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Abstract—Fractures play an important role in controlling rock

block stability and the hydraulic properties of fractured rock for-

mations. Understanding elastic wave propagation in fractured

media can result in significant advances for the geophysical pre-

diction of fracture parameters from seismic data. However, most

natural fracture characteristics, such as fracture length, aperture,

angle and location are random; therefore, fracture models must be

built discretely and follow some stochastic principles. We construct

stochastic models of fractured rock samples using a random frac-

ture network rather than a single fracture. Three-dimensional (3D)

wave field computation is a computationally complex problem.

Here, the 3D fourth-order in space, second-order in time, dis-

placement-stress staggered-grid finite-difference scheme is used for

accurate simulations. Our numerical examples demonstrate the

effects of varying fracture number, aperture, and length distribution

of the fracture network on the seismic response. The wave field

scattering caused by the contrast between fractures and background

media is one of the key features, and the resulting scattering is

more obvious for S-waves than for P-waves. Such an approach can

be applied to any fracture network model that provides a link

between fracture parameters and seismic attributes.

Key words: Wave propagation, discrete fracture network,

scattering, fracture parameter.

1. Introduction

Fractures have a significant effect on material

strength (Morasch et al. 2015), rock block stability

(Li et al. 2016), and fluid flow (Wu et al. 2018). In the

oil and gas industry, understanding fractures for

characterizing reservoir parameters and planning

well-drilling is vital (Li et al. 2017). It is also

important in civil engineering and coal mining where

proper support systems in tunnels and other under-

ground structures are designed to accommodate

fractures (Adewole and Bull 2013; Guo et al. 2019;

Monsalve et al. 2019). Fractures can often jeopardize

structural durability since aggressive substances

(liquid solutions, ions and gases) may be able to

penetrate and deteriorate a fractured material, leading

in some cases to structural failure (Hilloulin et al.

2016). In such circumstances, fracture detection

techniques have been a focus of attention (Chen and

Zhang 2018; Osinowo et al. 2017). Chen and Zhang

(2018) proposed a method to detect natural fractures

from observed seismic data via inversion for fracture

compliance. den Boer and Sayers (2018) present the

underlying theory and implementation of a method

for constructing a geologically realistic discrete

fracture network, constrained by seismic amplitude

variation with offset and azimuth data. Zhang et al.

(2015) used the seismic signature to estimate the

subsurface CO2 flooded fracture properties. Most

natural fracture networks do, however, exhibit some

degree of spatial and geometric randomness of the

single fracture, the impact of which on the seismic

responses remains largely unexplored.

With the aim of estimating the fracture parameters

of inaccessible structures, an understanding of seis-

mic-wave propagation in fractured media is needed to

explore how fracture heterogeneity can affect seismic

properties. Physical experiments (e.g., Huang et al.

2016; Stewart et al. 2013) have been performed to

test elastic properties in fractured rock samples.

However, simulation in 3D is still necessary for a

comprehensive understanding of seismic-wave

responses across fractured media. Under the long-

wavelength assumption (fracture size much smaller

than the wavelength), wave propagation in such

fractured media can be described in terms of effective
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anisotropic media. Various effective media models

(e.g., Mavko et al. 2009; Saenger et al. 2006) are

available for estimating the elastic parameters of

fractured media. There has been significant progress

in recent decades in seismic numerical modeling

using stochastic fracture networks. Fang et al. (2017)

generated a random fracture model with fracture

spacing distribution following a power-law function,

and then investigated the amplitude variation with

offset (AVO) and Amplitude variation with azimuth

(AVAz) responses of irregularly spaced fractures by

comparing the numerical results obtained from an

effective media model with a discrete fracture model,

and found that the effective media assumption can

result in a more than 10% error in fracture spacing

inversion even though the fracture spacing (\ k/20) is
much smaller than the seismic wavelength. Thus,

scattered waves caused by strong heterogeneities can

be modeled only by numerical simulation since a

discrete random fracture network cannot be repre-

sented by any effective media theory. This is because

the effective media theories consider the general

properties of both fractures and host rock within the

study volume. Therefore, to obtain fully detailed

seismic characteristics, a fracture network should be

treated as a set of local inclusions. De Basabe et al.

(2016) modeled elastic wave propagation in fractured

media using the discontinuous Galerkin method.

Hunziker et al. (2018) studied seismic attenuation and

stiffness modulus dispersion in porous rocks con-

taining stochastic fracture networks in 2D and then

concluded that information about the local connec-

tivity of a fracture network could be retrieved from

seismic data.

The weak-inclusion scheme (Saenger and Bohlen

2004) describes fractures as low-velocity and low-

density ellipsoidal inclusions. However, this

scheme requires fine grid spacing to adequately

model the thickness of fractures. The local effective-

media scheme (Coates and Schoenberg 1995; Vlastos

et al. 2003) expresses the effective compliance of a

fractured layer with the sum of compliances from

each fracture and the background media within each

discretized cell. This results in local fractured media

that has a lower velocity than the background media.

Thus, this scheme requires a much larger grid spacing

Figure 1
3D fracture networks with six different fracture numbers (from 100 to 600, increasing alphabetically)
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than the weak-inclusion scheme. For simplicity and

without loss of applicability, we focus in the fol-

lowing on the effect of stochastic properties on

natural fracture networks, and directly use this

scheme to compute an effective modulus for each of

the voxels in the 3D image.

The goal of our paper is to investigate the seismic

response and uncertainty quantification with such

heterogeneities in randomly fractured media and

subsequently to provide more reliable predictions for

practical problems. Stochastic 3D fracture networks

were used to represent natural fracture networks. We

applied a staggered-grid finite-difference scheme to

numerically study elastic wave propagation directly

in voxelized 3D stochastic fracture geometries with-

out meshing. Elastic parameters of the fracture and

background media were assigned to each of the

voxels in the 3D image. This approach can provide

detailed wave propagation phenomena resulting from

the spatial contrasts between background and

fractures.

2. Natural Fracture Model

Natural fracture systems can often be represented

by a set of convex polygons in a probed volume, with

random shapes, sizes and locations. Based on these

assumptions, a fracture can be represented by a flat

object, with its shape defined as a convex polygon

(rectangle, ellipse or more complex form), and with

its size following a known distribution function such

as negative exponential (Cheng-Haw et al. 2006;

Zazoun 2008). Similarly, its location is obtained by

means of spatial functions such as a 3D Poisson or

uniform distribution. The orientation information can

Figure 2
Fracture length distribution analysis applied to the fracture network shown in Fig. 1

Vol. 176, (2019) 3D Numerical Simulation of Elastic Wave Propagation in Discrete Fracture Network Rocks 5379



be extracted uniformly. Then, every fracture can be

built discretely following the rules above. In this

paper, we simulate 3D fracture networks using the

ADFNE package (Alghalandis 2017). For the simu-

lation of a 3D fracture network containing n fractures,

the following MATLAB function was used.

fnw ¼ GenFNM3D n; dip; ddip; ddir; dddir; s; rgnð Þ;

where dip and ddip denote the mean dip angle [0, p/2)
and the variation limit around the dip angle (0 B

ddip B p/4), respectively. ddir is the mean orienta-

tion [0, 2p) and dddir is variation limit around the

ddir angle (0 B dddir B p) for fractures, rgn is the

region of study [xmin, xmax, ymin, ymax, zmin, zmax] (a

cube) by which the simulated fracture network is

clipped and s is the scaling factor to determine

maximum size (s = Smax) for generated fracture

lengths, which is distributed according to a negative

exponential distribution l * Exp (k).

The lengths of our random convex polygon frac-

tures are drawn from the negative exponential

described above, and the orientations of the fractures

and the positions of the fracture centers are drawn

from a uniform distribution.

The side length L, width W, and height H of the

sample were all fixed at 1000 m. The maximum

fracture length was set to be lmax = L/2 = 500 m,

Figure 3
Orientation and dip angle distribution analysis applied to the fracture network shown in Fig. 1

Table 1

Compressional-wave velocity (vp), shear-wave velocity (vs), and

density (q) of the homogeneous media and the crack infills

Elasticity

parameters

Background media

(homogenous matrix)

Crack infill (cold

water)

vp (m/s2) 6000.0 1477.2

vs (m/s2) 3454.0 0.0

q (kg/m3) 2500.0 999.0
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because having fractures larger than half the sample

size would mechanically weaken the sample.

We vary the fracture number n from 100 to 600.

To illustrate the diversity of the considered stochastic

fracture networks, we show six examples in Fig. 1.

For each example, the length distribution and orien-

tation information are plotted in Figs. 2 and 3,

respectively.

3. 3D Fourth-Order Finite-Difference Time-Domain

Scheme

First, we present the displacement-stress equation

for a 3D elastic wave in inhomogeneous, isotropic

media
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where q is ambient density, ux, uy and uz represent the

displacements of particle motion in the x, y and z di-

rections, and x, y and z are the spatial coordinates. sij

is the stress tensor, i, j [ {x, y, z}.

Hooke’s Law for a perfectly elastic, heteroge-

neous, isotropic media is
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where eij is the strain tensor, i, j [ {x, y, z}, k is the

Lamé elastic coefficient, and l is the shear modulus.

The displacement–strain formulation is defined as

follows:

exx ¼ oux
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eyy ¼ ouy
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ezz ¼ ouz
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The velocities of P- and S-waves in homogeneous,

isotropic, elastic media are given by

vp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K þ 4l=3
q

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2l

q

s

ð4Þ

vs ¼
ffiffiffi
l
q

r

ð5Þ

where vp is the P-wave velocity, vs is the S-wave

velocity, K is the bulk modulus.

To obtain a broader bandwidth result, we apply a

fourth-order staggered-grid finite-difference

scheme to approximate the temporal and spatial

derivatives (Moczo 2000). The split perfectly mat-

ched layer (Li and Huang 2013) absorbing boundary

condition is applied to eliminate reflections from the

model boundaries.

To minimize numerical artifacts and avoid insta-

bilities, we apply spatial and temporal sampling

criteria modified after and (Moczo 2000):

Figure 4
This is a sketch of the model setup in 3D. The background is

homogeneous rock (gray) and the fractures (black) are randomly

distributed in the sketch. The source (red symbol) is located in the

central position of the model, and the receivers (light blue dots) are

spread out in a line. The domain is 1 km in the x-, y- and z-

directions

Vol. 176, (2019) 3D Numerical Simulation of Elastic Wave Propagation in Discrete Fracture Network Rocks 5381



dt � 6

7
ffiffiffi
3

p dh

vmax

ð6Þ

where vmax is the largest elastic wave velocity, and dh

is grid spacing, which is determined by the type and

order of the finite-difference (FD) scheme.

For the full elastic wave field, the P-wave com-

ponent is an irrotational field, and the S-wave

component is non-dispersed. Following (Sun et al.

2004), P- and S-waves were separated.

4. Numerical Examples

To address the relationships between fracture

parameters and elastic wave propagation, we conduct

the following numerical experiments. The wave field

was simulated in a 1000 m 9 1000 m 9 1000 m

homogeneous, isotropic, linear-elastic space con-

taining a stochastic fracture network. The material

properties used in the simulation are shown in

Figure 5
Four models used for modeling elastic wave propagation: a reference fracture model with equal apertures; fractures are represented by a

stochastic fracture network. The fracture length is distributed according to a negative exponential distribution l * E (k) with mean

k = 250 m, an aperture of 1 m, and a fracture number of 100. b Fracture number is changed to 500. c Fracture aperture is changed to 2 m.

d Fracture length distribution is changed according to a negative exponential distribution l * E (k) with mean k = 350 m. Color bars indicate

the number of connections in each grid
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Table 1 (Kruger et al. 2007). Source location is (500,

500, 500 m), and a Ricker wavelet point source with

a peak frequency of 20 Hz is used. The sketch of our

models and source-receiver geometry is shown in

Fig. 4. Our numerical model uses 100 9 100 9 100

discretized grid points with an even spatial spacing of

10 m. The time step is 0.48 ms, and the numerical

mesh is made up of cube grid cells. Models of inner

structures and mesh details are shown in Fig. 5. We

show results for three different scenarios: (1) fixed

fracture number, aperture, and length distribution, (2)

varying fracture number, fixed fracture aperture, and

length distribution, (3) fixed fracture number and

length distribution, but larger fracture aperture than

scenario (1), and (4) varying fracture length distri-

bution, fixed fracture number, and aperture.

In the reference fracture model, the fractures have

an equal aperture (1 m), the fracture number is 100,

and fracture lengths were extracted from a negative

exponential distribution (k= 250 m). Figure 6 shows

snapshots of the 3D elastic wave field for each of the

P- and S-wave components at 0.144 s. From the wave

field snapshots, the scattering waves from the fracture

can be seen clearly for each component. More sig-

nificant scattering was found for S-waves than for

P-waves, because the P-wave wave length is greater

than the S-wave wave length. Figure 10 shows an

elastic-wave multicomponent shot record for a ref-

erence fracture model. From the shot gathers, we

found that more significant scattering occurred in the

S-waves.

Figure 6
Snapshots of the 3D elastic wave field for each of the P- and S-wave components for a reference fracture model at 0.144 s. The scattering

waves from the fracture can be clearly seen for each component
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Figure 7
Snapshots of the 3D elastic wave field for each of the P- and S-wave components for a fracture model with a varying fracture number at

0.144 s

Figure 8
Three-dimensional slices of elastic-wave-field multicomponent snapshots of the displacement for a fracture model with a varying fracture

aperture at 0.144 s
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By increasing the fracture number, the sources of

scattering increased as well. This results in a distor-

tion of the wave front. In the second model, the

fracture number increases to 300. Figure 7 shows

snapshots of the 3D elastic wave field for each of the

P- and S-wave components for a fracture model with

300 fractures at 0.144 s. Figure 11 shows a corre-

sponding shot record. As the fracture number

increases, the wave field and shot records becomes

more complex. This is caused by the increased

number of scattering sources, which in turn increases

the chances of having constructive or destructive

interference from the transmitted waves.

In the third model, the fracture parameters are the

same as in the reference model with the exception of

the aperture. We changed the fracture aperture to

2 m. Figure 8 shows snapshots of the 3D elastic wave

field for each of the P- and S-wave components for a

fracture model with varying fracture apertures at

0.144 s. Figure 12 shows a multicomponent shot

record for this model. As the fracture aperture

increases, the fracture volume in this region increa-

ses. With higher fracture volume, we have more

significant phase shifts. Significant disturbance was

identified by scattered waves passing through the

individual fractures.

From the above results, we found that random

fractures give us very complicated scattering patterns

due to constructive and destructive interference. The

variation in fracture number increased the chances of

this interference and tended to result in complex

scattering patterns, whereas the fracture aperture

variation enhanced this interference leading to obvi-

ous scattering patterns. Therefore, we changed the

Figure 9
Snapshots of the 3D elastic wave field for each of the P- and S-wave components for a fracture model with a varying fracture length

distribution at 0.144 s
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fracture length distribution. In the last model, fracture

length is distributed according to a negative expo-

nential distribution l * E (k) with mean k = 350 m,

fracture aperture of 1 m, and fracture number of 100.

Figure 9 shows snapshots of the 3D elastic wave field

for each of the P- and S-wave components for a

fracture model with varying fracture apertures at

0.144 s. Figure 13 shows the corresponding

multicomponent shot record. As the fracture length

increased, the scales of the scattering sources

increased as well. Significant disturbance was

observed as a result of the scattered wave passing

through an individual fracture. This causes a reduc-

tion in wave interference, which in turn causes the

‘‘blurry’’ pattern observed in the wave field snapshots

(Figs. 10, 11, 12, 13).

Figure 10
Elastic-wave multicomponent shot records for a reference fracture model
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5. Conclusions

We have combined stochastic fracture network

modeling and a staggered-grid finite-difference

scheme to model elastic wave propagation in 3D

fractured media. The considered fracture networks

are isotropic convex polygons and the length for each

fracture is obtained from a negative exponential

(E) distribution. Orientation information and dip

angle were extracted from uniform and Fisher dis-

tributions, respectively. The wave field was

calculated using the 3D fourth-order staggered-grid

finite-difference method. We numerically acquired

the elastic wave field for a fractured media. We

compared wave fields based on changes to the frac-

ture number, fracture aperture, and fracture length

distribution of the fracture models. From the wave

field snapshots, we found that random fractures can

Figure 11
Elastic-wave multicomponent shot records for a fracture model with a varying fracture number
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result in complicated scattering patterns due to con-

structive and destructive interference. As fracture

numbers increased, the chances of this interference

increased and complex scattering patterns were

observed. In contrast, when variation in the fracture

aperture was enhanced, the interference resulted in

obvious scattering patterns. As the fracture length

increased, the scales of scattered sources increased as

well. Significant disturbance was observed as the

result of a scattered wave passing through an indi-

vidual fracture. This causes a reduction in wave

interference, which in turn causes the ‘‘blurry’’

pattern seen in the wave field snapshots. Furthermore,

with the change of fracture parameters, the elastic

modulus of fractured media changed. We conclude

that elastic wave scattering is sensitive to the fracture

parameters. Wave field scattering caused by the

contrast between fractures and background media is

one of the key features, and the resulting scattering is

more complex for S-waves than for P-waves. Our

numerical method can be used to explore seismic

responses, such as AVO properties, attenuation and

dispersion, on fracture parameters.

Figure 12
Elastic-wave multicomponent shot records for a fracture model with a varying fracture aperture
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