
Effect of Clay and Mineralogy on Permeability
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Abstract—The absolute permeability of rock depends on sev-

eral factors, including porosity, /, the geometry of the pore

network (tortuosity), and the grain geometry, dimension and

composition. The mineralogical composition plays an important

role, mostly with respect to clay, which involves several compo-

nents including illite, smectite, kaolinite and chlorite. The presence

of quartz and feldspar increases permeability, while clay minerals

and calcite tend to have the opposite effect. Essentially, perme-

ability decreases with a smaller grain radius, increasing tortuosity

of the pore space and decreasing porosity. As the specific surface

area of the pores increases, permeability decreases. Here, we

compare four expressions for permeability based on clay content,

grain dimension, tortuosity and mineral composition. All the

expressions somehow contain the Kozeny–Carman (KC) factor

/3=ð1 � /Þ2
, which is obtained on physical grounds, and relies on

fitting parameters related to the geometric characteristics of the

rock and its composition. The Herron model is based on geo-

chemical mineralogy composition. Despite the highly idealized

parameters on which these models are based, the results support the

predictive power of the Kozeny–Carman equation, provided that

proper calibration is performed.

Key words: Permeability, Kozeny–Carman factor, clay con-

tent, grain size, tortuosity, mineralogy.

1. Introduction

Permeability is important in groundwater flow

(Neuzil 1994), hydrocarbon production and CO2

storage. Over the past 30 years, the success of CO2

storage has relied on a good estimation of perme-

ability in the reservoir and particularly on the seal

caprock and overburden to avoid possible leakage

(Savioli et al. 2016). Low permeability is required in

this case, which strongly depends on clay content and

mineralogy. Permeability is also a key factor in levee

breach flood disasters, since levees in a river may

collapse due to the condition of the soils (high-per-

meability zones) that form the embankments (Sinha

et al. 2017).

Fine-grained sediments, mud and its lithified

versions (mudstone and shale), form approximately

70% of the sedimentary basins. The permeability of

shales is several orders of magnitude lower than that

of coarser-grained rocks such as sandstone. There-

fore, shales and even sandstones with a moderate

amount of clay content (shaly sandstones) control the

flow at which fluids move underground. Clay can

reduce porosity, increase tortuosity and block the

pore throats.

The determination of clay content, defined here as

the volume fraction of particles less than 4 lm in

diameter, is required to obtain reliable values of

permeability, since this is strongly correlated with the

grain and pore size distributions. To describe per-

meability, we use Kozeny–Carman type equations

(Kozeny 1927; Carman 1961; Tiab and Donaldson

2012) based on grain size, tortuosity and clay content,

which implicitly involves several minerals, including

kaolinite, illite and smectite. Herron (1987) used

explicit mineralogical information available from

geochemistry to obtain estimates of both porosity and

permeability. He quantified the effects of the minerals

comprising the rock by defining specific weights.

These are positive for quartz and feldspar, negative

for cements such as calcite or other carbonates, and

negative for the clay minerals. The permeability logs

obtained by Herron show good agreement with air

permeability measured on core samples. Recently,

Ma (2015) reviewed permeability models, other than

the Kozeny–Carman equations, based on the power

law and the exponential and polynomial dependence

of porosity. Al Ismail and Zoback (2016) investigated
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the effect of mineralogy in experiments on organic

shale samples, considering mainly clay and calcite

(illite was the predominant clay mineral). The authors

found that shale mineralogy did not show a clear

effect on the magnitude of permeability. However,

caution is required when interpreting permeability

based on the Kozeny–Carman equation, since there is

no one-to-one relation between porosity and perme-

ability, because porosity is invariant under a

homothetic transformation of the pore space (e.g.,

uniform, isotropic stretching), whereas permeability

is not (Bernabé et al. 2003).

One important effect to consider when using

permeability models is that permeability obtained

with gas may yield higher values than that based on

liquids. The difference between gas and fluid per-

meability is due to the Klinkenberg effect (e.g.,

Tanikawa and Shimamoto 2006). This effect is

important at low pressures and is due to the slip flow

of gas at pore walls, which enhances the gas flow,

especially when the pore sizes are very small; thus it

can be important in shales. In this case, the physical

laws leading to the Kozeny–Carman (KC) equation

do not hold, and a correction must be applied.

Here, we consider four models of permeability,

which are generalizations of the Kozeny–Carman

equation that incorporate clay content. The grain radii

and tortuosity, in addition to the KC porosity factor,

are the parameters for three of these models, whereas

the fourth equation is based on mineralogy (Herron

1987). Comparisons among these models and with

experimental data sets are carried out in order to

assess the performance of the permeability

expressions.

2. Permeability Based on Grain Radii and Tortuosity

Permeability can be described by the Kozeny–

Carman equation (see Appendix 1, where a demon-

stration is given). In this section, we present three

different models, based on grain radii, tortuosity and

specific surface area. We assume that the radius of the

sand particles is much greater than the radius of the

clay particles, by at least a factor of 5.

2.1. Model 1

A simple model introduced by Carcione et al.

(2000) assumes that a medium composed of clay and

sand grains of single porosity / and clay content

C has the partial permeability values given in

Eq. (43) (Appendix 2). There is permeability

anisotropy, with the vertical component dominating

the flow. The permeability components are deter-

mined by an analogy with a parallel and series

connections of electrical resistance (horizontal and

vertical component, respectively), as shown in

Fig. 1a, b, respectively, assuming that permeability

is analogous to the inverse of the electrical resistance.

Similarly, this distinction between horizontal and

vertical permeability can be obtained from an anal-

ogy with the Backus average of the shear moduli

parallel and perpendicular to layering (Backus 1962;

Carcione 2014).

The horizontal component is given by

jh ¼ ð1 � CÞjs þ Cjc, which from Eqs. (40) and

(43) does not depend on the clay content and is equal

to the C = 0 curve (regardless of the amount of clay,

the fluid will flow through the less resistant element

of the parallel connection, i.e., mainly through the

sand component). This assumption is too strong and

can give unrealistic values of the permeability

anisotropy for rs � rc, where rs and rc are the radii

of the sand and clay particles, respectively. A

suitable model assumes that the sandy part is affected

by a given fraction of clay, say, a. Then, according to

sand clay

clay

sand clay

α

(a)

(b)

Figure 1
Electrical circuit analogy to obtain the horizontal (a) and vertical

(b) permeability components. In (a) the sandy part is affected by a

clay fraction aC

2582 J. M. Carcione et al. Pure Appl. Geophys.



the electrical circuit shown in Fig. 1a, the horizontal

component is given by

jh ¼ ð1 � CÞ 1 � aC

js

þ aC

jc

� ��1

þCjc: ð1Þ

A value of a = 0.2 yields anisotropy levels in

agreement with experimental data if rs = 50 lm and

rc = 1 lm (Clennell et al. 1999; Adams et al. 2016).

On the other hand, the average (inverse) vertical

permeability of the composite medium satisfies

1

jv

¼ 1 � C

js

þ C

jc

¼ ð1 � /Þ2

a/3
ð1 � CÞ2 þ C2b2
h i

;

ð2Þ

where a ¼ r2
s =45 and b ¼ rs=rc, but in practice they

are used as free parameters obtained from calibration

of available data. These parameters contain infor-

mation about the geometric characteristics of the rock

frame, such as the mean radius of the grains and the

effective tortuosity T of the sand/clay frame network.

Actually, the factor 45 has been obtained in Appendix

2 as 18 T , with T = 2.5, which is an idealization for

spherical grains, but one cannot expect to fit real data

by considering a and b a result of such an ideal

assumption.

2.2. Model 2

The more commonly used model of permeability

is usually given in terms of tortuosity,

j ¼
r2

g/
3

18T ð1 � /Þ2
; ð3Þ

(see demonstration in Appendix 1), where

r�1
g ¼ Cr�1

c þ ð1 � CÞr�1
s ; ð4Þ

is the average grain radius (Dullien 1991), and T is

the tortuosity defined in Eq. (28) and given by

Eqs. (34) and (37) for specific topologies of the pore

space, namely, 3D interpenetrating tubes and solid

particles flowing in a fluid, respectively. Equation (4)

assumes that the densities of the sand and clay par-

ticles are the same.

2.3. Model 3

A well-known model for obtaining the perme-

ability of sand/clay mixtures is that of Marion (1990),

which considers that the two rock components each

have their own porosity, /s and /c, specific surface

area, ss and sc, and tortuosity, T s and T c, respec-

tively, for sand and clay. In sandstone and shaly

sandstone, the clay minerals are located within the

sand pore space, while for shale and sandy shale, clay

is the frame and the sand grains are dispersed.

The expressions for permeability are based on

Eqs. (31), (32) and (37) of Appendix 1, corresponding

to the specific surface area, permeability and tortu-

osity, respectively. We have (Marion 1990),

j ¼ /3

2s2T ; ð5Þ

where

/ ¼ /s � Cð1 � /cÞ; C �/s;
C/c; C [/s;

�
ð6Þ

s ¼
ss þ Csc; C �/s;
ss

1�C
1�/s

þ Csc; C [/s;

�
ð7Þ

T ¼
T s 1 þ C

/s
ðT c � 1Þ

h i
; C �/s;

T c 1 þ T s�1
/s�1

ðC � 1Þ
h i

; C [/s;

8<
: ð8Þ

where

ss ¼
3ð1 � /sÞ

rs

; sc ¼
3ð1 � /cÞ

rc

; ð9Þ

and

T s ¼ 1 � 0:5 1 � 1

/s

� �
; T c ¼ 1 � 0:5 1 � 1

/c

� �
:

ð10Þ

Actually, Marion (1990) gives the equation

j ¼ /3=ðk0T 2s2Þ, where T ¼ l=L is the square root

of the tortuosity defined in the present work [see

Eq. (28) in Appendix 1] and k0 is an empirical con-

stant. Basically, apart from the clay content C, the

free parameters are rs, rc, /s and /c. If we assume

/s ¼ /c, we have the same number of free parame-

ters as model 1, i.e., the radii of the sand and clay

particles. In this case,

Vol. 176, (2019) Effect of Clay and Mineralogy on Permeability 2583



/s ¼
/þC
1þC

; C �/s;
/=C; C [/s:

�
ð11Þ

Note this limitation of Eq. (10): the porosity, and

therefore the tortuosity, is grain-size-independent for

an ordered packing of identical spheres, but this is not

true for a random arrangement of spheres, which is

the case for rocks.

Another approach for obtaining permeability (not

used here) is based on specific surface area s, if

available from laboratory measurements. In this case,

one can avoid using the clay content. The perme-

ability is given by Eq. (31). Surface areas, sm, are

usually given in m2/g (mass normalized) (see Kuila

and Prasad 2013). The volume-normalized surface

area is then s ¼ smq, where q is the density of the

rock.

2.4. Model 4

The Kozeny–Carman equation is based on ideal

geometries of the pore space and solid component.

This is clear in the demonstration given in Appendix

1, when we obtain the specific surface area. The fact

that grains are non-spherical and non-uniform in size

and that the grain packing is non-uniform is not

considered. These issues are all directly or indirectly

related to mineral composition, and it therefore

makes sense that a combination of porosity and

mineral abundance would lead to an improved

permeability estimation.

Clay particles (smectite, kaolinite, montmoril-

lonite, illite, chlorite, etc.) are much smaller in size

than silt particles, even though all soils with particles

less than 60 lm are classified as either silt or clay;

specifically, the silt grain diameter ranges from 4 to 60

lm, and clay less than 4 lm. Feldspars have diameters

similar to those of silt particles (Stevens 1991).

The Herron model (Herron 1987) takes into

account the mineralogical composition instead of

the radii of the particles. The permeability is given by

log10½jðmdarcyÞ� ¼ A þ 3 log10 /� 2 log10ð1 � /Þ
þ
X

i

B0
iMi;

ð12Þ

or

j ¼ /3

ð1 � /Þ2
10Aþ

P
i
B0

iMi ; ð13Þ

where Mi is the weight fraction of each mineral and

B0
i is a constant for each mineral, related somehow to

the radii of the particles,

A ¼ A0 þ 2Fmax; ð14Þ

where A0 is a constant and Fmax is the maximum

feldspar content. The coefficients used by Herron

(1987) are as follows:

Quartz: B0
1 = 0.1

Feldspar: B0
2 = 1

Calcite: B0
3 = -2.5

Kaolinite: B0
4 = -4.5

Illite: B0
5 = -5.5

Smectite: B0
6 = -7.5

The quantity A0 = 4.9 for the area considered by

Herron (1987) (Venezuela, Faja del Orinoco region),

but it has to be calibrated for the specific region. It is

a function of the maximum feldspar content in a

given zone, which reflects the compositional and

textural maturity of the sediment. Herron (1987)

estimated A0 and B0
i from comparisons between air

permeability measurements on cores and mineralogy

abundance values derived from geochemical logging

in the same wells.

Note that Eq. (14) is a Kozeny–Carman equation,

since basically

j / /3

ð1 � /Þ2
:

2.5. Modified Models Including Percolation Porosity

There exists a percolation porosity, /c, below

which the porosity is disconnected and does not

contribute to the flow. The experiments indicate that

/c is of the order of 1–3% (Porter et al. 2013). The

percolation effect can be incorporated into the

Kozeny–Carman relations simply by replacing /
with /� /c. For instance, model (2) is modified as

1

j
¼ ð1 � /þ /cÞ2

að/� /cÞ3
ð1 � CÞ2 þ C2b2
h i

: ð15Þ
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2.6. Results

Figures 2 and 3 show comparisons between

model 1 (vertical permeability) and models 2 and 3,

respectively. Model 3 assumes that /s ¼ /c

[Eq. (11)]. In the first case, the curves are very

similar and differ only at low porosities. As porosity

increases, permeability increases, as expected. Small

amounts of clay content greatly affect the permeabil-

ity. For instance, going from C = 0 to C = 0.2 implies

a two-orders-of magnitude change, from 1 to 10

mdarcy for / = 0.4. On the other hand, the

permeability of model 3 differs substantially from

that of the other models. Essentially, the permeability

of the Marion model has negligible variation when

the clay content is higher than 0.4, providing higher

permeability values than the other models.

Next, we consider 13 Gulf Coast shaly sandstone

samples (Marion 1990) and compare these data with

the results for models 1 and 3. The data are

permeability as a function of clay content by weight,

Cw. The relation to clay (volume) content, C, is

(Marion 1990)

Cw ¼
Cð1�/cÞqc

Cð1�/cÞqcþð1�/sÞqs
; C �/s;

Cð1�/cÞqc

Cð1�/cÞqcþð1�CÞqs
; C [/s;

(
ð16Þ

where qs and qc are the density of the sand and clay

grains, respectively. Inverting for C:

C ¼
Cwð1�/sÞqs

ð1�CwÞð1�/cÞqc
; C �/s;

Cwqs

ð1�/cÞqc�Cw½ð1�/cÞqc�qs�
; C [/s:

(
ð17Þ

(a)

(b)

Figure 2
Permeability versus porosity (a) and clay content (b) for different

values of clay content and porosity, respectively. The black and red

lines correspond to Eqs. (2) and (3), respectively (models 1 and 2).

The radii of the sand and clay particles are rs = 50 lm and rc = 1

lm, respectively

C = 0

C = 1

φ = 0.4

φ = 0.05

(a)

(b)

Figure 3
Permeability versus porosity (a) and clay content (b) for different

values of clay content and porosity, respectively. The black and red

lines correspond to Eqs. (2) and (5), respectively (models 1 and 3).

The radii of the sand and clay particles are rs = 50 lm and rc = 1

lm, respectively
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We consider the values given in Table 3.2 of Marion

(1990), i.e, qs = 2.568 g/cm3, qc = 2.77 g/cm3, /s =

0.32, /c = 0.25, T s = 1.5 and T c = 10. Marion (1990)

takes the specific surface area as a free parameter, but

here we use Eq. (9), i.e., the radii. Also, the additional

free parameter k0 in eq. (3.14) of Marion (1990) (not

reported) is not used here. For the sake of consis-

tency, the porosity and clay content obtained from

model 3 are used for model 1. Figure 4 shows the

permeability as a function of clay content, where the

black and red lines correspond to Eqs. (5) and (2),

respectively. As can be seen, the two models yield

similar results.

A fit of experimental data reported in Chilingar

(1969) is shown in Fig. 5 for different mineral

composition from very coarse sand to clay. The radii

of the sand and clay particles are rs = 150 lm and rc =

5 lm, respectively. The agreement is satisfactory.

Finally, to illustrate the effects of percolation poros-

ity, Fig. 6 shows the results corresponding to Fig. 2

with /c = 0.02. As can be appreciated, the curves

move to the lower permeability values.

Nelson (1994) used the Herron model to obtain

permeability versus porosity and clay content. His

Fig. 21 is reproduced here in Fig. 7, noting that the A

values are not reported in Nelson (1994) (here we

take Fmax = M2) and that the B values used by Nelson

in his eq. (8) are not the same of those reported in his

Fig. 21, which should be B0 [see Herron (1987), his

eqs. (4) and (5)]. The equivalence is given by

log10 exp
P

BiMið Þ½ � ¼
P

B0
iMi or Bi ¼ 2:3026B0

i.

Figure 7 also shows a curve (dotted line) obtained

with our Eq. (2) for case 4, where C = 0.16

(kaolinite), using rs = 50 lm and rc = 5 lm. This

curve coincides with that of case 4. To obtain it, we

have converted weight fraction to volume fraction

using the equations in Appendix 3. The densities of

the different minerals are as follows: qs = 2.65 g/cm3,

qfp = 2.62 g/cm3, qc = 2.71 g/cm3, qk = 1.58 g/cm3,

qil = 2.7 g/cm3, qsm = 2.4 g/cm3, qch = 2.8 g/cm3, for

quartz, feldspar, calcite, kaolinite, illite, smectite and

chlorite, respectively.

Herron B0
i values are not universal, and calibration

is required for each area. The following is an

example: Let us consider the experimental values of

Fig. 5 in Mesri and Olson (1971), which represent the

void ratio, e, as a function of the hydraulic perme-

ability, K, for three sodium clays in water, i.e.,

smectite, illite and kaolinite. Illite is about 200 times

more pervious than smectite, and kaolinite is about

200,000 times more pervious, at the same void ratio.

Porosity and void ratio are related as / ¼ e=ð1 þ eÞ,
while the absolute permeability is

j ¼ gwK

gqw

;

where gw = 0.001 Pa s is the viscosity of water, qw =

1000 kg/m3 is water density, and g = 9.86 m/s2 is the

gravity constant. We use Eq. (12) for each clay, in the

form

log10½jðmdarcyÞ� ¼ A þ 3 log10 /� 2 log10ð1 � /Þ
þ B0;

ð18Þ

where B0 is the Herron coefficient. Figure 8 shows the

match between the experimental values and the

results of Eq. (18) with A = 4.3, B0 = - 7.5 (smectite),

B0 = - 5.5 (illite), and B0 = - 3 (kaolinite), which are

quite similar to Herron values.

In the following examples, we adopt Herron B0

values. Next, we consider ten wells whose data are

given in Tables 1 and 2 of Liu et al. (2016), where

the illite/smectite mixed layer has been decomposed

into illite and smectite. Permeability has been

Figure 4
Permeability versus clay content. The black and red lines

correspond to Eqs. (5) (model 3) and (2) (model 1), respectively,

and the dots to the experimental data (Marion 1990). The radii of

the sand and clay particles are rs = 70 lm and rc = 1 lm in the first

case (model 3), and rs = 70 lm and rc = 0.5 lm in the second case

(model 1), respectively

2586 J. M. Carcione et al. Pure Appl. Geophys.



measured with water. Plagioclase is a series of

tectosilicate (framework silicate) minerals within

the feldspar group, so we included this mineral in

the feldspar composition. Table 1 here shows the

mineral composition, porosity and permeability at the

ten wells. We take A0 = 3.5, Fmax = feldspar weight

Figure 5
Comparison with experimental data (Chilingar 1969) using Eq. (2) (model 1). The radii of the sand and clay particles are rs = 150 lm and rc =

5 lm, respectively

Vol. 176, (2019) Effect of Clay and Mineralogy on Permeability 2587



percent (see Table 1) divided by 100 and assume that

chlorite has a coefficient B0
7 = - 6. Figure 9

compares the experimental data to the model results,

where it can be seen that the match with the Herron

model is satisfactory. The blue curve corresponds to

Eq. (2), where we have converted weight fractions to

volume fractions and assumed that clay content is

given by the sum of the kaolinite, illite, smectite and

chlorite fractions. In this case, rs = 50 lm and rc = 0.9

lm.

Klimentos and McCann (1990) provide a com-

plete set of petrographic data for a shaly sandstone

(their Table 2, rock sample A6BP), where we con-

sider the X-ray diffraction values. Porosity is 15.4%,

permeability is 52.4 mdarcy, the average (clastic)

grain size is 330 lm, and the clay grain size is less

than 2 lm. The volume fractions are quartz 53%,

feldspar 32%, kaolinite 13.5% and illite 1.5%, so that

the clay content is C = 15% (kaolinite plus illite). On

the basis of the mineral densities indicated above, the

weight fractions are M1 = 56.2%, M2 = 33.6%, M4 =

8.5% and M5 = 1.7%. Model 1 provides a perfect fit

with rs = 330 lm and rc = 3.2 lm, which are

reasonable values given the highly idealized assump-

tions. On the other hand, the Herron model yields a

perfect fit with A0 = 3.42.

Finally, we consider the data of Backeberg et al.

(2017). Table 2 shows the composition of samples #2

and #4 given in their Table 1, together with the

porosity, permeability and Herron coefficients B0.

The reported permeability was measured with water;

surprisingly, the authors obtained a lower value for

argon permeability, in contrast to the Klinkenberg

effect (e.g., Tanikawa and Shimamoto 2006). In order

to use the Herron equation (12), the volume compo-

sition must be converted to solid volume composition

and then to weight composition using Eq. (48). The

B0 values of quartz, calcite, illite, kaolinite and

Figure 6
Permeability versus porosity for different values of clay content.

The black and red lines correspond to Eqs. (2) and (3), respectively

(models 1 and 2). The radii of the sand and clay particles are rs =

50 lm and rc = 1 lm, respectively. These curves are affected by a

percolation porosity /c = 0.02 (compare to Fig. 1, where the

percolation porosity is zero)

Figure 7
Permeability versus porosity for different mineralogical composi-

tion, using Eq. (12) (model 4). The six cases are as follows: case 1:

M1 = 0.9 and M2 = 0.1; case 2: M1 = 1; case 3: M1 = 0.9 and M3 =

0.1; case 4: M1 = 0.9 and M4 = 0.1; case 5: M1 = 0.9 and M5 = 0.1;

case 6: M1 = 0.9 and M6 = 0.1. The dotted curve obtained from

Eq. (2) (model 1) coincides with that of case 4. The radii of the

sand and clay particles in Eq. (2) are rs = 50 lm and rc = 5 lm,

respectively

Figure 8
Comparison between experimental data (square symbols, from

Mesri and Olson 1971) and the results of the Herron model (model

4) [solid circles, Eq. (18)] for three clays

2588 J. M. Carcione et al. Pure Appl. Geophys.



smectite in Table 2 are taken from Herron (1987).

Plagioclase and muscovite are treated as feldspar, and

dolomite, pyrite and trace minerals as calcite, since

they tend to block the flow. The organic matter

[kerogen as reported by Backeberg et al. (2017)] is

part of the pore space, which was obtained with the

QEMSCAN measurement (Quantitative Evaluation

of Minerals by SCANning electron microscopy), to

be consistent with the reported volume composition.

With the values given in Table 2, we can obtain a

perfect fit of the experimental permeability values

with Eqs. (2) and (12), by setting for sample #2: rs =

50 lm, rc = 0.044 lm, A0 = 2.65, Fmax = 0.0862;

sample #4: rs = 50 lm, rc = 0.014 lm, A0 = 1.68,

Fmax = 0.0891, where Fmax is the feldspar proportion

given by the sum of the plagioclase and muscovite

proportions. Clay content for Eq. (2) is the sum of the

illite, kaolinite and smectite proportions, after proper

normalization. Bulk densities of 2.52 g/cm3 and 2.53

g/cm3 are obtained, against the measured values of

2.52 g/cm3 and 2.6 g/cm3, respectively, for samples

#2 and #4. Figure 10 shows a fit by assuming a

common value rc = 0.02 lm for model 1 and A0 = 2

for the Herron model. The two models yield the same

result.

Another technique introduced by Herron et al.

(1998, 2002) evaluates permeability based on the

lambda parameter, which is a measure of the effective

diameter of dynamically connected pores, and which

can be approximated from the surface-to-pore-vol-

ume ratio. The surface-to-pore-volume ratio can be

computed from mineralogy data. The other required

input data are the total porosity, the matrix density

and Archie’s cementation exponent.

Methods based on the Kozeny–Carman equation

require defined values of porosity, grain radii, surface

area, etc., in order to be applied. Alternative

techniques, such as neural networks, do not require

these data. Regarding hydrocarbon exploration, sev-

eral works using this technique have been published.

Helle et al. (2001) and Qadrouh et al. (2019), for

instance, have predicted porosity and permeability

from wireline logs using artificial neural networks.

The two techniques can be integrated to provide more

reliable results.

Table 2

Mineral composition (volume%) and properties (Backeberg et al.

2017)

Sample #2 #4 q (g/cm3) B0

Quartz 11.2 9.6 2.65 0.1

Plagioclase 2.9 3.6 2.62 1

Dolomite 2.9 9.6 2.9 - 2.5

Calcite 0.6 1.3 2.71 - 2.5

Muscovite 6.3 5.6 2.81 1

Pyrite 1.3 1.6 4.8 - 2.5

Trace minerals 11 4 2.6 - 2.5

Porous space 1.5 3.4 1.7 –

Illite 49.8 49 2.7 - 5.5

Kaolinite 8.7 8.6 1.58 - 4.5

Smectite 3.8 3.7 2.4 - 7.5

/ (volume%) 1.5 3.4 – –

j (mdarcy) 0.35 0.4 – –

Table 1

Mineral composite, porosity and permeability for ten wells of the Zhenbei area (China) (Liu et al. 2016)

Well Quartz Feldspar Calcite Kaolinite Illite Smectite Chlorite / j

Z-1 36 20 25 2.47 7 0.98 8.55 10.23 0.385

Z-2 38 22 18 1.8 10 1.61 8.58 7.84 0.184

Z-3 43 20 17 2.8 8 0.6 8.6 9.13 0.327

Z-4 30 23 22 1.5 14 2.75 6.75 6.637 0.121

Z-5 42 24 12 2.2 10.2 1.9 7.7 7.06 0.149

Z-6 45 21 13 2.31 10 1.8 6.9 8.46 0.251

Z-7 36 23 18 2 11.9 1.28 7.82 8.06 0.214

Z-8 42 19 20 3 7 1.4 7.6 9.85 0.352

Z-9 36 25 15 0.5 14.1 2.7 6.72 6.837 0.132

Z-10 40 20 17 3.2 10.3 1.7 7.8 7.11 0.163

Mineral composition [weight%]; porosity [volume%]; j [mdarcy]
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3. Conclusions

We have compared four expressions for perme-

ability of the Kozeny–Carman family of equations,

which are based on physical parameters including

porosity, grain and pore size, tortuosity and mineral

composition. This aspect makes this equation pre-

dictive, unlike simple polynomial fittings. The use of

geochemical mineralogy represents a significant

improvement in formation characterization over that

of geophysical log data alone. The model to be used

for a specific case history depends on the data for

calibration. Models based on grain radii and/or sur-

face area and clay content are the most common. If,

in addition, mineral composition of clays is available,

the Herron model provides a better estimation of

permeability. All models can be applied to sandstones

and shales and mixed composition of sand and clay.

Although the geometric characteristics of the porous

rock are idealized, the equations can be used, with

proper calibration, to obtain reliable estimates of

permeability. The examples presented here show that

this estimation is possible.

Appendix 1: Demonstration of the Kozeny–Carman

Equation

Let us assume a cylindrical element of Newtonian

fluid of length L and radius r flowing in a pipe of

radius r0 [ r along the x axis (see Fig. 11). The

pressure difference between the two faces is dp. The

pressure p and viscous force s balance (the element is

not accelerating). The pressure acts on the surface of

the faces and the viscous force acts on the lateral

surface given by pr2 and 2prL, respectively. Then,

the balance is pr2p � ðp � dpÞpr2 � 2prLs ¼ 0; or

dp

L
¼ 2sr: ð19Þ

Since dp does not depend on r, it is s / r (s vanishes

at r = 0).

The shear stress obeys a dashpot-like constitutive

equation,

s ¼ �gorv; ð20Þ

where v is the flow velocity, g is the fluid viscosity, r

is the radial coordinate and or denotes the partial

Figure 9
Comparison between experimental data (black, Liu et al. 2016), the

results of the Herron model (model 4) [red, Eq. (12)] based on

mineral composition, and those of Eq. (2) (blue)

L

r

r
0

π r2p π r2(p-dp)

2 π r L τ

x

Figure 11
Initial reference model for obtaining permeability as a function of

porosity. Balance of forces on a cylindrical element of fluid in a

pipe

2
4

Figure 10
Comparison between experimental data (symbols) (Backeberg

et al. 2017) and the results of Eqs. (2) (model 2, dashed line) and

(12) (solid line, Herron, model 4). We assume that rc = 0.02 lm for

model 1 and A0 = 2 for the Herron model
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derivative with respect to r. Since the velocity

decreases from the pipe centre to zero at the pipe

wall, we need to include the minus sign (orv\0 gives

s[ 0). Combining Eqs. (19) and (20) yields

orv ¼ �dp=ð2gLÞ, which after integration gives

v ¼ � dp

4gL

� �
r2 þ c; ð21Þ

where c is a constant. Since vðr0Þ ¼ 0 (the fluid is

welded to the pipe at the wall), we have

v ¼ vmax 1 � r2

r2
0

� �
; vmax ¼ dp r2

0

4gL
: ð22Þ

Integration of the velocity profile on the transverse

section of the pipe yields the flow rate,

Q ¼
Z r0

0

prvðrÞdr ¼ 1

2
pvmaxr2

0 ¼ pr4
0dp

8gL
; ð23Þ

where we used Eq. (22). This is the so-called Hagen–

Poiseuille law.

Appendix 1.1: Permeability

If S is the cross-sectional area of a porous sample

and g is the dynamic viscosity, the permeability j
obeys

Q ¼ S
j
g

dp

L
; ð24Þ

while porosity is given by

/ ¼ pr2
0L

SL
¼ pr2

0

S
: ð25Þ

Using this equation and comparing Eqs. (23) and

(24), we obtain

j ¼ /r2
0

8
: ð26Þ

If the pipe forms an angle h with the x-axis and its

length is l, i.e., sin h ¼ L=l, the porosity is

/ ¼ pr2
0l

SL
¼ pr2

0

ffiffiffiffi
T

p

S
; ð27Þ

where

T ¼ l

L

� �2

¼ 1

sin2 h
; ð28Þ

is the tortuosity. Tortuosity is also defined as l/L . The

definition here is such that the resistivity formation

factor F is almost proportional to T (Tiab and Don-

aldson 2012; eq. 3.21). Now, the pressure gradient

becomes dp=l ¼ dp=ðL
ffiffiffiffi
T

p
Þ, and it is easy to show

that the permeability becomes

j ¼ /r2
0

8T : ð29Þ

This equation can be general if r0 is an effective pore

radius and T � 1 can be obtained from experiments.

The specific surface area s is defined as the area of

the pore, 2pr0l, divided by the volume of the sample,

SL. Using Eq. (25), it is

s ¼ 2/
r0

: ð30Þ

Then

j ¼ /3

2s2T ð31Þ

(e.g., Chillingar 1963).

Let us consider a sphere of radius rg (grain),

embedded in a cube of length 2rg. The porosity obeys

1 � / ¼ ð4=3Þpr3
g=V , where V ¼ 8r3

g is the cube

volume. The surface area is s ¼ 4pr2
g=V , where the

numerator is the pore-space area (area of the sphere).

Then,

s ¼ 3ð1 � /Þ
rg

ð32Þ

and (31) becomes

j ¼
r2

g

18T
/3

ð1 � /Þ2
; ð33Þ

which is the Kozeny–Carman equation (Kozeny

1927; Carman 1961).

Appendix 1.2: Expressions of Tortuosity

The Kozeny equation (31) can be recast as

j ¼ c/3=s2, where c is the Kozeny factor (Fabricius

et al. 2007). For straight 3D interpenetrating tubes,

the tortuosity is given by

T ¼ 2 þ 2 cos
1

3
arccos

64/
p3

� 1

� �
þ 4

3
p

� �
; ð34Þ
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(Mortensen et al. 1998), where T decreases from 3 to

2 as / increases from 0.05 to 0.5.

A simple expression of tortuosity for grains was

obtained by Berryman (1980) in the framework of

Biot’s theory of poroelasticity. Nelson (1988) shows

that the Biot effective densities are

q11 ¼ ð1 � /Þqs þ /qfðT � 1Þ;
q12 ¼ �/qfðT � 1Þ;
q22 ¼ /qfT ;

ð35Þ

where qf and qs are the fluid and grain densities (see

also Carcione (2014) for a complete demonstration).

Interpreting q11 as

q11 ¼ ð1 � /Þðqs þ cqfÞ; ð36Þ

where cqf is the induced mass due to the oscillations

of the solid particles in the fluid (Lamb 1945), we

obtain

T ¼ 1 � c 1 � 1

/

� �
: ð37Þ

For spherical grains (c = 1/2), T decreases from 10 to

1.5 as / increases from 0.05 to 0.5.

Appendix 2: Sand and Clay Partial Permeability

To obtain the permeability of the composite

medium (sand–clay mixture), we consider an ideal-

ized situation wherein the solid part can be modelled

as a dilute concentration of sand and clay spherical

particles in the fluid. This situation is realized in the

high-porosity limit (/ ! 1). Since the concentration

is dilute, each particle can be considered indepen-

dently of the others. The viscous resistance force for a

single sphere of radius r moving in a flow of average

velocity v and a fluid viscosity gf obeys Stokes’s law

F ¼ 6pgfvr. Suppose that in a unit volume we have

nm particles of radius rm, m ¼ 1 (sand grains) or 2 (clay

particles). The viscous resistance to the flow by par-

ticles of type m can then be written as

Fm ¼ 6pgf vnmrm: ð38Þ

The density numbers nm can be thought of as the total

volume of the particles of type m divided by the

volume of a single particle,

nm ¼
/m

4
3
pr3

m

; ð39Þ

where

/1 ¼ ð1 � /Þð1 � CÞ; and /2 ¼ ð1 � /ÞC;

ð40Þ

are the sand and clay proportions, with C the clay

content.

Substitution of (39) into Eq. (38) yields

Fm ¼
9

2
gfv/mr

�2
m ;

or, for the Biot viscous resistance coefficient,

bm ¼ Fm
/2

v
¼ 9

2
gf/

2/mr
�2
m ; ð41Þ

(Biot 1962; Carcione 2014). The quantity

jm ¼
2

9

r2
m

/m
; ð42Þ

can be thought of as a partial permeability of the

matrix formed by particles of type m. Hence,

bm ¼ gf/
2=jm, as expected (Biot 1962).

Equation (42) provides an explicit expression for

the resistance coefficients in the high-porosity limit.

To be consistent with the Kozeny–Carman equations

(33), we divide the expression for permeability by the

factor 10ð1 � /Þ=/3 (see Appendix 1), which corre-

sponds to a tortuosity of 2.5. Then,

jm ¼
r2
m/

3

45/mð1 � /Þ : ð43Þ

Appendix 3: Conversion from Weight Fraction

to Volume Fraction and Vice Versa

Assume n components, each of density qi and

weight fraction Mi. Weight fraction is defined as

Mi ¼
qiviP
i qivi

; ð44Þ

where vi is the volume of each component. Volume

fraction is defined as

Vi ¼
viP
i vi

: ð45Þ
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Then, the ratio of the total volume v ¼
P

i vi to the

total mass m ¼
P

i qivi is

v

m
¼
X

i

Mi

qi

: ð46Þ

It is straightforward to show that

Vi ¼
Mi

qi

X
i

Mi

qi

 !�1

; ð47Þ

and

Mi ¼
qiViP
i qiVi

: ð48Þ
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