2.498 2.392 2.310 2.506

The value of ETo calculated is in mm/month using FAO-PM56 and all the applied data driven models
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performed the best as compared to CCNN, MLP and

GRNN model as obserevd in Fig. 11. The highest

value of R2 (93%) in Big Bend station was found for

SVM model. Similarly, for Belliville (Fig. 12) and

Dixon Spring stations (Fig. 13), SVM model outper-

formed in comaprison to GRNN, CCNN, MLP. The

R2 value for SVM in Belliville and Dixon Springs

climaic stations was nealy found 94% and 92%

respectively. It is obvious from given fitted lines in all

scatter plots (Figs. 9, 10, 11, 12, 13) that SVM model

have closer to PM-ETo values in comparison to other

data driven models. Plotted points of SVM model

correlate well towards linear trend line. However,

plotted points of other data driven model are of major

underestimation or overestimation. It can be deduced

from Figs. 9, 10, 11, 12, 13 that GMDH model has

the higher value of R2 after SVM model for Auckland

station (i.e. R2 = 94%). The superiority of GMDH

model over MLP, GMDH, CCRN can also be

noticeably comprehended in, Big Bend, Dixon Spring

climatic stations. While MLP and CCRN performed

better than GMDH model in the Harbin and

Belleville climatic stations, respectively. similar

results of GMDH model can be found in Table 11

which demonstrates the supremacy of GMDH model

over data driven models except a SVM model. It can

be concluded that SVM model has the highest linear

regression coefficient (R2) in all types of climatic

conditions and could be considered as the best data

driven model for the ETo estimation. From above

discussions, GMDH and MLP data driven models are

ranked as the 2nd and 3rd best models for estimation

of ETo. In contrast, GRNN and CCNN model have

lower value of R2 but can be acceptable for all

climatic regions. Therefore, CCNN is ranked as 4th

while GRNN model is considered as the 5th best

model. It is evident from scatter plots that all methods

have acceptable linear regression coefficient values.

For all data driven models, regression equation of

each selected climatic station is found in Figs. 9, 10,

11, 12, 13. It can be perceived that SVM outper-

formed than other data driven models and shows

higher correlation coefficient value in each selected

station. The value of slope(a) and y-intercept (b) in

regression equation (Y = aX ? b) for SVM model

was also found good, for ‘‘a’’ achieved higher and

‘‘b’’ look smaller, in comparison to other data driven

models (Figs. 9, 10, 11, 12, 13). In addition, a

comparison of ETo estimated by the standard con-

ventional FAO-PM56 method and data driven models

for selected countries is presented in Table 12 to

conclude above mentioned results. Skardu station

from Pakistan was included to make reasonable

comparison among data driven models because it

belongs to humid region. It can be concluded that all

the data driven modelsshown good results when

applied in differernt cliamtic conditions. Overall

results indicate that SVM model outperformed for

all selected climatic stations and yielded relaible

results for ETo estimation. This may be due to the fact

that SVM model always seeks a global optimized

solution, avoids over-fitting and no physical bias

which eventually leads to the best performance over

other data driven models.

5. Conclusions

In this study, the potential of five machine

learning algorithms/data driven models (SVM,

GMDH, CCNN, MLP and GRNN) were investigated

to estimate long term monthly reference evapotran-

spiration (ETo). For this purpose, meteorological

variables of maximum and minimum temperatures,

average relative humidity, wind speed and sunshine

hours were employed as input in data driven models

for six stations of Pakistan. The results obtained from

all data driven models were found acceptable for

selected climatic stations. Most of studies exited in

literature used 70% of data as training/input data.

And rest of 30% data for testing/validation. In this

situation, R2 mostly comes above 95%. This practice

is not justified and always arose question regarding

model’s performance. Therefore, the data set from

other countries have been used for validation and

justification of each data driven model. The following

conclusions can be drawn from the study:

• The long term monthly reference evapotranspira-

tion (ETo) of four climatic regions were

successfully estimated by conventional standard

FAO-PM56 method

• Machine learning algorithms/data driven models of

SVM, GMDH, CCNN, MLP and GRNN were
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found capable for ETo estimation under different

climatic zones of Pakistan as well as in other parts

of the world

• By investigating the performing indices, SVM and

GMDH model ranked as 1st and 2nd while 3rd, 4th

and 5th followed by MLP, CCCN and GRNN data

driven models

• The comparison results indicate that by using the

similar meteorological inputs, SVM can be

employed as an alternative ETo model to the

existing conventional method
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