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Abstract—The goal of this study is to explore the chaotic

behavior of sea surface temperature (SST) in the Indian Ocean and

in the equatorial Pacific Ocean. The SST time series is analyzed for

Bay of Bengal, Arabian Sea and South Indian Ocean as well as for

two extreme phenomena: El Niño and Indian Ocean Dipole (IOD).

The analysis is based on Singular spectrum analysis, and singular

value decomposition (SVD). Our analysis reveals that the dynamics

of SST is chaotic in varying degrees in all the studied cases, since

Lyapunov exponent, an indicator of chaoticity, is positive in each

case. To study the degree of predictability of these SST series, we

search for embedded periodic component(s) using two different

approaches: Orthogonal functions extracted from the Singular

spectrum analysis and Periodicity spectrum analysis based on SVD.

Both the methods reveal presence of a strong periodic compo-

nent(s) for the SST signals in the Arabian Sea, Bay of Bengal and

South Indian Ocean, whereas no periodicity is found for El Niño

and IOD. Therefore, it can be concluded that the dynamics of SST

is more complex in the El Niño and IOD region compared to Bay of

Bengal, Arabian Sea and South Indian Ocean; hence it is much

more difficult to predict El Niño and IOD.

Key words: Sea surface temperature, chaos, singular spec-

trum analysis, singular value decomposition, El Niño, Indian Ocean

Dipole.

1. Introduction

Sea surface temperature (SST) is one of the key

indicators of oceanic and atmospheric variability and

hence predictability of SST is of particular interest

for proper understanding of the changing oceanic

conditions. In the present work, we study the

dynamics associated with the SST time series at

Arabian Sea, Bay of Bengal and South Indian Ocean

as well as for two extreme phenomena: El Niño and

Indian Ocean Dipole (IOD). El Niño involves pro-

longed warming in the equatorial Pacific Ocean SST,

compared to the average value. IOD is another

complex phenomena in which the Western part of

Indian Ocean becomes alternately warmer and cooler

than the Eastern part (Saji et al. 1999). It is difficult to

forecast El Niño (Jin et al. 2008; Yu et al. 2012).

There remains considerable uncertainty in IOD pre-

diction too (Shi et al. 2012). Although several studies

have shown variability of SST in the Arabian Sea,

Bay of Bengal and South Indian Ocean (Behera and

Yamagata 2001; Waliser et al. 2003; Jochum and

Murtugudde 2005), the SST time series of these

regions do not show any sudden change like the

indices of El Niño and IOD. The present work

attempts to understand the distinction between the

dynamics of the extreme phenomena of El Niño and

IOD from the dynamics of usual SST in the Arabian

Sea, Bay of Bengal and South Indian Ocean.

The physical processes of El Niño and IOD can be

described as follows. Under normal climatic condi-

tions, the atmospheric pressure of the Eastern Pacific

is higher than the west. This difference of atmo-

spheric pressure generates the tropical easterlies and

drives the Eastern Pacific Ocean current westward.

The westbound ocean currents are heated by the sun

and gathers in the central and Western Pacific. In the

Eastern Pacific, the low temperature sea water in the

deep ocean flows up to replace the westbound ocean

currents. During El Niño, the atmospheric pressure of

the Eastern Pacific decreases and the pressure in the

west increases. This sudden difference in atmospheric

pressure reduces the strength of the tropical
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easterlies. So the ocean current of the Eastern Pacific

flows towards east and accumulates in the Eastern

Pacific region. SST rises in this region by heating

from the sun. This in turn results in higher Eastern

Pacific temperature. In the phenomenon of IOD, a

positive IOD results when Eastern equatorial Indian

Ocean is cooler than normal SST and the Western

tropical Indian Ocean is warmer than normal SST. A

negative IOD is characterized by warmer than normal

SST in the Eastern equatorial Indian Ocean and

cooler than normal SST in the Western tropical

Indian Ocean. During positive IOD, equatorial sur-

face winds, which in a normal condition blows

towards east, weakens and blows towards west.

Rainfall increases over the Western Indian Ocean,

while over the Indonesia and Australia it decreases,

resulting in drought. During negative IOD, westerly

winds intensify along the equator. Eastern Indian

Ocean is flooded whereas dried condition is observed

in the Western Indian Ocean. Since several oceanic

and atmospheric processes are intertwined in the

mechanisms of El Niño and IOD, intuitively these are

complex systems.

The physical reasons behind the nonlinearity of

SST is its interannual and longer timescale vari-

ability due to the various atmospheric and oceanic

processes and the coupled ocean–atmosphere inter-

action like El Niño. On the oceanic side, heat

transport by currents, vertical mixing and boundary

layer depth influence SST. On the atmospheric side,

significant changes in the turbulent and radiative

energy fluxes at the air–sea interface and the local

wind-driven Ekman currents cause variation in SST

(Alexander and Scott 2008; Deser et al. 2010). In

support of the linearity of SST one can argue that

linear models produce forecasts as good as fully

nonlinear GCMs (Newman and Sardeshmukh 2017),

and apparently nonlinear models do not improve

over linear models on Niño 3.4 forecasts (Chen et al.

2016). In any case, the accurate forecasting of SST

is a challenging task (Li and Xie 2012). Proper

understanding of the dynamics of SST can help

produce reliable forecasts. In this study, SST time

series is explored in monthly time scale. There has

been several studies on the analysis and modeling of

the SST series as follows.

1.1. El Niño Series

It has been shown that ENSO is a linearly

stable multivariate system driven by Gaussian noise

in interannual time scale (Penland and Sardeshmukh

1995; Kleeman and Moore 1997; Thompson and

Battisti 2000). On the other hand, several studies have

been devoted to identifying nonlinearity and chaos in

the process of El Niño. Conceptual models for El

Niño include nonlinear oscillators (Munnich et al.

1991; Neelin et al. 1998) or fully chaotic systems

(Tziperman et al. 1994; Stone et al. 1998). In the

above studies, either the experiment is conducted

with a coupled atmosphere–ocean model to simulate

El Niño, or some nonlinear equation is proposed to

show the chaotic nature of El Niño. Jolliffe (2002)

analyzed the time series of El Niño variability by

using Singular spectrum analysis, but did not address

its chaotic property.

1.2. IOD Series

Researchers have differing opinions regarding the

nature of the dynamics of the Indian Ocean SST,

because of its complexity compared to that of the

tropical Pacific. Some study has shown that SST

variability in the Indian Ocean can be compared to a

spatial first order autoregressive process (Dommenget

2007). Penland (1996) showed that Indo Pacific SST

anomalies could be represented as a stable linear

process driven by spatially coherent stochastic forc-

ing. However, several researchers believe that IOD,

the dominant mode of the climatic variability in the

Indian Ocean, is a chaotic process (Majumder et al.

2019) and grown by complex ocean–atmosphere

interaction in the Indian Ocean (Anderson 1999; Saji

et al. 1999; Yamagata et al. 2004).

1.3. Arabian Sea, Bay of Bengal and South Indian

Ocean Series

Rao and Sivakumar (2000) have shown periodic-

ity in SST of the Arabian Sea, Bay of Bengal and

South Indian Ocean. Tourre and White (1995)

showed that between one-third and one-half of the

observed interannual variability in the Indian Ocean

is a result of El Niño. There is a climate mode in the
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Southern Indian Ocean known as Indian Ocean

subtropical dipole (IOSD), which contributes sub-

stantial variability in the South Indian Ocean (Behera

and Yamagata 2001). Waliser et al. (2003) found that

in the central equatorial Indian Ocean and the Bay of

Bengal, the rectification of the Madden–Julian oscil-

lation onto the SST produces interannual SST

anomalies of about 0.3�K, which is comparable to

the observed interannual variability. Jochum and

Murtugudde (2005) explained how eddies contribute

to the interannual variability in the Arabian Sea. The

eddies make a net contribution to the mixed layer

heat budget. As the generating processes are unsta-

ble and nonlinear, this contribution will vary and the

SST will be different from year to year, even under

climatological forcing. However, the study of the

chaotic properties of SST of these regions has

remained unexplored.

In this study, Singular spectrum analysis is

applied for analyzing the dynamics of SST at each

of the Nino 3.4 region, the IOD region, and the

Bay of Bengal, the Arabian Sea and the South

Indian Ocean regions separately. The key findings

of this work are (1) the dynamics of SST is shown

to be chaotic in all of the studied regions; (2) a

method based on singular spectrum analysis is

proposed, which indicates the presence of the

nonlinear components in the SST signals of the

Arabian Sea, Bay of Bengal and South Indian

Ocean; (3) it is shown that the dynamical system

of SST does not contain any periodicity in the El

Niño and the IOD regions, whereas SST series has

distinct embedded periodicity in case of Bay of

Bengal, Arabian Sea and South Indian Ocean,

rendering the former more complex and less

predictable than the latter.

The paper is organized as follows. The data and

their sources used in this study are detailed in Sect. 2.

The concept of singular spectrum analysis is intro-

duced in Sect. 3. Section 4 describes the formation of

State space diagram and its application to the

different SST series. The detection of nonlinearity

follows in Sect. 5. Section 6 describes the concepts

of periodicity detection using orthogonal functions

and the Periodicity spectrum analysis, along with the

results. The discussions and conclusions appear in

Sect. 7.

2. The Data

Monthly mean of SST data used in this study is

taken from Hadley Centre, which is available at (http://

www.metoffice.gov.uk/hadobs/hadisst/) (downloaded

on 24.01.17). The Hadley Centre SST data are

obtained from the Met Office Marine Data Bank

(MDB), which from 1982 onwards also includes data

received through the Global Telecommunications

System (GTS). For enhancing data coverage, monthly

median SSTs for 1871–1995 from the Comprehen-

sive Ocean–Atmosphere Data Set (COADS) (now

ICOADS) were also used where there were no MDB

data. The details of this data set are given in Rayner

et al. (2003). In this study, data for the period from

January 1871 to December 2014 are used. Monthly

climatology is subtracted from the observed data for

creating SST anomaly.

Nino 3.4 index (the average of SST over the

region 5�N–5�S and 170�–120�W) is used for mea-

suring the intensity of El Niño. Nino 3.4 anomaly is

considered from January 1950 to December 2014.

The data are downloaded from (http://www.cpc.ncep.

noaa.gov/products/analysis_monitoring/ensostuff/

ensoyears.shtml) (downloaded on 24.01.17). It is

3 month running mean of SST anomalies in the Niño

3.4 region (5�N–5�S, 120�–170�W), based on cen-

tered 30-year base periods updated every 5 years. For

constructing Nino 3.4 index, Extended Reconstructed

Sea Surface Temperature (ERSST) (version 4) is used

as the SST data set. ERSST data set is a global

monthly SST data set derived from the International

Comprehensive Ocean–Atmosphere Data set

(ICOADS). It is produced on a 2� 9 2� grid with

spatial completeness enhanced using statistical

methods. The details of this SST data are given in

Huang et al. 2014.

Dipole Mode Index (DMI) is the measure of the

intensity of IOD. DMI is represented by anomalous

SST gradient between the western equatorial Indian

Ocean (50�E–70�E and 10�S–10�N) and the South

Eastern equatorial Indian Ocean (90�E–110�E and

10�S–0�N). Here DMI data are downloaded from

(http://www.jamstec.go.jp/frcgc/research/d1/iod/

HTML/Dipole%20Mode%20Index.html) (down-

loaded on 24.01.17). The SST data of Hadley

Centre are used to compute this product. DMI is
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considered from January 1958 to December 2010.

Figure 1 shows the time series of SST anomalies

at different regions.

3. Singular Spectrum Analysis

Singular spectrum analysis (SSA) is popularly

used for investigating the non-linear behavior of a

complex system (Golyandina et al. 2001; Jolliffe

2002). It is a non-model oriented technique, which

exhibits a compact representation of the data. This

method can be used as a tool to filter any data, isolate

a trend or separate an oscillatory compound hidden in

a noisy series. In a way it is a standard tool in the

analysis of climatic, meteorological and geophysical

time series (Yiou et al. 1996; Hannachi et al. 2007).

The implementation of SSA involves the follow-

ing two steps. First the data series is configured into a

trajectory matrix as follows. Let the time series

{x}= (x0, x1, …, xN-1) and the time delay vectors

Xj = (xj-1, xj, xj?1,…, xj?L-2)
T, j = 1, 2,… ,K, where

K is the ‘embedding dimension’ and L = N-K ? 1.

As shown below, the trajectory matrix is given by

X= [X1: X2…: XK]. The trajectory matrix X is a

Hankel matrix. The embedding procedure maps the

original time series to a sequence of multidimen-

sional time delay vectors (Takens 1981). In this type

of matrix formation, SSA incorporates temporal

correlation:

X ¼

xð0Þ xð1Þ . . . xðK � 1Þ
xð1Þ xð2Þ . . . xðKÞ
. . . . . . . . . . . .

xðN � KÞ xðN � K þ 1Þ . . . xðN � 1Þ

2
664

3
775:

The second step is the singular value decompo-

sition (SVD) of the matrix X. SVD decomposes X as

X = USVT, where U is an Lx L orthogonal matrix,

S is a L 9 K dimensional diagonal matrix and V is a

Figure 1
Time series of a SST in the Arabian Sea, b SST in the Bay of Bengal, c SST in the South Indian Ocean, d Nino 3.4 Index, e Dipole Mode

Index (IOD)
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K 9 K orthogonal matrix. U represents the eigen

vectors of XXT and V, the eigen vectors of XTX. The

diagonal elements of S are the singular values of

X. The column vectors of U: (U1, U2,…,UK) are the

‘empirical orthogonal functions’ (EOFs). The idea

behind SVD is that most of the variance (or power) is

contained within the first few components. Diagonal

elements of S: {s1, s2, …, sK} are arranged in a non-

increasing order, i.e. s1C s2C s3 … C sK. It is

assumed that the diagonal elements with lower

magnitude are associated with the noise in the signal.

So the negligibly small singular values are assigned

to zero and the leading significant values, say {s1, s2,

s3, …, sp} are considered, where p\K. Now let us

call this new matrix as S0 and consider reconstructed

relationship X0 = U0S0V0T. The reconstructed time

series formed by joining the successive rows of X0 is

expected to be relatively free from noise.

In the next section, SSA method is used for

exploring the dynamics of SST in the different

regions of the Indian Ocean and Nino 3.4 and IOD

regions.

4. State Space Diagram Reconstruction and Results

The reconstruction of the state space diagram is

the first step for the analysis of a time series in terms

of dynamical systems theory (Casdagli et al. 1991;

Takens 1981). Since the dynamics of the system is

unknown, one cannot reconstruct the original attrac-

tor from the observed time series. Instead, an

embedding space is created where one can recon-

struct an attractor from the time series that preserves

the invariant characteristics of the original unknown

attractors. The trajectories of the state space diagram

describe the evolution of the system from some initial

state (assumed to be known) and convey some

information about the dynamical system. Differences

in state space diagram indicate that the corresponding

dynamical systems are different from each other.

Broomhead and King (1986) initiated the appli-

cation of Singular spectrum analysis for

reconstructing attractor from a noisy data. As dis-

cussed in the previous section, a Hankel matrix, say

X, is created from the time series of SST anomaly.

Here the embedding dimension K is determined

empirically for each time series. SVD is performed

on X and the first column of U, say U1, is used for

extracting the state space diagram. The state space

diagram can be reconstructed by plotting U1(t) vs. U1

(t ? d), where t is any time step and d is the time lag.

d is the minimum number of geometric co-ordinates

needed to complete the system dynamics. In this

study, state space diagram is created by plotting U1

(t) vs. U1(t ? d) (Fig. 2). Here d is empirically

chosen as 5, which is not a limitation. Empirically it

is found out that if d is less than 5, we do not get any

state space diagram. If we increase d, we still get state

space diagram, however if we take high value of d,

noise might contaminate the state space. Hence it is

optimal to keep d as low as possible. So d is taken as

5. Figure 2a, b show the state space diagrams of the

Arabian Sea and Bay of Bengal respectively. They

are not strictly periodic, as in each of the cases, tra-

jectory does not come back to the exact point from

where it started. In a chaotic system, close state space

trajectories will diverge, and they will never close on

themselves. The same is observed in the state space

diagram of South Indian Ocean (Fig. 2c), although its

shape is a little different from Arabian Sea and Bay of

Bengal, indicative of some differences in the

embedded dynamics. The state space diagrams of

Nino 3.4 Index and Dipole Mode Index (IOD) are

obviously not periodic and both are apparently non-

linear (Fig. 2d, e). Monthly data are required for

creating state space diagrams as 3 monthly or 6

monthly data do not produce proper state space dia-

grams due to under sampling. For quantitative

assessment of the chaos, Lyapunov exponent is

computed to study the existence of chaos in each of

these signals.

5. Detection of Nonlinearity Using Lyapunov

Exponent

Lyapunov exponent describes the rate at which

close trajectories diverge or converge in the state

space diagram of a time series (Rosenstein et al.

1993). So it is a direct measure of chaos of a system

and it is a measure of predictability also. Two tra-

jectories in phase space with initial separation l0
diverge at a rate given by l(t) * l0e

kt, then k is the
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Lyapunov exponent. In this study, Lyapunov expo-

nents are obtained by using Rosenstein’s method. The

first step of this method is the reconstruction of the

attractor from a single time series. Next nearest

neighbor is computed for each point on the trajectory.

The nearest neighbor, say Xj
0, is located by finding

the point that minimizes the distance to the particular

reference point, Xj. This is expressed as dj(O)= min

norm(Xj - Xj
0), (minimization is over Xj

0), where

dj(O) is the initial distance from the jth point to its

nearest neighbor, and ‘norm’ is the Euclidean norm.

An additional constraint is that the nearest neighbors

have a temporal separation greater than the mean

period of the time series, i.e. abs(j - j0)[mean

period. This allows one to consider each pair of

neighbors as nearby initial conditions for different

trajectories. The largest Lyapunov exponent is then

estimated as the mean rate of separation of the nearest

neighbors. Since sensitive dependence on initial

condition is a significant property of chaotic

dynamics, a positive Lyapunov exponent is an indi-

cation of chaos in a system. One limitation of this

technique is that Lyapunov exponent cannot distin-

guish chaos from noise. So noise reduction is an

important step before computing Lyapunov exponent

(Dammig and Mitschke 1993; Eckmann and Ruelle

1992). Hence, in this study, SSA method is used to

reconstruct the noise free signal before computing

Lyapunov exponent. For example, Fig. 3 shows the

singular values of Nino 3.4 index. A drop down is

noticed after the 16th mode. Hence the first 16

orthogonal modes are assumed to constitute the signal

and the rest are assumed to be noise; so to reconstruct

the data the first 16 diagonal values of the diagonal

matrix are used and the other values are assigned to 0

(as explained in Sect. 3). With this new diagonal

matrix, say, S00, the filtered signal is produced. There

is a limitation of this technique. The last few modes

Figure 2
State space diagram of a SST in the Arabian Sea, b SST in the Bay of Bengal, c SST in the South Indian Ocean, d Nino 3.4 Index, e Dipole

Mode Index (IOD)
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associated with the higher singular values represent

noise in SVD. Since the cut off singular value is

selected arbitrarily, this method does not remove

noise completely. Yet this method helps in capturing

the essence of the signal. Since the first few orthog-

onal modes are considered after performing SVD,

noise is partially removed in this technique. The

Lyapunov exponent is calculated for this filtered

signal using the Tiseanpath package (Hegger and

Kantz 1999). Each signal is partitioned in two parts

(say, ‘period 1’ and ‘period 2’) based on its time

period. For Nino 3.4 Index, period 1 is considered

from 1950 to 1982 and period 2 is considered from

1983 to 2014. For DMI, period 1 is considered from

1958 to 1984 and period 2 is considered from 1985 to

2010. In case of SST signals in the Arabian sea, Bay

of Bengal and South Indian Ocean, period 1 is taken

from 1871 to 1943 and period 2 is taken from 1944 to

2014. Lyapunov exponent is calculated for all of the

years as well as for period 1 and period 2. Table 1

shows that Lyapunov exponent is positive in all

cases. We have tested cases with variations in the

number of retained modes (16–20 retained modes)

and the Lyapunov exponent is positive in all cases.

As Lyapunov exponent is positive, all of these signals

are detected to be chaotic. At the same time, the

distinct difference between the magnitudes of the

Lyapunov exponent necessitates further analysis; so

we proceed with periodicity detection for additional

understanding of their underlying dynamics.

6. Detection of Periodicity and Results

The rationale for the search for periodicity

embedded in a SST series is that the presence of

periodicity can be intuitively linked with the pre-

dictability of the series. We search periodicity by two

different approaches: using EOFs and by using peri-

odicity spectrum.

6.1. Detection of Periodicity Using Orthogonal

Functions

Empirical orthogonal function can explain the

variability as well as the inherent periodicity of a

signal (Golyandina et al. 2001). Figures 4 and 5 show

the 1st to 6th EOFs (U1, U2, U3, U4, U5, U6) of

Nino 3.4 index and DMI respectively. In both of the

cases, no periodicity is observed in any EOF. It has

been shown that the Tropical Pacific SST anomalies

are phase-locked to the annual cycle (Sarachik and

Cane 2010; Clarke 2008). In SSA technique, the first

EOF represents the trend of the signal and the

consecutive few modes represent the dominant com-

ponents the signal. There is no dominant periodic

component in Nino 3.4 index. So it is not captured by

the first few modes of EOF. This does not mean that

there is no periodic orbit in the system. There can be

local periodicity in the system. P-spectrum shows the

globally stable periodic orbit. Absence of periodic

orbit in p-spectrum does not indicate that there is no

local periodicity in the system. There still can be

periodic orbit in the system which is not globally

stable. U1, U2, U4 and U5 of the Arabian Sea and the

Bay of Bengal are periodic as shown in Figs. 6 and 7,

respectively. U1 and U2 represent 6 monthly period-

icity and U4 and U5 represent the 1 yearly

Figure 3
Singular values of Nino 3.4 index

Table 1

Lyapunov exponent of the SST signals

Time Series All years Period 1 Period 2

Nino 3.4 Index 0.3 0.28 0.3

Dipole Mode Index 0.32 0.3 0.31

Arabian Sea 0.1 0.08 0.09

Bay of Bengal 0.15 0.13 0.14

South Indian Ocean 0.15 0.12 0.14
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periodicity. For the South Indian Ocean, U1 and U2

are periodic with 1 yearly periodicity (Fig. 8). The

physical understanding of the SST process corrobo-

rates these findings. In the South Indian Ocean, only

the movement of the sun influences SST. In the North

Indian Ocean, both the sun and the monsoon wind

influences the SST. Rao and Sivakumar (2000)

showed that the heat content of the near-surface

layers of the Arabian Sea and the Bay of Bengal

registers excessive drops with the onset and progress

of the summer monsoon. Under the influence of

direct solar heating during February to May the

seasonal buildup of the warm pool attains its

maximum amplitude in May, with its core in the

Southeastern Arabian Sea and Southwestern Bay of

Bengal. The onset and sway of the summer monsoon

during June to September progressively cools the

near-surface layers of the ocean. Hence, in the North

Indian Ocean, periodicity is observed at 6 months as

well as 1 year. In the South Indian Ocean, only yearly

periodicity is observed as SST is not influenced by

monsoon in this region. In our analysis, the excur-

sions of U3 stands out as different; we conjecture that

U3 represents nonlinearity and is not noise as as noisy

components are usually associated with the higher

EOFs (or smaller singular values) in the SSA method.

Although some studies have shown empirical

interpretation of the orthogonal components obtained

from SSA related techniques (Kondragunta and

Gruber 1997; Saji et al. 1999), there is no certainty

or theoretical basis for such interpretations because

the physical modes are not necessarily orthogonal as

captured through SSA (Dommenget and Latif 2002;

Jolliffe 2002). Features can be mixed between

orthogonal components if their corresponding eigen

values are similar. So we cannot be certain about any

physical representation of the components of El Niño

and IOD signals. However, SSA technique is a useful

tool to extract dynamical structure, e.g., trends,

oscillations, and propagating structures etc. (Golyan-

dina et al. 2001; Plaut and Vautard 1994). Hence we

can be certain about the periodic components

Figure 4
1st, 2nd, 3rd, 4th, 5th and 6th columns of U matrix of Nino 3.4 index
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obtained by this method in the Arabian Sea, Bay of

Bengal and South Indian Ocean.

In order to estimate the amount of the periodicity

contained in the signals, we consider the singular

value spectrum constituting the singular values (si) of

S. The normalized singular value (ni) is computed by

the formula ni= si
2/(
P

i si
2), where i varies from 1 to

K. The magnitude of a normalized singular value ni is

indicative of the variance of the corresponding EOF

Ui (Cattell 1966). In the Bay of Bengal and Arabian

Sea, U1 and U2 show 6-monthly periodicity, U3

shows nonlinearity and U4 and U5 show 1-yearly

periodicity. In the Bay of Bengal, normalized singu-

lar values are 0.25, 0.25, 0.14, 0.06 and 0.06

corresponding to U1, U2, U3, U4 and U5. So the

signal represents 50% 6-monthly periodicity 14%

nonlinearity and 12% 1-yearly periodicity. In the

Arabian Sea, the corresponding normalized singular

values are 0.26, 0.24, 0.14, 0.06 and 0.05, represent-

ing 50% 6-monthly periodicity, 14% nonlinearity and

11% 1-yearly periodicity. In the South Indian Ocean,

normalized singular values are 0.35, 0.35 and 0.05

corresponding to U1, U2 and U3, where U1 and U2

show 1-yearly periodicity and U3 shows nonlinearity.

Therefore, this signal represents 70% 1-yearly peri-

odicity and 5% nonlinearity. This empirical approach

shows that Bay of Bengal and Arabian Sea have

comparatively stronger nonlinear components than

South Indian Ocean. The other components are

ignored as they exhibit relatively less variability of

less than 3% (Table 2).

Next, we address the question: can the relatively

periodic SST series be predicted using the individu-

ally predicted orthogonal functions? The concept can

be described by the following procedure: (a) model

the series of elements in the individual N - k ? 1

long Ui column vectors of U as an autoregressive

process, (b) use the model to produce 1-step ahead

prediction element ui0N-k, (c) use this prediction to

construct the K-long vector: ui0N-KS(i,i)Vi
T, where

S(i,i) is the ith singular value and ViT is the ith row of

VT. (d) add the vectors generated at the last step for

Figure 5
1st, 2nd, 3rd, 4th, 5th and 6th columns of U matrix of Dipole Mode Index
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i =1, 2 etc. to form the composite prediction vector

(xN-K, xN-K?1, …, xN-1)
0, which is the reconstructed

signal. With reference to Sect. 3, here the assumption

is that for L 9 K matrix X and period length K, the

periodic pattern ViT remains unchanged in the

L ? 1th period. In the case of South Indian Ocean,

we consider the first two columns of U, i.e. U1 and

U2. So the autoregression model stands as u1n?1-

= a1u1n? a2u1n-1? a3u1n-2? a4 ? en, where

n varies from 3 to (N - K - 1); a1, a2 etc. param-

eters are estimated using least squares estimation and

en is white noise. The AR model is used to generate

the prediction u10N-K. U2 is also modeled similarly

and prediction u20N-K is produced. So

(u10N-KS(1,1)V1
T? u20N-KS(2,2)V2

T) yields the pre-

dicted or reconstructed signal (xN-K, xN-K?1, …,

xN-1)
0. Figure 9 shows that the reconstructed signal

(dashed line) captures the cyclical trend of the

original signal (solid line). The procedure is repeated

for Arabian Sea and Bay of Bengal, where U1, U2,

U4 and U5 components of U matrix are considered,

which are individually modeled and extended for

signal reconstruction. In both these cases, the recon-

structed signal captures the trend of the original series

as shown in Figs. 10 and 11. In the Arabian Sea,

standard deviation (STD) of SST is 0.5 and root mean

square error (RMSE) between the actual SST and

reconstructed SST is 0.65. In the Bay of Bengal

RMSE is 0.5, whereas STD is 0.6. In the South Indian

Ocean RMSE is 0.7, whereas STD is 1.1. Irrespective

of the fact that all these signals are chaotic with

positive Lyapunov exponents (as shown in Sect. 5),

some periodic components are found in each case and

the original signals can be reconstructed from those

periodic components. The error in reconstructions

may be attributed to the influence of nonlinear

components in each of these signals. Since reasonable

reconstruction is possible even without the nonlinear

components, these results lead to the conclusion that

the influence of non-periodic components is relatively

insignificant in the three studied cases.

Figure 6
1st, 2nd, 3rd, 4th and 5th columns of U matrix (U1, U2, U3, U4, U5) of the SST signal in the Arabian Sea
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6.2. Detection of Periodicity Using Periodicity

Spectrum

To reinforce our previous results in terms of the

embedded periodicity, we compute Periodicity spec-

trum (or p-spectrum) for each of these signals

(Kanjilal et al. 1999). Let the time series {x}= (x0,

x1, …, xN-1) be configured into an m 9 n matrix An:

An ¼

xð0Þ xð1Þ . . . xðn� 1Þ
xðnÞ xðnþ 1Þ . . . xð2n� 1Þ
. . . . . . . . . . . .

xððm� 1ÞnÞ xððm� 1Þnþ 1Þ . . . xðmn� 1Þ

2
664

3
775:

This configuration of the data matrix is different

from the conventional Hankel matrix form of the

trajectory matrix described in Sect. 3. In the conven-

tional form, all the states (in sufficient embedding

dimensional space) are considered. In the present

case, only the states, which are n sequences apart

from each other, are considered in the successive

rows, with no overlapping of data elements across the

rows of the matrix. The series {x} is configured into

m 9 n matrix An with varying row length n and SVD

of An is performed. SVD decomposes An into three

matrices U, S and V. The spectrum of the ratio of first

two singular values s1/s2 vs. row length (n) is called

the singular value ratio (SVR) spectrum or Periodic-

ity spectrum (Kanjilal 1995; Kanjilal et al. 1999). If

there is any periodic component of periodicity

N embedded in the series {x}, Periodicity spectrum

will show repetitive peaks at row lengths n = iN

(where i is a positive integer), and this serves as

periodicity detection. A dominant first singular value

for any m 9 n matrix An is indicative of the presence

of a strong periodic component (of period length n) in

{x}. First row of the matrix VT, say V1, represents the

periodic pattern of the signal.

Figures 12, 13 and 14 show the periodicity

spectrum of SST in the Arabian Sea, Bay of Bengal

and South Indian Ocean respectively. In each of these

cases, strong peaks are observed when row lengths

are 12, 24, 36 and 48, which confirms the presence of

dominant periodicity of 12 (months) in these signals.

Figures 15 and 16 show the Periodicity spectrum for

Figure 7
1st, 2nd, 3rd, 4th and 5th columns of U matrix (U1, U2, U3, U4, U5) of the SST signal in the Bay of Bengal
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Nino 3.4 index and DMI, where no strong peak is

observed. Since nonlinear transformation may accen-

tuate the peaks in p-spectrum (Kanjilal et al. 1999),

we apply nonlinear transformation preceding the

computation of p-spectrum for these two series but

still no peaks are observed. This confirms the fact that

no stable periodic orbit exists in the dynamical

systems of El Niño and IOD.

Here, the method of Periodicity spectrum analysis

is chosen over Fourier decomposition. This is

because Fourier decomposition has inherent limita-

tion of each component being sinusoidal with

constant scaling throughout; Kanjilal et al. (1999)

further showed that Fourier decomposition can be

misleading for periodicity detection, when noise and

signal bandwidths overlap or when the constituent

periodic components have overlapping frequency

bands, whereas the Periodicity spectrum remains

relatively unaffected.

6.3. Computation of Residual Series and Detection

of Chaos in the Indian Ocean

Next we address the question: can the positive

Lyapunov exponents in the current relatively

periodic SST series be attributed to associated

Table 2

The energy contained in the periodic and nonlinear components present in the SST signals of different regions

Region 6-Monthly periodic

component

1-Yearly periodic

component (%)

Aperiodic or non-linear component

associated with U3 (%)

Arabian Sea 50% 11 14

Bay of Bengal 50% 12 14

South Indian Ocean – 70 5

Figure 8
1st, 2nd and 3rd columns of U matrix (U1, U2, U3) of the SST signal in the south Indian Ocean
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noise rather than the inherent nonlinearity? As

shown in Sects. 6.1 and 6.2, strong periodic

components are observed in SST signals in the

Arabian Sea, Bay of Bengal and South Indian

Ocean, and at the same time the Lyapunov

exponent is positive for all these cases (Sect. 5).

Since, sometimes Lyapunov exponent cannot dis-

tinguish between chaos and noise (Dammig and

Mitschke 1993), we need to confirm that the

Lyapunov exponent is positive due to nonlinearity

and not noise in the present cases.

We incisively separate the periodic component and

the noise component from the SST series and explore

the presence of nonlinearity as follows. (a) First the

periodic component is removed from the original SST

signal using SVD and a residual series is created

(Kanjilal et al. 1997). An m 9 nmatrix A is formed as

in Sect. 6.2 from the SST series; the number of

columns (n) of A is considered as 12, since 12 is a

periodicity of the SST signals in the Arabian Sea, Bay

of Bengal and South Indian Ocean. SVD is performed

on A to get U, S and V such that A = USVT. The most

Figure 9
Observed and reconstructed SST in the South Indian Ocean

Figure 10
Observed and reconstructed SST in the Arabian Sea

Figure 11
Observed and reconstructed SST in the Bay of Bengal

Figure 12
Periodicity spectrum of SST in the Arabian Sea
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dominant periodic component present in A is given by

U1S(1,1)V1T, whereU1 is the first column ofU, V1T is

the first row of VT and S(1,1)is the largest singular

value. This matrix is subtracted from A to get a

residual matrix R. Since the first row of VT represents

the periodicity, subtracting the matrix U1S(1,1)V1T

should eliminate the periodic component of the signal.

So the residual time series r formed from the

successive rows of R should not contain any period-

icity of length 12, and is expected to consist of only

nonlinear components and noise. (b) The Periodicity

spectrum of this residual series is computed; for the

Bay of Bengal SST series Fig. 17 show that there are

no peaks in the Periodicity spectrum, confirming

absence of any periodic component in the residual

series. (c) The state space diagram of the residual

series r (Fig. 18a) show no distinct structure and hence

the residual series can be either purely noise or a

combination of nonlinear component and noise.

(d) Next, noise is eliminated from the residual series

as follows. A Hankel matrix H1 is formed with this

residual series with row length of 12. SVD on H1

yields H1=U0SvV0T. In each of the above three cases,

the series of column elements in U0 do not show any

periodicity. The insignificant last few singular values

are eliminated to reconstruct the apparently noise-free

signal (say, R1) using 6 singular values. (e) The state

Figure 13
Periodicity spectrum of SST in the Bay of Bengal

Figure 14
Periodicity spectrum of SST in the South Indian Ocean

Figure 15
Periodicity spectrum of Nino 3.4 index

Figure 16
Periodicity spectrum of Dipole Mode index

3782 S. Majumder and P. P. Kanjilal Pure Appl. Geophys.



space diagram is generated from R1 (Fig. 18b), which

tends to show nonlinear characteristic. (f) To refine the

residual series R1 further by additional elimination of

noise, iterative SVD is performed, i.e. step (d) is

repeated: a Hankel matrix H2 is configured from R1

and SVD is performed on it to get H2= U00S00V00T. In

this case also the columns of U00 do not show any

periodicity. The last few singular values of S00 are

eliminated to reconstruct the signal, say R2, using 3

singular values. As discussed in Sect. 5, this method

does not remove noise completely. Yet it helps in

revealing the nonlinear component. Since the first few

orthogonal modes are considered after performing

SVD, noise is partially removed in this technique.

(g) The state space diagram reconstructed from R2

(Fig. 18c) show distinct nonlinear characteristic of the

Bay of Bengal SST series. The results are similar for

the other two cases. The Lyapunov exponent of the

filtered signal R2 is 0.3 for all of three cases. Since

state space reconstruction is possible and the Lya-

punov exponent is positive, the filtered signal R2 is

definitely not noise, leading to the conclusion that it

represents nonlinearity in the studied SST series.

Figure 17
Periodicity spectrum of the residual series in the Bay of Bengal

Figure 18
a Reconstructed state space figure from noisy residual series, b Reconstructed state space figure from filtered residual series R1,

c Reconstructed state space figure from filtered residual series R2
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7. Discussion and Conclusions

ENSO follows a similar pattern of developing

during boreal summer and peaking during boreal

winter. Such seasonal synchronization is a defining

characteristic of ENSO. Our results contrasts with

Stein et al., 2014 in which it was concluded that

annual modulation of the coupled stability of the

equatorial Pacific ocean–atmosphere is the mecha-

nism which generates the synchronization of ENSO

events to the annual cycle. For examining ENSO-

annual cycle synchronization through phase locking,

they considered a model that is similar to periodic

forcing Van der Pol oscillator. In their study, chaotic

oscillators were not found within the parameter space

of the Van der Pol oscillator relevant to the observed

ENSO. The reason is that they focused on the syn-

chronization of ENSO, ignoring many complex

features of ENSO. Their work was limited to the

solutions of the Van der Pol equation which could be

applicable to the seasonal synchronization of ENSO.

Moreover, their model was not offered as a particu-

larly realistic representation of ENSO, but as a

system that showed similar global behavior to the

simple and intermediate models of ENSO on which

the frequency locking scenario was prioritized. In the

model equation, they ignored the interaction of the

seasonally varying growth rate and the nonlinear

saturation term in the system. The interaction

between the mean damping rate, the strength of the

nonlinearity, the strength of the periodic forcing and

the variance of the stochastic forcing was not con-

sidered in their study. If more complex aspects of

ENSO was considered, the complexity of model

would increase.

One of the key results of this study is to show that

SST signals are chaotic in the Indian Ocean. Several

studies have discussed various reason for the vari-

ability of SST in the Indian Ocean (Behera and

Yamagata 2001; Waliser et al. 2003; Jochum and

Murtugudde 2005). However, no quantitative analy-

sis is performed yet in the Indian Ocean SST to show

its nonlinearity. We have extracted the nonlinear

component of the SST signals in the Indian Ocean.

Chaotic model of El Niño has already been proposed

in the literature (Tziperman et al. 1994; Stone

et al.1998). Trenberth (1997) computed histograms of

two El Niño indices for the period of January 1950–

March 1997 and pointed out that the Nino 3 index is

‘‘strongly’’ positively skewed. Hannachi et al. 2003

showed that Nino-3 anomalies are significantly non-

normal due to the presence of positive skewness.

However, it has been shown that deviations from

Gaussianity can be generated even in absence of slow

nonlinearity (Sura et al. 2005; Martinez-Villalobos

et al. 2018). We reinforce the chaotic nature of El

Niño by using Singular spectrum analysis. Our

analysis shows positive Lyapunov exponent, which is

a confirmatory indication of chaos. Majumder et al.

2019 has shown the chaotic characteristics of IOD by

reconstructing its state space diagram and showing

positive Lyapunov exponent. In this study, this fact is

further supported by the absence of any embedded

globally stable periodic component as detected by the

Periodicity spectrum analysis, which is the reason

behind the uncertainty in the prediction of El Niño

and IOD events.

In the present context, a signal is a mixture of

periodic, nonlinear and noisy components; it is the

distribution of the energy in these components that

determine the nature of the composite SST signal. In

this study, we are trying to address this fundamental

issue. This issue is important as it is concerned with

the predictability of the signal. Here we studied two

broad types of signals: (1) signals in the Arabian

Sea, Bay of Bengal and South Indian Ocean and (2)

signals in the El Niño and IOD region. Both of these

are chaotic but the first type of the signal is pre-

dictable and the second type is not easily

predictable. Our analysis shows that there exists

strong periodic component for first case, whereas for

the second case, no periodicity is found. In the

Arabian Sea and Bay of Bengal, periodic compo-

nents contribute to the 61–62% variability of the

signal. In the South Indian Ocean, periodic compo-

nents contribute to 70% variability of the signal.

Although Lyapunov exponent is mildly positive for

these signals, presence of a dominant periodicity

makes these series more predictable. For El Niño

and IOD signals, absence of a periodic component

makes the series difficult to predict. This explains

why the dynamical systems of El Niño and IOD are

much more complex and unpredictable compared to

the other regions.
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