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Abstract—The Indus Canyon in the northwestern Indian Ocean

has been reported to be the site of numerous submarine mass

failures in the past. This study is the first to investigate potential

tsunami hazards associated with such mass failures in this region.

We employed statistical emulation, i.e. surrogate modelling, to

efficiently quantify uncertainties associated with slump-generated

tsunamis at the slopes of the canyon. We simulated 60 slump

scenarios with thickness of 100–300 m, width of 6–10.5 km, travel

distances of 500–2000 m and submergence depth of 250–450 m.

These scenarios were then used to train the emulator and predict

500,000 trial scenarios in order to study probabilistically the tsu-

nami hazard over the near field. Due to narrow–deep canyon walls

and the shallow continental shelf in the adjacent regions (\100 m

water depth), the tsunami propagation has a unique pattern as an

ellipse stretched in the NE–SW direction. The results show that the

most likely tsunami amplitudes and velocities are approximately

0.2–1.0 m and 2.5–13 m/s, respectively, which can potentially

impact vessels and maritime facilities. We demonstrate that the

emulator-based approach is an important tool for probabilistic

hazard analysis since it can generate thousands of tsunami sce-

narios in few seconds, compared to days of computations on High

Performance Computing facilities for a single run of the dispersive

tsunami solver that we use here.

Key words: Indian Ocean, Indus Canyon, landslide-generated

tsunami, statistical emulation, uncertainty quantification.

1. Introduction

Tsunamigenic submarine landslides may occur in

different geological settings around the world, from

the gentle slopes of continental margins to steep

slopes along volcano-tectonic islands (Harbitz et al.

2014). Such landslides have been the sources of

catastrophic tsunamis worldwide. Some examples are

the 1929 Grand Banks (Canada) (Fine et al. 2005;

Løvholt et al. 2018) and the 1998 Papua New Guinea

(more than 2100 deaths) tsunami events (Synolakis

et al. 2002; Tappin et al. 2008; Heidarzadeh and

Satake 2015). The Storegga Slide, 8 ka BP, generated

tsunami waves with run-up heights reaching eleva-

tions of ca. 20 m at the Shetland islands (Bondevik

et al. 2005). Landslide-induced tsunamis can be

destructive in the near field but they tend to lose

energy during propagation due to their relatively

shorter wavelengths; their far field catastrophic

potential, therefore, tends to be small (Fritz et al.

2003; Glimsdal et al. 2013; Heidarzadeh and Satake

2017). The complexity of the source mechanism and

the lack of data render the study of landslide tsunamis

cumbersome. As in-situ observations of the sub-

marine sliding process are rare, physical and

numerical experiments are often utilised to shed light

on these events. Various numerical approaches have

been employed up to date for landslide tsunami

propagation, such as 3D Navier Stokes equation

solvers for the generation process and shallow water

equation solvers, often including a dispersive term

(Boussinesq approximation) for tsunami propagation

(Heidarzadeh et al. 2014; Løvholt et al. 2015;

Yavari-Ramshe and Ataie-Ashtiani 2016).

Submarine canyons can be found all over the

world; at many cases their morphology results from

continuous episodes of sediment collapse (Normark

and Carlson 2003). Canyons located in the vicinity of

shorelines can pose a risk to populated areas when

flank collapse gives way to tsunami generation. For

example, submarine collapse in the Cook Strait

Canyon could lead to tsunami inundation on the

coasts of Wellington, in New Zealand (Lane et al.

2016). The steep slopes and narrow widths of
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submarine canyons are capable of producing

destructive tsunamis. Tsunamigenesis by sliding on

open continental margins differs from those in sub-

marine canyons (Power et al. 2016). The abrupt depth

changes between the canyon and the shelf have an

effect on the wave speed; refraction and reflection

may also occur when the waves propagate over the

canyon walls (Power et al. 2016). Tsunami propa-

gation is sensitive to the canyon size, with the width

and length being the most critical parameters; the

canyon depth and the distance between the shore and

the canyon head play also an important role (Aran-

guiz and Shibayama 2013). Tsunami run-up and

arrival are affected by the geomorphology of the

canyon: smaller but faster approaching waves are

observed in the locations adjacent to the canyon head,

whereas wave amplitude magnification occurs at the

sides of the canyon (Aranguiz and Shibayama 2013;

Iglesias et al. 2014).

In this work, we assess the potential of submarine

collapses in the Indus Canyon, NW Indian Ocean

(Fig. 1), to generate tsunami in the near field and

quantify the associated uncertainties of future events.

The Indus Canyon is approximately 120 km long,

12–17 km wide and its maximum water depth is at

the range of 700–1000 m (Fig. 1). Slump deposits

and gullies, indicative of submarine mass wasting,

have been identified at several locations along the

canyon thanks to past bathymetric surveys (von Rad

and Tahir 1997; Clift et al. 2014). We use these

previously-identified slope failures as landslide tsu-

nami sources to account for a realistic representation

of the slump’s geomorphological characteristics. Due

to the limited knowledge of these events, we do not

attempt to reconstruct past collapse episodes but we

quantify the uncertainty of potential tsunamigenic

scenarios. To do so, we build a statistical emulator

that predicts probabilistic maximum tsunami ampli-

tudes and velocities at specific locations.

2. The Indus Canyon: Geological Setting and Past

Slumping Activities

The Indus Canyon is a submarine canyon cutting

the Indus shelf on the passive continental margin of

India and Pakistan (Figs. 1, 2a). The head of the

canyon is located in front of the delta of the Indus

River, one of the longest rivers in Asia. The upper

and middle parts of the Indus Canyon are charac-

terised by steep erosional walls which gradually give

way to an extensive channel-levee system at the

lower part of the canyon (von Rad and Tahir 1997).

The channel-levee system feeds with sediment the

Indus Fan, the second largest deep-sea fan in the

world, possibly being active since the late Eocene

(Clift et al. 2001). Several canyon systems on the

Indus shelf, that contributed to the sediment supply of

the Indus Fan, have progressively become inactive

and were filled with sediments (Kolla and Coumes

1987; Bourget et al. 2013). The Indus Canyon forms

the most recently active canyon at the shelf. Large

volumes of sediment from the Indus River basin are

being stored in the form of submarine clinoforms at

the continental shelf east and west of the canyon

(Clift et al. 2014). Among the scientific expeditions

that took place in the region, the cruise with R.V.

Sonne in 1993 and the most recent expedition (winter

2008/2009) on board R.V. Pelagia have studied the

morphology of the Indus Canyon collecting swath

bathymetry and seismic reflection data.

The data from the R. V. Pelagia survey provided

with a high resolution bathymetric map of the canyon

(Clift et al. 2014). One of the major findings of the R.

V. Pelagia cruise was that the head of the canyon acts

as a depositional area with rapid sediment accumu-

lation rates (Clift et al. 2014). Discharged sediments

from the Indus River are accumulating on the head of

the canyon. They are then transported towards the

lowest parts of the canyon without, however, evi-

dence of significant sedimentation inside the canyon

in the last 7 ka (Clift et al. 2014). Changes in the

sedimentation rates are possibly linked with falling

sea-levels or heavy monsoon periods (Clift et al.

2014). In-situ observations, seismic profiles and

sedimentary cores obtained during the 1995 and

2008/2009 scientific expeditions provide evidence for

slumping in different parts of the Indus Canyon (von

Rad and Tahir 1997; Clift et al. 2014). von Rad and

Tahir (1997) linked mass wasting processes on the

continental shelf and the steep walls of the canyon

with the low sea levels during the Last Glacial

Maximum.
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Four plausible failure locations discussed in Clift

et al. (2014) and von Rad and Tahir (1997) are shown

in Fig. 2a by red/grey stars. Slump terraces were

observed in the middle part of the canyon (von Rad

and Tahir 1997). Scarps at depths of 325 and 620 m,

but also as shallow as 200 m, and slump masses have

been identified by von Rad and Tahir (1997). At the

head of the canyon, erosional features observed at

seismic reflection profiles provide evidence of major

reworking through slumping (Clift et al. 2014). A

seismic profile across the axis of the upper part of the

canyon revealed slump deposits on the seabed (Clift

et al. 2014). The study area and a bathymetric profile

across the axis of the canyon are shown in Fig. 2b–d.

The 1D profile A–A0 is similar to the seismic profile

collected by R.V. Pelagia (Fig. 2b, d). Some thick

sedimentary deposits can be observed at the bottom

of the slope, NE of the profile (Fig. 2b), that may

constitute the slump deposits observed by Clift et al.

(2014).

3. Numerical and Statistical Methods

3.1. Numerical Modelling of Tsunami and Slump

Sources

Tsunami generation is strongly affected by the

shape parameters and the landslide kinematics (Watts

et al. 2005). The rheological properties of the sliding

material play an important role during the deposi-

tional process (Salmanidou et al. 2018). In this work,

we consider the effect of variance of the shape

parameters in tsunami generation. We use a slump

model based on the empirical formulas developed by

Figure 1
General location map of the study area showing the Indus Canyon in the Arabian Sea, NW Indian Ocean. The inset at the bottom provides a

zoomed view of the Indus Canyon and indicates its approximate dimensions (length: 120 km, width: 12–17 km, maximum water depth:

700–1000 m)
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Grilli and Watts (2005) and Watts et al. (2005) to

compute the tsunami waves induced by rotational

slumping or translational sliding. The initial slump

model is a simultaneous dipole Gaussian (Fig. 3)

with varying length, width and height depending on

the source scenario characteristics. This model has

been used in several studies of landslide tsunamis in

the past (Tappin et al. 2001, 2014; Synolakis et al.

2002; Heidarzadeh and Satake 2015, 2017; Løvholt

et al. 2018).

For modelling tsunami propagation, the numerical

code JAGURS is used (Baba et al. 2015, 2016). The

code solves the nonlinear dispersive long-wave

equations using a leapfrog (staggered-grid)

scheme on Finite Differences (Baba et al. 2015). A

domain-decomposition method was implemented for

the parallelisation of the code (Baba et al. 2015).

Dispersion of landslide tsunami propagation can be

accounted by adding a dispersive term in the long

wave equations (Boussinesq approach) (Baba et al.

Figure 2
a The Indus Canyon. The red and grey stars denote locations of slumping described in von Rad and Tahir (1997) and Clift et al. (2014). The

black rectangle and the red star show the location of the slope region in this study (b, c). The colorscale shows the depth in meters. b 2D view

of the slope region. The grey dashed lines indicate the bathymetric profile A–A0 [which follows closely the seismic profile described in Clift

et al. (2014)] and the profile B–B0 (d). c 3D view of the slope region. d Bathymetric profiles across the section A–A0 and B–B0 in the Indus

Canyon
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2015). The use of nested grids allows the refinement

of the regions of interest in the computational domain

(Baba et al. 2015, 2016). Four grids are used in the

numerical experiments with spatial resolutions vary-

ing from dx ¼ dy ¼ 0:0045� down to 0:0005�

(Fig. 4). The largest domain (grid A) has the coarsest

resolution and grid B has a spatial resolution of

dx ¼ dy ¼ 0:0015�. Grids C1 and C2 have the finest

resolution (Table 1). Grid B acts as the transition

between grids A and C1–C2; a grid ratio of 1 : 3 is

chosen in accordance with other numerical studies

with JAGURS (Baba et al. 2015, 2016).

Figure 3
Map showing the location and 3D projection of one of the landslide scenarios (scenario 42 in Table 2) considered in this study
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Each grid is split into 32 subdomains to run the

code in parallel. The time step used for tsunami

simulation is dt ¼ 0:1 seconds with a total simulation

time of tfin ¼ 150 min. A tsunami propagation

scenario of 150 min may take roughly 85 h of KNL

(KNights Landing) time on the computer cluster used

in this study (32 processors on the Cambridge Service

for Data Driven Discovery, CSD3, facility). Thirty-

four artificial wave gauges measure the free surface

elevation and velocity at various locations within the

computational domain (Fig. 4). To study wave prop-

agation toward the shoreline, we show here the

records of three gauges located at lon. 68.129E, lat.

23.105N in water depth of – 19.22 m (G24 in Fig. 7);

lon. 67.97E, lat. 23.508N in water depth of – 15.27 m

(G30 in Fig. 7); and lon. 68.347E, lat. 22.711N in

water depth of – 30.28 m (G31 in Fig. 7).

We make use of the Global Multi-Resolution

Topography (GMRT) synthesis for the bathymetry

and elevation data used in the modelling (Ryan et al.

2009). The GMRT synthesis is a product of different

sources at multiple resolutions, multibeam sonar data

assembled by scientists and institutions have been

used to compile the dataset. Thanks to the scientific

survey on board R.V. Pelagia (Clift et al. 2014), the

Indus Canyon has been mapped in detail with a

resolution of 0:000125�. These data in combination

with lower resolution data (GEBCO 2014, 30 arc-

second resolution) have been used to compile the

GMRT data used in this study.

The challenge for the design of computer exper-

iments is to minimize the number of runs, considering

the high computational cost of each run. A Latin

Hypercube Sampling (LHS) approach was taken for

its suitable coverage and space filling properties

(Morris 1991). It is a random design used to build the

emulator over the whole input ranges, irrespective of

the subsequent chosen distributions of input param-

eters that will represent the subset of realistic cases

within these ranges. The LHS is only based on the

sensitivity of the tsunami response to the landslide

uncertain inputs. As a rule of thumb, the minimum

sampling size n for an experiment can be chosen as

n ¼ 10p where p is the number of input parameters

(Loeppky et al. 2009). For this study, we run 60

numerical experiments (Table 2) for the four input

parameters: the initial maximum thickness of the

material, h; the initial slump width, w; the initial

Table 1

Nested computational grids used in this study

Grid Lat ð�Þ Lon ð�Þ dx; dy ð�Þ dx; dy (m)

A 21.01–25.996 63.01–70.9885 0.0045 � 300

B 22–24.4975 65.503–68.5 0.0015 � 100

C1 22.9–23.8 66.8035–67.501 0.0005 � 50

C2 23.233–24.034 67.5325–68.3785 0.0005 � 50

Figure 4
The computational domain used for the simulations. The four grids used in this study (a, b, C1 & C2) have different spatial resolutions (a

0.0045�, b 0.0015� and C1–C2: 0.0005�). The red circles indicate the location of the numerical gauges

3104 D. M. Salmanidou et al. Pure Appl. Geophys.



depth of submergence, d; and the characteristic travel

distance of the sliding mass, s0. The ranges of the

parameters are selected in close agreement with the

observations and the range of validity of the empir-

ical equations (Grilli and Watts 2005; Watts et al.

2005). The range of the aforesaid four parameters are

shown in Table 3.

The thickness of the material has a range of [100–

300 m] which suggests that a substantial part of the

slope may have failed and is in agreement with a

reference threshold of h\0:2L (Watts et al. 2005).

From observations of the collapsed slope width

geometry, we select a slump width range of [6–10.5

km], where 10.5 km corresponds to the maximum

possible width from the one edge of the slope to

another (B–B0 profile, Fig. 2d). The higher scarp in

the canyon is observed at a depth of 200 m (von Rad

and Tahir 1997). The lower boundary of the initial

depth range is considered to be relatively shallow

with a total range of ½250� 450 m�. Yielding a

minimum factor of d=L ¼ 0:005, this value comes in

close agreement with the reference threshold

(d=L ¼ 0:006) and the studies of real events (Løvholt

et al. 2018). The characteristic distance travelled by

the slump s0 is estimated by: 2s0 ¼ Rd/ where R is

the radius of curvature and d/ is the angular

displacement (Watts et al. 2005). The distance that

Table 3

Parameter ranges for slump scenarios considered in this study

h (m) w (km) d (m) s0 (m)

100–300 6–10.5 250–450 500–2000

Parameters are: h thickness of the slump, w width, d water depth,

and s0 the travel distance of the slump

Table 2

Slump scenarios used in this study. Parameters are: h, thickness of the slump; w, width; d, water depth; and s0, the travel distance of the slump

No h (m) w (m) d (m) s0 (m) No h (m) w (m) d (m) s0 (m)

1 126 8038.5 287 959 31 198 6531 399 1275.5

2 253 7836 382 1376 32 161 6072 330 1347.5

3 244 9370.5 371 884 33 104 10486.5 288 1224.5

4 260 9150 418 1019 34 190 8997 376 698

5 222 9460.5 320 1802 35 279 7242 412 1730

6 155 7566 306 1614.5 36 263 10342.5 378 716

7 157 6945 363 1457 37 186 8578.5 309 1401.5

8 233 7377 265 1724 38 192 6679.5 267 978.5

9 168 8673 401 1568 39 292 6616.5 291 923

10 265 9537 311 1524.5 40 226 8362.5 386 1251.5

11 218 8457 424 668 41 108 8254.5 323 774.5

12 270 10027.5 390 1545.5 42 283 8241 273 1641.5

13 151 9375 282 1079 43 214 7044 395 540.5

14 272 7309.5 390 743 44 249 10419 261 1448

15 207 9906 423 857 45 102 6315 415 753.5

16 237 7642.5 316 1322 46 114 7692 364 1484

17 196 9766.5 297 641 47 242 10171.5 438 1353.5

18 140 7921.5 278 1151 48 297 6108 428 1182.5

19 210 7728 331 846.5 49 178 10221 349 1142

20 287 9078 357 1116.5 50 227 6225 321 1761.5

21 148 7120.5 334 927.5 51 299 8533.5 447 602

22 173 8016 435 1029.5 52 135 10068 259 560

23 140 8875.5 346 1854.5 53 119 9622.5 431 1902.5

24 236 6441 341 1053.5 54 110 6508.5 251 1682

25 285 7165.5 339 1586 55 133 6184.5 301 516.5

26 203 8173.5 406 1847 56 276 9064.5 356 1962.5

27 173 7471.5 254 1877 57 127 8808 440 585.5

28 166 6877.5 351 1989.5 58 146 9870 275 1944.5

29 121 9280.5 410 1203.5 59 183 6765 447 1782.5

30 209 9681 370 1650.5 60 254 8745 296 822.5
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the mass travels is often smaller than half of the

length of the slump (Watts et al. 2005); here we

assume a range of [500–2000 m] for s0.

The initial length of the slump, the slope angle

and the density of the material are kept constant for

all the simulation scenarios. As the width of the Indus

Canyon is narrow (12–17 km, Fig. 1), a length of

L ¼ 5 km is considered for the pre-failure slump

length. The length is fixed for all the landslide

scenarios. The slope angle of the failure plane is

roughly 11:3�. Submarine landslides can occur in

both steep and gentle slopes, with the largest

occurrences in slopes that can be as small as 1�

(Masson et al. 2006; Harbitz et al. 2014). The slump

orientation was taken in rough agreement with the

slope orientation. Considering that the y-axis has a

North–South alignment, the direction of the slump

movement was 225� counter-clockwise. The density

of the slumping materials is considered to be 2000

kg/m3.

3.2. Statistical Emulation

Probabilistic Hazard Tsunami Assessment

(PTHA) quantify the uncertainty in tsunami hazard

and thus risks and impacts (Grezio et al. 2017). Novel

stochastic tsunami inversion methods rely on a

breadth of observational data (Gopinathan et al.

2017). Statistical emulators form a prominent tool

in these forward and inverse problems, as they can be

used to assess the results of numerous scenarios in a

fast and efficient way. Emulators are stochastic

approximations of a computer model (also known

as simulator) and thus can help compute the proba-

bilistic distributions of tsunami hazards. In the past

few years, novel statistical emulation methods have

gained ground (Sarri et al. 2012; Beck and Guillas

2016; Liu and Guillas 2017). Statistical emulators

have been used to study earthquake and landslide-

induced tsunami hazards in the past (Sraj et al. 2014;

Salmanidou et al. 2017; Guillas et al. 2018). For

instance, Guillas et al. (2018) used an emulator to

predict entire time series of wave heights over the

Cascadia subduction zone whereas de Baar and

Roberts (2017) used a multi-fidelity approach for

the Hokkaido Nansei-oki Tsunami.

Here, we build a Gaussian Process emulator to

compute probabilistic results of slumping in the Indus

Canyon and quantify the uncertainty of such events.

Statistical emulation using Gaussian Process regres-

sion is a highly flexible and non-linear interpolation

approach. It assumes that the uncertainty in the

interpolation follows a multivariate Gaussian distri-

bution in between points in the multidimensional

design, so the overall uncertainty distribution can be

very complex. We employ here the squared expo-

nential covariance function as it is a standard choice,

but the choice of covariance structure usually has a

very limited effect, particularly here compared to the

overall levels of uncertainties in the hazard itself.

We use 60 tsunami simulation scenarios to train

the emulator, a statistical approximation of the

tsunami model. Then, 5000 scenarios will be gener-

ated using the emulator to enable a more complete

(and fast) propagation of the uncertainties from the

model parameters (submergence depth, width, thick-

ness and travel distance of the slumps) to the outputs.

To predict with the emulator, we use Kriging

(Lophaven et al. 2002) and follow an approach

similar to the one used in Salmanidou et al. (2017).

The emulator approximates the deterministic input–

output relationship between the response y(x) and the

input parameters x ¼ x1; � � � ; xp

� �
through a stochas-

tic relationship written down as:

yðxÞ�
Xp

i¼1

bixi þ zðxÞ: ð1Þ

It means that the predictor is the sum of a linear

regression part—the mean of the Gaussian Process

(GP)—and a more complex zero-mean GP z; see for

instance Beck and Guillas (2016) for more details on

the fitting and predictive abilities of GPs for com-

puter experiments. The number of input parameters is

denoted by p (here p ¼ 4). The bi’s are the coeffi-

cients of the linear regression on all the inputs, used

as a mean, and z is a Gaussian Process (GP) repre-

senting the non-linear part of the variations,

unexplained by the mean, which employs another set

of coefficients associated with the covariance struc-

ture of the GP. Formally, a Gaussian Process is a

continuous stochastic process over the input space

(hence an uncertain function), for which each
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marginal distribution of a finite set of unobserved

outputs at selected inputs, constrained by the set of

observed inputs–outputs, is multivariate normal. For

more general details about GPs, see Rasmussen and

Williams (2005).

Since there is a limited amount of information

about the potential landslide characteristics in the

Indus Canyon, we create probability distributions of

these inputs that reflect our uncertain knowledge.

Since these ranges are finite, we employ a standard

beta distribution Beða; cÞ, where a and c values refer

to the shape (skewness) of the distribution (see also

Fig. 5), which is commonly used in the literature for

such efforts (Sarri et al. 2012; Guillas et al. 2018).

We show samples from these distributions for 5000

scenarios in Fig. 5. We chose distributions that

spread over the initially attributed ranges exactly.

Hence, we selected Be(4, 3) for the maximum

thickness and the distance travelled, Be(2, 2) for the

width of the slump and Be(3, 4) for the depth above

the slump centre (Fig. 5). The distributions present

some skewness that reflects possible values taken by

these parameters. For example, the input depths in

this case have values between 250 and 450 m (as in

Table 3) but due to the shape of the distribution

(Be(3, 4), Fig. 5c) the most likely values are in the

upper part of the slope between 300–350 m, in

agreement also with slump scars observations in the

canyon (von Rad and Tahir 1997; Clift et al. 2014).

Using the emulator, we propagate the uncertainty

from these distributions for the 5000 scenarios.

4. Probabilistic Landslide Tsunami Analysis

The results of the tsunami simulations for our

initial 60 slump scenarios and statistical emulation

are shown in this section. The simulation results

Figure 5
Histograms for 5000 samples of the beta distributions of the input parameters thickness (a), width (b), submergence depth (c) and travelled

distance (d)
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demonstrate a large variability in the tsunami

amplitudes and velocities (Fig. 6). We present here

the tsunami waveforms and velocities at three gauges

(see locations of gauges G24, G30 and G31 in Fig. 7).

Each panel of Fig. 7 includes a snapshot from one

simulation (scenario 42), but a similar pattern appears

Figure 6
The free surface elevation (a, c and e) and wave velocities (b, d and f) recorded at the three gauges G24, G30 and G31. See also Fig. 7 for

gauge locations
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across all simulations. As it has been observed in

several other tsunamis (Rabinovich et al. 2006), the

first wave is not always the largest in all gauges

shown in Fig. 6. Unlike tectonic tsunamis whose

energetic waves persist for long times (Rabinovich

and Thomson 2007), the waves generated by our

slump scenarios generally lose in amplitude and

velocity rapidly, mostly after a few cycles; except for

G30 which could potentially be due to some wave

resonance. The waves reach the northern part of the

shelf at approximately 2 h from the generation time,

such slow tsunami propagation speed can be attrib-

uted to the shallow depth of the area (a depth of

50–100 m, Fig. 1) which yields a tsunami phase

velocity of approximately 100 km/h. The maximum

tsunami amplitudes are in the range of 0.4–1.5 m in

these three coastal gauges while the wave velocities

vary from 2 to 12 m/s (neglecting a single peak

velocity at 22 m/s).

Tsunami snapshots in Fig. 7 reveal a unique pat-

tern for tsunami propagation in the Indus Canyon.

These snapshots belong to Scenario 42 (Table 2)

which is a worst-case scenario with maximum free

surface elevation of ca. 20 m in the generation region

(Fig. 7). The snapshots show that tsunami wave

fronts approximately form an ellipse with its major

axis in the NE–SW direction while the minor axis

strikes NW–SE. Such a shape is controlled by the

deeper water depth of the canyon’s axis (NE–SW

direction) which provides faster propagation speed

Figure 7
Snapshots of the tsunami propagation at t = 10 min (a), 30 min (b), 1 h (c) and 2 h (d) for scenario 42 (see Table 2 for details of this scenario)
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along the canyon’s axis. Several secondary and ter-

tiary wave fronts are seen in the snapshots which are

the reflected or refracted waves by the canyon’s

walls.

Trained by the results of 60 tsunami simulations,

the emulator can now be built and used for prediction.

Histogram H1 in Fig. 8 represents the predictions of

the probability of maximum tsunami amplitudes and

Figure 8
Probabilistic predictions of the maximum free surface elevation (a, c, e) and maximum wave velocities (b, d, f) at three gauges. Histograms

H1 & H2 show the predictions with (H2-500,000) and without (H1-5000) incorporating uncertainty of the emulator. The purple colour of the

histograms results from the overlapping of H1 and H2
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maximum velocities at gauges 24, 30, and 31 drawn

from 5000 slump scenarios (Fig. 5) According to

Fig. 8, the most likely amplitude at G30 is approxi-

mately 0.5 m with most likely velocity of

approximately 6 m/s out of 5000 tsunami trials.

To incorporate uncertainty from the predictions of

the emulator itself, we compute 100 additional pre-

dictions for each prediction resulting in

5000� 100 ¼ 500; 000 trials. The predictions are

sampled from the normal distributions that charac-

terise uncertainties in GP predictions, i.e. the part

z(x) in (1). These new predictions are shown as H2 in

Fig. 8. It can be seen in Fig. 8 that the two histograms

H1 and H2 are very close to each other indicating that

the results are robust to the uncertainty of the pre-

dictive GP distributions: our sample of 60 initial

simulations was informative enough to obtain reliable

emulations. Naturally, the spread of H2 is slightly

larger than the spread of H1 due to this additional

level of uncertainty incorporated.

Having as guidance the probabilistic distributions

of the maximum free surface elevation and maximum

wave velocities, we can produce hazard maps as

shown in Fig. 9. The 34 gauges show the distribu-

tions of maximum elevation and velocity over the

domain. To make these maps, we consider the 50th

and 90th percentiles of the probabilistic predictions at

the gauges (i.e. partial summaries of the histograms

in Fig. 8). The results shown in Fig. 9 are the out-

comes of 5000 and 500,000 trials for tsunami

amplitude and velocity, respectively. We note that

these results are indicative of variations of tsunami

amplitude and velocity depending on the variations of

input parameters as shown in Fig. 5. The percentiles

Figure 9
The expected maximum tsunami amplitudes and expected maximum tsunami velocities are given based on the 50th (a, b respectively) and

90th (c, d respectively) percentiles of the probabilistic predictions
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show that as the waves propagate toward the coastal

areas, the maximum tsunami amplitude is up to 1 m

and the tsunami velocity achieves a maximum value

of approximately 7 m/s (Fig. 9). These values are not

the result of a single simulation, but they are the

outcomes of 500,000 trials. The most likely ampli-

tude and velocity overall in all three gauges is

approximately in the range 0.2–1.0 m and 2.5–13 m/s,

respectively. Our results once more demonstrate the

applicability of the statistical emulator for proba-

bilistic predictions of landslide tsunamis, as

thousands of scenarios were computed in few seconds

and the parameter space was explored fully. The

emulator-based probabilistic approach in this study

computes 500,000 predictions in ca. 2–3 s per gauge

as opposed to around 85 h of computation on a state-

of-the art cluster of the numerical code when the

dispersive simulation is carried out. It can thus be a

prominent solution to replace the numerical runs

when fully exploring the parameter space.

5. Conclusions

We produced the first realistic landslide-generated

tsunami waves in the Indus Canyon, NW Indian Ocean

by dispersive modelling of 60 slump scenarios. We

also introduced statistical emulation to this context, in

order to create 500,000 scenarios for probabilistic

analysis. The slump scenarios had thickness of

100–300 m, width of 6–10.5 km, travel distances of

500–2000 m, and submergence depth of 250–450 m.

An uncommon propagation pattern, having an ellipse-

shaped feature stretched in the NE–SW direction, was

observed including several wave fronts resulting from

reflections/refractions from the walls of the canyon

and propagation over the shallow shelf.

From our probabilistic analysis, the most likely

amplitude and velocity at the study locations is

approximately 0.2–1.0 m and 2.5–13 m/s, respec-

tively. Hazards maps based on the emulator’s

predictions compute maximum tsunami amplitudes

and velocities of approximately 1 m and 7 m/s,

respectively, at close to shore locations. The emula-

tor-based probabilistic approach used in this study for

landslide tsunami is a powerful tool for probabilistic

hazard studies capable of generating hundreds of

thousands of tsunami scenarios in few seconds. A

major extension of this work would be to produce a

more complete hazard mapping at the coast, given

more detailed bathymetry and topography data as

well as considering (probabilistically) all possible

slump locations along the Indus Canyon through

enhanced geophysical surveys.
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