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Abstract—The hydrocarbon development of the Viola Lime-

stone in southern Kansas, USA, has encountered challenges,

regarding the development of a robust data-based model of the

reservoir-quality controls. The legacy understanding that hydro-

carbon entrapment and reservoir-quality are controlled by structure,

has resulted in less than optimal drilling results. In this study, an

integration of petrographic and geophysical well-logs analyses

established the main reservoir quality control as dolomitization-

induced porosity. The dolomitization control is supported by

comparing best-fit trends on density-porosity well log values with

typical model-trends of limestone and dolomite density-porosity.

Furthermore, this study presents unsupervised artificial neural

network (ANN) classification, based on five seismic attributes

(instantaneous frequency, energy, band width, absorption quality

factor, seismic amplitude), that comes in agreement with Ca–Mg

ratio and the observed sonic transit time (DT log) variation with

dolomitization/porosity increase. The hydrocarbon reservoir facies

identified by the attributes classification explains the drilling

results, with high accuracy/match to facies class centers, and can be

used effectively in other settings. The integration, of multi-scale

multi-data analysis and modeling, has provided a solid under-

standing of the reservoir-quality control and distribution. This

study can be considered as a reliable platform for placing future

infill wells in the study area, to lower the risk of drilling dry holes.

Key words: Porosity, unsupervised neural networks, viola

formation, seismic attributes.

1. Introduction

Petroleum producing areas within the mid-conti-

nent region, USA, discovered in the first half of the

1900s often ignored the potential of deeper forma-

tions once hydrocarbons were discovered in

shallower zones. This is particularly true in areas of

western Kansas where Mississippian-aged production

was established, primarily because of the concern of

controlling the active water-drive reservoirs before

modern cementing technologies were developed. The

Ordovician-aged Viola Limestone is one of the

overlooked formations.

This certainly holds true for Clark and Comanche

counties of Kansas, where Mississippian-aged pro-

duction commenced in the 1930s and continues

today. As late as the 1970s, Viola production west of

Kiowa and Comanche counties of Kansas was not

expected due to a perceived lack of seal (Rascoe

1971). The unexpected discovery of the Box Ranch

field in 1988 established Viola production in

Comanche County, which initiated a Viola play in

this part of Kansas. The subsequent discovery in 2000

of Viola pay in the Herd Field in central Comanche

county further sparked interest in the Viola as a

viable exploration target (Richardson 2013).

Development of the Herd field demonstrated that

Viola production was not controlled by simple

structure, but by selective preservation of dolomite

porosity underneath an erosional unconformity

beneath the overlying Maquoketa Shale (Richardson

2013). Recognition of these ‘‘paleotopographic’’ traps

was expected to occur with thinning of the Maquo-

keta above the trap (Fig. 1). A thicker section of

Maquoketa was deposited in areas where the dolo-

mitic facies were eroded away, resulting in poor

reservoir quality. This overlooked formation has

posed challenges as to developing Morrison and

Morrison Northeast fields of Clark County, Kansas.

Those challenges arose from the lack of understand-

ing the main controls on reservoir quality and

entrapment setting, (Raef et al. 2017; Linares 2016).

Consequently, 3D seismic surveys were con-

ducted to explore for these ideal conditions favorable

for Viola production. One such survey in easternmost1 Department of Geology, Kansas State University, Man-
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Clark County led to the opening of the Morrison

Northeast Field by Coral Coast Petroleum in 2012. A

total of 13 wells were drilled, of which 7 are still

producing. Development of the field was hindered by

the high heterogeneity of the Viola reservoir prop-

erties. Reinterpretation of the 3D dataset by Raef

Figure 1
a Depth-to-basement map and structural provinces of south central mid-continent, b location map of Morrison NE field of Clark County,

south-central Kansas
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et al. (2017) reported seismic facies associated with

producing wells based upon seismic attributes. These

facies were reported to be associated with distinct

reservoir lithofacies that contained the necessary

conditions for hydrocarbon production.

The objective of this research was to expand the

description of the lithofacies beyond Raef et al.

(2017), using petrographic and petrophysical meth-

ods, to better predict reservoir conditions in the Viola

Limestone. A further objective was to better under-

stand the linkage between seismic facies variation in

relation to reservoir quality of the different Viola

lithofacies.

A workflow to recognize zones with higher pro-

ductivity combining seismic, well log analyses, and

detailed rock description is proposed. The proposed

workflow should aid in identifying productive Viola

facies using 3D seismic, and reduce the number of

dry holes during field development.

2. Geological Setting and Petroleum System

The study area for this research is the Middle

Ordovician-aged (470–440 Mya) Viola limestone

formation found in the Morrison Northeast Field of

Clark County, south-central Kansas. The Viola

Limestone Formation is a carbonate reservoir that is

widely exposed throughout Texas, Oklahoma,

Nebraska, Missouri and Kansas, yielding moderate

production rates of oil and gas throughout its course

(Carlson and Newell 1997). In most of this region, the

production rate of the Viola is mostly controlled by

the geologic structure, but in south-central Kansas

much of the Viola limestone’s reservoir quality is

determined by stratigraphic and petrographic aspects

that are a combination of the rock’s depositional

environment and diagenetic alterations (Richardson

2013; Syed et al. 2010).

Stratigraphic traps in the Viola Limestone include

the Herd, Bird East and Box Ranch oil fields in

Comanche County, (Fig. 1), collectively produced as

much as 2.2 million barrels of oil (BO) and 9.7 billion

cubic feet of gas (BCFG) (Richardson 2013). The

Morrison NE Field, which is the subject of this study

has produced over 200,000 barrels since its discovery

in 2012.

The Maquoketa limestone is a difficult to recog-

nize but important unit with regard to Viola limestone

production in the Morrison NE field. This dense

limestone serves as the seal above the Viola lime-

stone in the study area. The Maquoketa is a cream to

light gray, dense limestone with no visible porosity

and an average thickness of about 20–25 ft within the

study area. The Maquoketa thins over paleotopo-

graphic highs of the Viola, and thickens in the lows.

This dense non-porous rock makes an excellent seal

for the petroleum system in the area (Richardson

2013).

The Morrison NE Field was discovered using a

3D seismic survey, focusing on an isochrone map of

the Maquoketa to identify ‘‘thinning’’ of this forma-

tion, and preservation of the Viola ‘‘A’’ zone.

Development of the field was hindered by the

unpredictable relationship between the Maquoketa

thinning and reservoir properties, resulting in several

dry holes.

The Viola limestone was deposited in the middle

Ordovician period in a warm tropical marine setting.

The Viola varies between a fossiliferous limestone,

and a medium to coarse crystalline vuggy dolomite,

often containing scattered chert, with a total thickness

of about 175–200 ft within the study area. It is

informally divided into four distinct facies, delineated

as the ‘‘A’’ through ‘‘D’’ zones. A stratigraphic col-

umn of the Viola within the study area is displayed in

Fig. 2.

Vugs within the Viola ‘‘A’’ zone result in excel-

lent porosity/permeability, which makes it an

outstanding hydrocarbon reservoir rock (Goebel

1968). The Viola sits below an erosional unconfor-

mity representing about 20 Ma of subaerial exposure,

contributing to the formation of vugs that give the

Viola ‘‘A’’ such good porosity and permeability. In

some areas the ‘‘A’’ and sometimes also the ‘‘B’’ zone

are eroded away, resulting in a lack of reservoir

conditions in non-productive limestone facies. Hence,

the key to establishing development-model is deter-

mining where the Viola ‘‘A’’ and/or ‘‘B’’ zone are

preserved in a structurally favorable setting. An

example of the resulting paleotopographic trap within

the Viola as the result of this erosional unconformity

in the analogous Herd Field is shown in Fig. 3.
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A re-interpretation of the seismic volume focusing

on attribute analyses was conducted by Reaf et al.

(2017) and Vohs (2016). Combining the amplitude

attribute on the top of the Viola with an Instantaneous

Frequency thin-bed indicator successfully separated

the producing wells from the unsuccessful wells in

Figure 2
Stratigraphic column showing formations of interest in the study area and the four distinct lithofacies within the Viola (modified after Cole

1975)

Figure 3
Idealized cross section showing paleotopographic traps within the Viola of the Herd Field, Comanche County, Kansas. The Herd Field is

approximately fifteen miles east of the study area (modified after Richardson 2013)

4300 A. E. Raef et al. Pure Appl. Geophys.



the field. The thin bed tuning of the instantaneous

frequency was reported to be enhanced by the pres-

ence of hydrocarbons, but is largely controlled by the

thickness of the reservoir facies and the lowered

amplitude of the high porosity reservoir facies.

3. Petrography and Well-Logs Facies

The close agreement between the seismic facies

and reservoir lithofacies reported in Raef et al. (2017)

encouraged us to further investigate the petrologic

controls affecting both. Core was not available on any

of the wells in the field, hence we looked at drill

cuttings that were lagged back to pertinent drilling

depths using ROP logs. This was aided by several

points where drilling was stopped to circulate for

samples. These depths gave the best confidence that

we were selecting the actual samples from a specific

drilling depth.

Well cuttings were vacuum impregnated with

blue-dyed epoxy, mounted on standard thin-section

slides, ground to 30 micron thickness, and polished.

Images in plane light were uploaded into ImageJ

software (Linares, 2016) which calculates the area of

the image represented by the blue epoxy-filled

porosity. These data are listed in Table 1. As

expected, the productive wells have higher porosity

values. A diagnostic characteristic of the reservoir

lithofacies is the presence of dolomite.

The polished sections were further examined

under a scanning electron microscope (SEM). X-ray

spectra were collected at relatively low magnification

under SEM (Fig. 4) using an energy dispersive

detector (EDS), which represent averages of the

major element chemistry in the field of view. The

mineralogy varied primarily between dolomite and

calcite, with minor chert, as determined by petro-

graphic microscope, which was confirmed by Ca-to-

Mg ratios as determined by characteristic peak

heights of the EDS spectra. Admittedly these are

semi-quantitative, however the large difference

between dolomite and calcite make these a useful

indicator of each rock type. These values are included

in Table 1. The reservoir lithofacies in the producing

wells, based upon the Ca-to-Mg ratio (and the thin-

section description), are dolomitic, and have the

highest porosity. The non-productive lithofacies are

limestone, with very poor porosities.

Table 1

Thin-section descriptions, Ca/Mg ratios based upon SEM-EDS peaks (averaged to account for EDS inaccuracies), and ImageJ calculations of

thin-section porosity

Well Thin section description Ca/Mg Thin section porosity

Stephens 4

Producer

Fossiliferous packstone/grainstone dolostone; some iron oxide staining on

dolomite; Minor chert, porosity visible along fractures in packstone; more

fracture fabric-supported porosity present

3 20.5

Harden 1

Producer

Grainstone dominant; allochems include forams and bryozoan; pyritic;

dolomite more anhedral rhombic with intercrystalline porosity; minor

glauconite; some packstone present with good vuggy and fracture porosity

5 15.1

Stephens 6

Producer

Dolomite with equant crystals dominant;

Ooids and intraclasts more prevalent with interparticle porosity; presence of

bryozoan noted; much more fossiliferouspackstone-moremud-rich

wackestone/packstone present; possible anhydrite present; minor packstone

with muddy edges; pyrite present; minor chert present

4 13.2

Stephens 8

Dry hole

Intrasparite limestone dominant; sucrosic subhedral dolostone; minor staining;

very pyritic; minor clay; minor chert; some interparticle/intercrystalline and

fracture porosity; minor intercrystalline porosity on dolostone

30 5.7

Stephens 9

Dry hole

Packstone/grainstone dominant with ostracod, brach, and ooids; some

presence of chert; not as much subhedral dolomite present; interooid

porosity and minor fracture porosity along oolitic limestone; lots of

hematite/siderite staining; some oil stain; very minor interparticle porosity

80 3.0

Stephens 3

Dry hole

Packstone dominant; prominent grey shale; minor dolomite present with

subhedral rhombs; chert much more prevalent; prominent pyrite present;

Very low porosity overall

160 3.9
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The lithofacies recognized petrographically also

are identifiable by their distinctive well log charac-

teristics. Figure 5 is a crossplot of bulk density versus

neutron porosity for three producing wells and two

dry holes. Note that only the producers have values

that plot in the high porosity, low bulk density

regions of the graph. Also plotted on the same fig-

ure is the relationship between dolomitization, based

upon Ca–Mg ratios, and porosity (as determined by

thin section. Figure 5 also shows calculated trends of

varying mineral composition and associated fluid

content within the pore space. Note that the produc-

ing wells plot in a trend parallel to oil-bearing

dolomite (solid black line). In contrast, the non-pro-

ductive wells vary similarly to brine-bearing

limestone. This validates the agreement between thin-

section petrography, EDS chemistry, and well log

characteristics in separating the productive reservoir

lithofacies from the non-productive lithofacies. Fur-

thermore, the best-fit trend (black dotted line) to the

productive reservoir facies is parallel and in prox-

imity to a typical oil-bearing dolomite trend (black

solid line). In contrast, the best-fit trend (blue dotted

line) of the non-productive facies is parallel to and

midway in between the typical brine-bearing lime-

stone trend and brine-bearing dolomite trend (blue

solid line). These relationships of the best-fit trends of

the productive facies and non-productive facies

strongly suggest dolomitization control on porosity

and in turn on reservoir quality.

In a similar fashion, Fig. 6 shows the separation

between productive and non-productive lithofacies

using a neutron porosity and sonic transit-time log

crossplot. The dolomitic productive facies follows a

trend similar to a modeled 85% dolomite-15% chert

line, in agreement to observed thin-section descrip-

tions and the association of cherty dolomite facies for

the upper Viola formation (Bornemann and Doveton

1983). Most importantly, the higher porosity values

follow an expected decreasing seismic amplitude for

Figure 4
SEM–EDS spectra from a dolomitic lithofacies (Stephens 4) and a limestone lithofacies (Stephens3). They differ in the ratio of the Ca to the

Mg peak

4302 A. E. Raef et al. Pure Appl. Geophys.



the top of the Viola horizon. This finding have strong

potential to help identify the productive dolomitic

lithofacies utilizing the 3D seismic data. The typical

porosity transient time trends and the data best-fit

curves are based on the model published by Raiga-

Clemenceau et al. (1988).

4. Seismic Attributes and Supervised ANN Facies

Classification

The proliferation of seismic attributes utilization

in seismic reservoir characterization has been

enforced with the adoption of machine learning and

well-logs facies calibration for hydrocarbon plays in

the stages of exploration and development (e.g.,

Hadavand et al. 2018; Raef et al. 2017; Ansari et al.

2015; Ohl and Raef 2014; Riedel et al. 2013; Chopra

and Marfurt 2008; Hard and Balch 2000; Gastaldi

et al. 1997; Schmitt 1999; Chen and Sidney 1997). A

comprehensive historical prospective of seismic

attributes has been reported by Chopra and Marfurt

(2005). In this study, we have analyzed the petro-

graphic results, well-logs facies cross-plots, and

lithology typical porosity-density and porosity-sonic

trends with the aim of understanding main controls on

reservoir quality and establish ties to seismic attri-

butes facies. Given the thin thickness of the pay-zone

of the viola, based on well-logs facies, and the

expected decrease in the peak-tracking Viola-horizon

seismic amplitude, a seismic facies defined by thin-

layer responsive attributes, namely, (higher) thin-bed

indicator and instantaneous frequency, and (lower)

seismic amplitudes (Fig. 7) became evident as the

Figure 5
Cross-plots of bulk density (RHOB log)-Compensated Neutron porosity (CNPOR) for oil wells in shades of grey circles and brine wells in

tones of blue; several trends density-porosity for different litho-facies is plotted; solid blue line (brine-bearing dolomite), solid black line (oil

bearing dolomite), dashed blue line (brine-bearing limestone), dashed black (oil-bearing limestone), dotted black line (best-fit trend for oil-

producers modelled as dolomite lithofacies), and dotted blue line (best-fit trend for brine-bearing Viola wells modelled as limestone

lithofacies)
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seismic facies that corresponds with better reservoir

lithofacies. The mixed oil and dry-hole development

drilling results of the Stephens Ranch lease, provided

an opportunity to test our hypothesis, regarding the

relevance of the seismic facies to reservoir quality

lithofacies (Figs. 6a, b, 7). Oil wells cluster at higher

instantaneous frequency and thin-bed indicator

(Fig. 7a) with lower peak amplitude values (Fig. 7a,

b). Both the thin-bed indicator and instantaneous

frequency attributes were the root-mean-square

(RMS) values in a window of 20 ms; OpendTect

(6.2) is the seismic interpretation software used for

the seismic attributes extraction and the time-window

RMS-computation. Based on the complex trace con-

cept (Taner et al. 1979), the instantaneous frequency

is defined the derivative of the instantaneous phase.

The thin bed indicator is the difference between the

instantaneous frequency and envelope weighted fre-

quency, (Iturrarán-Viveros 2012)

Our choice of a machine learning model for

seismic facies classification is unsupervised vector

quantizer artificial neural networks, UVQ-ANN,

(e.g., Gersho and Gray 1992; Kostina 2017). UVQ-

ANN application to seismic facies classification has

been utilized in many case studies around the world

(e.g., Huang et al. 1990; Saggaf et al. 2003; Coléou

et al. 2003). According to a comparison of various

neural networks in seismic facies classification pre-

sented in Ross and Cole (2017), unsupervised

network has been applied effectively to macro- and

meso-scale depositional facies classification. Recent

work by Roden et al. (Roden et al. 2015) presents a

case study of determining reservoir-scale properties

based on an unsupervised neural network. Assigning

a meaningful interpretation of an unsupervised neural

network output of classes need to be well-anchored or

calibrated to well-logs facies and/or core-based pet-

rographic and petrophysical analyses, and regional

depositional and stratigraphic knowledge of the target

rock formation. To this end, in this study we train and

apply a UVQ-ANN to classify, into three classes, the

seismic waveform of the top horizon of the Viola-

formation (Fig. 8a) and build an understanding of the

resulting seismic classes (facies) in terms of petro-

physical and lithofacies description based on well-

logs facies models and analytical ‘‘dolomitization

criteria’’ Ca–Mg ratio (Figs. 6, 7). Both the match to

class-centers values and the separation of the class-

centers in the hyperspace of the input five-attributes

evidence the quality of the waveform classification.

The class centers values for the five attributes

(seismic horizon amplitude, instantaneous frequency,

energy, bandwidth, absorption quality factor) and

match values (Table 2) testify for robust classifica-

tion. The correlation of class distributions (Fig. 8a),

strongly suggests the association of Class I facies

with reservoir facies, i.e. higher degree of dolomiti-

zation as manifested by low Ca-to-Mg ratios for

Stephens 4 and 6 and Harden 1 (Fig. 5) and lower

amplitude (lower seismic Viola-horizon amplitude

(Fig. 7a, b). Class 2 facies is thin-bed facies as evi-

denced by high values of instantaneous frequency—

there are no drilling results available. Class III facies

is characterized by high amplitude and in confor-

mance with the drilling results of Stephens 3 and

Stephens 8; far less proportions of dolomitization

‘‘low-porosity Limestone’’ brine bearing facies and

high seismic Viola-horizon amplitude.

5. Discussion and Conclusions

In this study, a synergistic work flow incorporat-

ing multi-scale data of core-sample petrography,

Figure 6
Cross-plots of sonic transient time (DT-log) versus Compensated

Neutron Porosity for oil-producers (black circles) and typical

lithology trends of DT-porosity and the effect of Chert occurrence

(15%) on the Dolomite trend; the fitted (dashed black) trend of oil-

producing well is in better agreement with the modeled 85%

Dolomite-15% Chert at higher porosities
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well-logs data of brine-bearing and oil-bearing wells,

and UVQ-ANN based seismic attributes classifica-

tion, resulted in relationships between best-fit trends

of productive and non-productive lithofacies. This

result is corroborated by the petrographic analysis

and in agreement with an UVQ seismic facies clas-

sification based on five seismic attributes. Class I

seismic facies (green on Fig. 8a) is in close agree-

ment with drilling results, and is interpreted as the

reservoir-quality facies –higher degree of dolomiti-

zation and higher porosity. The low-quality match

(blue color-labeled on Fig. 8b), less than 10% of the

study area, is to be excluded when utilizing the

seismic facies in placing new wells. The distributions

of Class I (reservoir facies) and Class III (non-

reservoir facies) substantiate the seismic facies

reported in a study by Raef et al. (2017).

Figure 7
a Three seismic attributes plot; with instantaneous frequency versus thin-bed indictor scatter plot, and seismic amplitude as color overlay; dry-

hole wells are separated as higher amplitude (as also evidenced by a profile, b passing through all wells) and lower values instantaneous

frequency and thin-based indicator seismic facies
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The fact that both the Ca-to-Mg ratio and the

positions of the best-fit trends of the productive and

non-productive facies (Figs. 5, 6) are indicative of

dolomitization (with minor chert) control on the

reservoir secondary porosity of the Viola. This data

and modeling supported observation is in agreement

with the findings of Bornnemann and Doveton (1983)

study of a south central Kansas Viola Limestone. The

results of this work agree with the conclusion of

Richardson 2013, in the nearby Herd Field, and

suggest that reservoir conditions are only encountered

in the Viola when the dolomitized facies are

preserved from erosion. These zones are dolomitic,

and exhibit porosities sufficient for hydrocarbon

production. The higher porosity and lower density of

these facies are recognized on log crossplots of

porosity curves.

The higher porosities, particularly when filled

with hydrocarbon, will slow down seismic velocities,

which contributes to the thin-bed tuning as exhibited

by instantaneous frequency. Hence, the seismic facies

(lower amplitude and higher instantaneous fre-

quency) reported in Raef et al. 2017, is relevant to

petrographic and stratigraphic aspects in the reservoir

Figure 8
a Unsupervised ANN classification [instantaneous frequency (RMS within a 20 ms window), thin-bed indicator (RMS within a 20 MS

window), and seismic horizon amplitude (Viola-top peak amplitude)] map of reservoir (green) and nonreservoir (yellow or brown), b seismic

amplitude map of Viola horizon (brine-bearing/low-porosity, high amplitude (blue)). Dry holes ; Oil wells

4306 A. E. Raef et al. Pure Appl. Geophys.



facies. We propose this to be included in predrill

workflow, along with seismic isochrone maps to

measure thinning of the overlying Maquoketa, to

reduce the risk of drilling of dry holes.
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