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Abstract—To absorb unwanted seismic reflections caused by

the truncated boundaries, various absorbing boundary conditions

have been developed for seismic numerical modeling in both time

and frequency domains. Among the various types of perfectly

matched layer (PML) boundary conditions, complex frequency

shifted PML (CFS-PML) has attracted much attention in time-do-

main wavefield simulations because it can better handle evanescent

and grazing waves. In this paper, we extend the CFS-PML

boundary condition to frequency-domain finite-difference seismic

modeling, which has several advantages over time-domain mod-

eling including the convenient implementation of multiple sources

and a straightforward extension of adding attenuation factors. A

comparison with an analytical solution is used to investigate the

validity of the proposed CFS-PML algorithm. CFS-PML shows

better absorbing behavior than the classical PML boundary con-

dition in our model tests. We further implement CFS-PML for

seismic wavefield simulations in an elongated elastic model and a

complex model (Marmousi-II) with a free surface boundary

condition.

Key words: Frequency-domain, finite-difference, elastic

wave, CFS-PML, boundary conditions, free surface.

1. Introduction

To simulate seismic wave propagation in

unbounded media, numerous absorbing boundary

conditions have been applied to suppress the artificial

reflections caused by truncated boundaries, such as

the Clayton boundary condition (Clayton and Eng-

quist 1977), sponge boundary conditions (Cerjan

et al. 1985; Shin 1995), the Higdon boundary con-

ditions (Higdon 1986, 1987) and the hybrid boundary

condition (Liu and Sen 2012). These boundary con-

ditions have been used for seismic modeling in the

time domain (Clayton and Engquist 1977; Peng and

Toksöz 1995; Gao et al. 2015) as well as in the fre-

quency domain (Pratt 1990; Pratt and Worthington

1990; Shin 1995; Ren and Liu 2013). Unfortunately,

most of these boundary conditions are not effective

for greater incidence angles (Tsynkov 1998).

Berenger (1994) introduced the perfectly matched

layer (PML) absorbing boundary condition for elec-

tromagnetic wave simulations, which has provided

better absorbing performance compared with the

above mentioned absorbing boundary conditions. The

implementation of the PML boundary condition is

based on a complex coordinate stretching along the

coordinates in the frequency domain. Collino and

Tsogka (2001) applied the PML to seismic wavefield

simulation in the time domain. Soon after, the PML

boundary condition was extended to seismic numer-

ical modeling in the frequency domain (Operto et al.

2007; Liao et al. 2009; Li et al. 2015; Zhao et al.

2017). Although the PML boundary condition has the

advantage of absorbing the evanescent field in dis-

crete space, it suffers from spurious reflections at

grazing incidence (Komatitsch and Martin, 2007) and

exponential instabilities in lengthy simulations of

elastic models with free surface boundary conditions

(Meza-Fajardo and Papageorgiou, 2008; Zeng et al.

2011) and in anisotropic media cases (Bécache et al.

2004; Komatitsch and Martin, 2007; Meza-Fajardo

and Papageorgiou, 2008).

The complex frequency shifted perfectly matched

layer (CFS-PML) boundary condition was proposed

for electromagnetic media by Roden and Gedney

(2000) and was introduced to elastodynamics by

Festa et al. (2005). It has been proven to offer
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effective absorption of evanescent and grazing waves

in time-domain seismic modeling (Komatitsch and

Martin 2007; Martin et al. 2008; Chen et al. 2014;

Gvozdic and Djurdjevic 2017). However, to our

knowledge, we have not seen any implementation of

the CFS-PML boundary condition in a frequency-

domain seismic wavefield simulation. Seismic

wavefield simulations in the frequency domain have

several advantages over time-domain modeling,

including the easy implementation of multiple sour-

ces and the straightforward extension of adding

attenuation factors (Marfurt and Shin 1989; Jo et al.

1996; Operto et al. 2009; Moreira et al. 2014).

The numerical techniques for simulating seismic

wave propagation in the frequency domain include

the finite element method (Marfurt 1984; Zhao et al.

2017) and the finite-difference method (Moreira et al.

2014; Doyon and Giroux 2014). The finite-difference

method is the most popular numerical method due to

its simple implementation and good balance between

accuracy and efficiency.

In this paper, we propose to apply the CFS-PML

absorbing boundary condition to the frequency-do-

main finite-difference elastic wavefield simulation.

During the implementation, we use the Intel Pardiso

Solver to solve the large sparse matrix (Liu et al.

2017). Numerical examples show that the CFS-PML

boundary condition works better than the classical

PML boundary condition. We also investigate the

performance of the CFS-PML boundary condition

with the existence of a free surface boundary condi-

tion. The tests show that our algorithm can

successfully simulate the wave propagation, and the

CFS-PML boundary condition can efficiently absorb

the Rayleigh waves as well.

2. Governing Equations

The 2D frequency-domain wave equations in

elastic isotropic media are given by (Pratt 1990):
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where u and v are temporal Fourier components of

the horizontal and vertical displacements, respec-

tively; f and g are Fourier components of the

horizontal and vertical body forces; q is the bulk

density; k and l are the Lamé parameters, and x is

the angular frequency.

The discretized forms of Eq. (1) can be expressed

as:
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where Dx and Dz are the grid sizes in the horizontal

and vertical directions, respectively.
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As introduced in Pratt (1990), the second-order

finite-difference star can be expressed as:

M1 M4 M7

M2 M5 M8

M3 M6 M9:

The elements of the star for the interior region can

be directly obtained by collecting the terms at each

grid point in Eqs. (2) and (3):
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3. Boundary Conditions

3.1. Perfectly Matched Layer (PML) Boundary

Condition

The main idea of the PML is to introduce a

complex coordinate stretching system in the horizon-

tal and vertical directions. For example, the new

horizontal coordinate ~x is expressed as:

~x xð Þ ¼ x � i

x

Z x

0

dx sð Þds ð13Þ

which, upon differentiation, can be written as:
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where the stretching coefficient ex ¼ 1� i
dxðxÞ
x and

the damping factor dxðxÞ linearly changes with x

within the PML ranging from 0 to a positive value.

Here, we use

dx xð Þ ¼ 2pa0f0
xi

LPML

� �2

ð15Þ

wherexi is the distance from the inner PMLboundary in

the horizontal direction, a0 is the optimized parameter,

which is normally referred to 1.79 (Zeng et al. 2001), f0
is the dominant frequency and LPML is the thickness of

the PML boundary. The choice of a0 is obtained by

using a trial and error approach depending on the

thickness of PML boundary. The optimal a0 is the one

to make the minimum energy of reflections coming

from the edges (Hustedt et al. 2004). In our numerical

tests, the best value of a0 is 0.6 for a thickness of 40

grids. The new vertical stretching coordinate has a

form that is similar to the new horizontal coordinate.

By using the complex coordinate stretching

method, the implementation of the PML boundary

condition to the frequency-domain seismic wave

equations can be expressed as (Yuan et al. 2014):
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3.2. Complex Frequency Shifted Perfectly Matched

Layer (CFS-PML) Boundary Condition

With the CFS-PML boundary condition, seismic

wave equations can also be expressed as Eqs. (16)
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and (17). However, the stretching coefficients along

the horizontal and vertical coordinates are:
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and
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As an example, the damping factor dxðxÞ along

the horizontal direction can be described as follows:
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x
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And, two other variables k xð Þ and a xð Þ are

expressed as:
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where amax ¼ pf0 (Komatitsch and Martin 2007), f0 is

the dominant frequency of the source, LPML is the

thickness of the CFS-PML boundary, x is the distance

to the inner CFS-PML boundary and d0 can be

written as (Collino and Tsogka 2001):

d0 ¼ �
ðPd þ 1Þ � Vmax

p � logðRcoef Þ
2� LPML

ð23Þ

Here, Vmax
p is the maximum P-wave velocity and

Rcoef is the objective reflectivity (0.001% used in

this paper). The parameters Pd and Pk range from 1 to

4, and 2 is commonly used (Taflove 1998). In our

paper, Pd and Pk are assumed to be 2 and the optimal

kmax is 1 after numerical tests for the 40-grid

thickness of the CFS-PML boundary condition. One

can observe that in the particular case of kmax ¼ 1 and

amax ¼ 0:0, the CFS-PML boundary condition degen-

erates to the classical PML boundary condition.

3.3. Free Surface Boundary Condition

To model seismic wave propagation in an elastic

model with a realistic surface (air/solid interface), we

Figure 1
Sketch of the elongated elastic model. The dashed lines are the

inner boundaries of the PML and CFS-PML. The star and triangle

represent the source and receiver, respectively

Figure 2
The 15.1 Hz (top panel) and 30.1 Hz (lower panel) real-part solutions of the elastic wavefields in the horizontal plane using the PML (a,

d) and CFS-PML (b, e) absorbing boundary conditions and the differences between the two methods (c, f)
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apply the traction free surface boundary condition to

the surface of the model (Lan and Zhang, 2011),

which can be expressed as:

ou
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 �
. Vp and Vs are seismic P- and

S-wave velocities.

In the implementation of the free surface bound-

ary condition, an extra row is added above the actual

free surface. In addition, the complex coordinate

stretching method is also applied to the free surface

boundary condition at the left and right boundaries of

the free surface.

4. Source Implementation

The Ricker wavelet used as a source signature in

the frequency domain can be expressed as (Wang

2015):

S xð Þ ¼ 2ffiffiffi
p

p x2

x3
p
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xp

� �2
" #
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Figure 3
Snapshots of the displacement in the horizontal plane using the PML (a, d, g, j), CFS-PML boundary condition (b, d, f, h) and the differences

between these two methods (c, f, i, l) at 0.1792 s, 0.3656 s, 0.5520 s and 0.9247 s. The dashed lines are the inner boundaries of the PML and

CFS-PML boundary conditions
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where xp is the angular peak frequency and x is the

angular frequency.

According to Yin et al. (2006), the point source

can be expressed as:

f

g

� �
¼ d � SuðxÞ

d � SvðxÞ

� �
ð27Þ

where d ¼ 1;
0;


x0; y0ð Þ

otherwise
.

Here,f and g are Fourier components of the hor-

izontal and vertical body forces in the frequency

domain; the source is located at grid point x0; y0ð Þ;
Su xð Þ and Sv xð Þ are the horizontal and vertical

components of the source signature. The vertical

force source is used in the following model tests.

5. Numerical Experiments

To test the validity and performance of the CFS-

PML absorbing boundary in frequency-domain finite-

difference seismic modeling, we examine three

elastic models in this section: an elongated model, an

elongated model with a free surface boundary con-

dition and the Marmousi-II model with a free surface

boundary condition.

5.1. Elongated Elastic Model

The elongated elastic model (Fig. 1) is discretized

by 600� 300 grid points with a grid spacing of 4 m,

which has a size of 2.4 km 9 1.2 km. The P- and

S-wave velocities and density are 3000 m/s, 2000 m/

s and 2000 m/s, respectively. The thickness of the

PML boundary is 120 m (30 grids). We use the same

thickness for the CFS-PML boundary. The frequency

Figure 4
Comparison between an analytical solution and seismograms of the

horizontal component for the receiver at the grid (50, 50) using the

PML (a) and CFS-PML (b) boundary conditions, respectively

Figure 5
Wavefield energy decay curves using the PML (solid gray line) and

CFS-PML (dashed dark line) boundary conditions for the elongated

elastic model

Figure 6
Sketch of the elongated elastic model with a free surface boundary

condition. The dashed lines denote the inner boundaries of the PML

and CFS-PML boundary conditions. The star and triangle represent

the source and receiver, respectively. The free surface boundary

condition is used at the surface
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range is from 0.1 to 79.6 Hz with an increment of

0.5 Hz. The source (star) described by a Ricker

wavelet with the peak frequency of 20 Hz and delay

of 0.1 s is located at grid point (300, 40) as a

horizontal source. A receiver (triangle) is located at

grid point (50, 50), which is used to test the absorbing

performance of the CFS-PML at grazing incidence

angles. In Fig. 1, the dashed lines represent the inner

boundaries of the PML and CFS-PML

Figure 2 shows the 15.1 Hz (top panel) and

30.1 Hz (bottom panel) real-part solutions of the

horizontal component of the elastic wavefields using

the PML and CFS-PML boundary conditions.

Observe that distinct artificial reflections are found

in the wavefields using the PML (a, d). CFS-PML

boundary condition offers the better suppression of

the artificial reflections in the wavefields (b, e). Also,

the differences (c, f) between the real-part solutions

calculated with PML and CFS-PML boundary con-

ditions are large.

Figure 3 shows snapshots of the displacement in

the horizontal plane calculated with PML (left panel)

and CFS-PML (right panel) at 0.1792 s, 0.3656 s,

0.5520 s and 0.9247 s. One can easily observe

spurious reflections from the snapshots calculated

with the PML boundary condition after P- and S-

waves reach the boundaries (a, d, g, j). However, we

do not observe the distinct artificial reflections from

the snapshots calculated with the CFS-PML boundary

condition (b, e, h, k). Obvious differences between

the snapshots calculated with PML and CFS-PML

boundary conditions are observed in Fig. 3c, f, i, l.

Figure 4 shows the comparison of horizontal com-

ponent seismograms calculated using the PML and

CFS-PML boundary conditions with an analytical

solution (Aki and Richards 2002) for the receiver at

grid point (50, 50). We find that the CFS-PML

boundary condition (4b) provides better agreement

with the analytical solution than the PML boundary

condition (4a). The cross-correlation parameter

XCORR between the analytical solution and the

seismogram calculated is 0.849 with PML, whereas it

is 0.957 with CFS-PML. The obvious improvement

in the absorbing performance of the CFS-PML

boundary condition can be observed.

We use the wavefield energy decay curve (Fig. 5)

to further investigate the absorbing performance of

the CFS-PML boundary condition. The wavefield

energy is simply calculated as the square of the

horizontal displacement within the simulation period

(2 s). After the P-wave reaches the top boundary

(0.113 s), the energy is gradually absorbed by the

absorbing boundaries. We observe that the energy

curve calculated with the CFS-PML has a faster

Figure 7
The 15.1 Hz (top panel) and 30.1 Hz (lower panel) real-part solutions of the elastic wavefields in the horizontal plane using the PML (a,

d) and CFS-PML (b, e) absorbing boundary conditions and the differences between these two methods (c, f)
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absorption than that calculated with the PML bound-

ary condition, which indicates that the CFS-PML

boundary condition performs better suppression of

the artificial reflections than the PML boundary

condition.

5.2. Elongated Elastic Model with a Free Surface

To further investigate the absorbing performance

of the CFS-PML boundary condition with the exis-

tence of a free surface boundary condition, we built

an elongated elastic model with a free surface

(Fig. 6). The absorbing boundary conditions are

implemented to the left, right and bottom boundaries

of the model, while the free surface boundary

condition (Lan and Zhang 2011) is only applied at

the surface. The star denotes the horizontal source

located at grid point (300, 2), which is a Ricker

wavelet with dominant frequency of 20 Hz and delay

time of 0.1 s, and the triangle denotes a receiver

located at grid point (60, 2). We chose the same

Figure 8
Snapshots of the displacement in the horizontal plane calculated with the PML (a, d, g, j), CPML boundary condition (b, e, h, k) and the

differences between these two methods (c, f, i, l) at 0.179 s, 0.366 s, 0.552 s and 0.925 s. The dashed lines are the inner boundaries of the

PML and CFS-PML boundary conditions
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values of the model parameters used in the last

elongated elastic model.

Figure 7 shows the 15.1 Hz (top panel) and

30.1 Hz (bottom panel) real-part solutions of the

horizontal component of the elastic wavefields using

the PML and CFS-PML absorbing boundary condi-

tions. One can observe the distinct spurious

reflections in the wavefields using the PML boundary

condition (a and d). As discussed before, we do not

observe distinct artificial reflections in the wavefields

using the CFS-PML boundary condition (b and e). In

addition, we observe the Rayleigh wave at the

surface.

Figure 8 shows snapshots of the displacement in

the horizontal plane at 0.179 s, 0.366 s, 0.552 s and

0.925 s using the PML and CFS-PML absorbing

boundary conditions. One can easily observe serious

spurious reflections from the snapshots calculated

with the PML boundary condition (a, d, g and j). The

CFS-PML boundary condition (b, e, h and k) works

better than the PML boundary condition. The differ-

ences between snapshots calculated with PML and

CFS-PML boundary conditions are shown in Fig. 8c,

f, i, l.In addition, we can correctly simulate Rayleigh

wave propagation at the surface.

Figure 9 shows the seismograms of the horizontal

component for the receiver at the grid point (60, 2).

The cross-correlation parameters XCORR between

the analytical solution and the seismograms calcu-

lated with the PML and CFS-PML are 0.893 and

0.947, respectively. One can easily observe the

artificial reflections in the seismogram calculated

with the PML boundary condition. No distinct

artificial reflections can be observed in the seismo-

gram calculated with the CFS-PML boundary

condition.

As in the previous study, the wavefield energy

decay curves are investigated in Fig. 10. One can

easily get the same conclusion that the CFS-PML

boundary condition absorbs the energy faster than the

PML boundary condition.

5.3. Marmousi-II Model with a Free Surface

To test the performance and validity of the

proposed algorithm in the case of complex

Figure 9
Comparison between an analytical solution and seismograms of the horizontal component for the receiver at grid (60, 2) using the PML

(a) and CFS-PML (b) boundary conditions, respectively

Figure 10
Wavefield energy decay curves using the PML (solid gray line) and

CFS-PML (dashed dark line) boundary conditions for the elongated

elastic model with a free surface boundary condition
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heterogeneous media, we simulated seismic wave

propagation in the Marmousi-II model with a free

surface. As shown in Fig. 11, the Marmousi-II model

has a size of 500 m 9 500 m, which is discretized by

500 9 500 grids with grid spacing of 1 m. A Ricker

wavelet with the dominant frequency of 20 Hz and

delay of 0.05 s was applied as horizontal source at

grid point (240, 2). The frequency range is from

0.1 Hz to 69.6 Hz with an increment of 0.5 Hz. An

array of receivers is located along grid points j ¼ 40.

The same PML and CFS-PML parameters were used

in Sects. 5.1, 5.2.

Figure 12 shows snapshots of the horizontal

displacement calculated with PML (left panel) and

CFS-PML (right panel) at 0.1792 s, 0.3656 s,

0.5520 s and 0.9247 s. One can easily observe

artificial reflections, after the P-, S- and surface

waves reach the boundaries, in the snapshots calcu-

lated with the PML boundary condition. The CFS-

PML boundary condition performs better absorption

than the PML, and one cannot observe any obvious

spurious reflections (b, e, h, k).

Figure 11
Sketch of Marmousi-II model including P-wave velocity (a), S-wave velocity (b) and density (c)

cFigure 12
Snapshots of the displacement in the horizontal plane at 0.1792 s,

0.3656 s, 0.5520 s and 0.9247 s using the PML (a, d, g, j), CFS-

PML (b, e, h, k) boundary conditions and the differences between

these two methods (c, f, i, l). The dashed lines are the inner

boundaries of both PML and CFS-PML boundary conditions

2538 Z. Zhao et al. Pure Appl. Geophys.
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Figure 13 shows the shot gathers of the horizontal

displacements calculated with PML (a) and CFS-

PML (b) boundary conditions. One can observe that

the artificial reflections from the boundary conditions

in the shot gather calculated with the PML boundary

condition are stronger than those calculated with the

CFS-PML boundary condition. Obvious differences

can also be observed between the two shot gathers in

Fig. 13c. One can observe obvious difference.

Here, we also use the wavefield energy decay

curve to show the advantage of the CFS-PML over

PML boundary condition (Fig. 14). One can observe

that the energy calculated with the CFS-PML

boundary condition is absorbed faster than the energy

calculated with the PML boundary condition.

6. Conclusions

In this paper, we implemented the complex fre-

quency shifted PML (CFS-PML) absorbing boundary

condition in a frequency-domain finite-difference

seismic wavefield simulation and compared its per-

formance with the analytical solution. Numerical

experiments show that the seismograms calculated

with the CFS-PML boundary condition have a sig-

nificant match with the analytical solution, and CFS-

PML was found to be more efficient in absorbing

artificial reflections than the PML boundary

condition. Seismic numerical modeling with CFS-

PML will be extended to 3D elastic media in the

future.
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Bécache, E., Petropoulos, P. G., & Gedney, S. D. (2004). On the

long-time behavior of unsplit perfectly matched layers. IEEE

Transactions on Antennas and Propagation, 52, 1335–1342.

Berenger, J. P. (1994). A perfectly matched layer for the absorption

of electromagnetic waves. Journal of Computational Physics,

114, 185–200.

Cerjan, C., Kosloff, D., Kosloff, R., & Reshef, M. (1985). A

nonreflecting boundary condition for discrete acoustic and elastic

wave equations. Geophysics, 50, 705–708.

Chen, H., Zhou, H., & Li, Y. (2014). Application of unsplit con-

volutional perfectly matched layer for scalar arbitrarily wide-

angle wave equation. Geophysics, 79, 313–321.

Clayton, R., & Engquist, B. (1977). Absorbing boundary conditions

for acoustic and elastic wave equations. Bulletin of the Seismo-

logical Society of America, 67, 1529–1540.

Collino, F., & Tsogka, C. (2001). Application of the perfectly

matched absorbing layer model to the linear elastodynamic

problem in anisotropic heterogeneous media. Geophysics, 66,

294–307.

Doyon, B. and Giroux, B., 2014. Practical aspects of 2.5D fre-

quency-domain finite-difference modelling of viscoelastic

waves: The SEG Technical Program Expanded Abstracts,

3482-3486.

Festa, G., Delavaud, E. and Vilotte, J.P., 2005. Interaction between

surface waves and absorbing boundaries for wave propagation in

geological basins: 2D numerical simulations: Geophysical

Research Letters, 32.

Gao, Y., Song, H., Zhang, J., & Yao, Z. (2015). Comparison of

artificial absorbing boundaries for acoustic wave equation mod-

elling. Exploration Geophysics, 48, 76–93.

Gvozdic, B. D., & Djurdjevic, D. Z. (2017). Performance advan-

tages of CPML over UPML absorbing boundary conditions in

FDTD algorithm. Journal of Electrical Engineering, 68, 47–53.

Higdon, R. L. (1986). Absorbing boundary conditions for differ-

ence approximations to the multidimensional wave equation.

Mathematics of Computation, 47, 437–459.

Higdon, R. L. (1987). Numerical absorbing boundary conditions

for the wave equation. Mathematics of Computation, 49, 65–90.

Hustedt, B., Operto, S., & Virieux, J. (2004). Mixed-grid and

staggered-grid finite-difference methods for frequency-domain

acoustic wave modelling. Geophysical Journal International,

157, 1269–1296.

Jo, C. H., Shin, C., & Suh, J. H. (1996). An optimal 9-point, finite-

difference, frequency-space, 2-D scalar wave extrapolator.

Geophysics, 61, 529–537.

Komatitsch, D., & Martin, R. (2007). An unsplit convolutional

perfectly matched layer improved at grazing incidence for the

seismic wave equation. Geophysics, 72, 155–167.

Lan, H., & Zhang, Z. (2011). Comparative study of the free-surface

boundary condition in two-dimensional finite-difference elastic

wave field simulation. Journal of Geophysics and Engineering, 8,

275–286.

Li, Y., Métivier, L., Brossier, R., Han, B., & Virieux, J. (2015). 2D

and 3D frequency-domain elastic wave modeling in complex

media with a parallel iterative solver. Geophysics, 80, 101–118.

Liao, J., Wang, H., & Ma, Z. (2009). 2-D elastic wave modeling

with frequency-space 25-point finite-difference operators. Ap-

plied Geophysics, 6, 259–266.
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