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Abstract—We describe a first principles methodology to

evaluate statistically the hazard related to non-stationary seismic

sources like induced seismicity. We use time-dependent Guten-

berg–Richter parameters, leading to a time-varying rate of

earthquakes. We derive analytic expressions for occurrence rates

which are verified using Monte Carlo simulations. We show two

examples: (1) a synthetic case with two seismic sources (back-

ground and induced seismicity); and (2) a recent case of induced

seismicity, the Horn River Basin, Northeast British Columbia,

Canada. In both cases, the statistics from the Monte Carlo simu-

lations agree with the analytical quantities. The results show that

induced seismicity affects seismic hazard rates but that the exact

change greatly depends on both the duration and intensity of the

non-stationary sequence as well as the chosen evaluation period.

The developed methodology is easily extended to handle spatial

source distributions as well as ground motion analysis in order to

generate a complete methodology for non-stationary probabilistic

seismic hazard analysis.

Key words: Non-stationary seismicity, time-dependent

Gutenberg–Richter parameters, Monte-Carlo simulations, induced

seismicity, Horn River Basin, Canada.

1. Introduction

Several studies (Ellsworth 2013; Atkinson et al.

2015; Petersen et al. 2016; Atkinson et al. 2016; van

der Baan and Calixto 2017) have shown increased

seismicity in geologically stable basins in North

America, thought to be associated with hydraulic

fracturing treatments and/or salt water disposals.

Some of these studies have delineated methods to

assess the hazard for induced events, based on mod-

ified versions of the traditional probabilistic seismic

hazard analysis (PSHA). Atkinson et al. (2015) made

a preliminary hazard evaluation for the Fox Creek

area (Alberta), based on earthquake catalogs that

contain the induced events, Ground Motion Predic-

tion Equations (GMPEs) suited for induced

seismicity, while assuming stationarity as a first

approach. Petersen et al. (2016, 2017) elaborate a one

year hazard forecast for the central and eastern Uni-

ted States, based on catalogs with recorded induced

events, together with different sets of GMPEs.

However, these studies are limited to short-term

hazard predictions due to the assumption of temporal

stationarity, which presumes that the induced seis-

micity sequence remains of unchanged intensity

during both the observation and forecasting period.

Conversely, Langenbruch and Zoback (2016) and

van der Baan and Calixto (2017) show that the rate of

earthquakes in Oklahoma first strongly increased but

now greatly subsided in line with salt-water disposal

volumes. It is evident that the induced seismicity has

a non-stationary behaviour as it is strongly dependent

on human activities. The traditional PSHA, which

assumes stationarity, has to be modified in order to

properly assess the hazard due to changing seismicity

rates over time.

The Monte Carlo simulation method for PSHA

(Musson 2000; Assatourians and Atkinson 2013;

Bourne et al. 2014, 2015) is flexible enough to deal

efficiently with non-stationary seismicity. This

method consist of two main steps: (1) generation of

synthetic earthquake catalogs and (2) generation of

ground motion catalogs by using ground motion

prediction equations (GMPEs). Even though tradi-

tional PSHA has been previously adapted to allow for

time-dependency [e.g. Convertito et al. (2012)], the

Monte Carlo method for PSHA has several advan-

tages over traditional PSHA based on analytic
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expressions (Cornell 1968), including its adaptability

to different seismicity models, its ability to handle

uncertainty, and its ease of implementation to com-

pute a variety of hazard statistics (Musson 2000). One

of the shortcomings of the Monte Carlo simulation

method is, however the increased number of calcu-

lations and thus increased computation times,

compared with direct evaluation of analytic

equations.

In this study we develop a methodology based on

Monte Carlo simulations for the generation of non-

stationary earthquake catalogs using time-dependent

Gutenberg–Richter parameters. We also derive ana-

lytical expressions for various occurrence likelihoods

such as annual rates of exceedance, in the case of

non-stationarity. We verify these expressions using

Monte Carlo simulations. These simulated catalogs

are intended to be used in further PSHA steps to

develop a complete methodology for non-stationary

seismic hazard analysis including the assessment of

expected ground motion. To exemplify the applica-

bility of the developed methodology and evaluate the

implications of non-stationary seismicity in the haz-

ard analysis, we study two examples. The first

example is a synthetic case with two seismic sources

(background and induced) and arbitrary seismic

parameters. The second example comprises a recent

case of induced seismicity: the Horn River Basin,

Northeast British Columbia, Canada.

2. Theory

2.1. Non-Stationary Magnitude–Frequency

Distributions

We assume that the magnitude-frequency distri-

bution of earthquakes is described by the Gutenberg–

Richter (GR) distribution given by (Gutenberg and

Richter 1944):

logðNÞ ¼ a � bm; ð1Þ

where N is the number of earthquakes with a mag-

nitude greater than m. The b-value indicates the ratio

of small and large magnitude events and the a-value

is related to the number N0 of earthquakes with a non-

negative magnitude per unit time duration (e.g.,

month or year). The latter is given by:

N0 ¼ 10a: ð2Þ

Equation 1 can be used to compute the discrete

cumulative distribution function (CDF) as Baker

(2008):

FMðmÞ ¼ 1 � 10�bðm�MminÞ

1 � 10�bðMmax�MminÞ
; ð3Þ

where FMðmÞ denotes the cumulative distribution

function for magnitude m, Mmax is the maximum

magnitude and Mmin is the minimum magnitude

considered for the synthetic catalog. Taking the

derivative, the probability density function (PDF) can

be computed. The discrete probability for a magni-

tude m to occur within the range ½mj, mjþ1Þ, a

magnitude bin, is given by the subtraction of the two

boundary CDF values (Baker 2008):

Pðmj �m\mjþ1Þ ¼ FMðmjþ1Þ � FMðmjÞ; ð4Þ

with mj and mjþ1 respectively the lower and upper

magnitude and j is an integer index to create mag-

nitude bins. To calculate the rate of earthquakes

kðmj �m\mjþ1Þ per unit time duration for a mag-

nitude bin, we multiply the probability of occurrence

Pðmj �m\mjþ1Þ of that magnitude bin, Eq. 4, by the

total expected number of earthquakes NðMmin �m

�MmaxÞ per unit time duration in the range

m ¼ ½Mmin;Mmax�, yielding:

kðmj �m\mjþ1Þ ¼ Pðmj �m\mjþ1ÞNðMmin �m�MmaxÞ;

ð5Þ

The expected number of earthquakes

NðMmin �m�MmaxÞ per unit time duration in the

range m ¼ ½Mmin;Mmax� is derived from the Guten-

berg-Richter relation, Eq. 1, as:

NðMmin �m�MmaxÞ ¼ 10a�bMmin � 10a�bMmax : ð6Þ

If the time unit is a year, then kðmj �m\mjþ1Þ
and NðMmin �m�MmaxÞ refer to the annual rate of

earthquakes for a magnitude bin and the annual

number of earthquakes in the range m ¼ ½Mmin;Mmax�,
respectively.

Generally the earthquake rate kðmj �m\mjþ1Þ,
Eq. 5, is assumed to be stationary (that is, time-

2300 M. Reyes Canales and M. van der Baan Pure Appl. Geophys.



invariant). In this case the intercept a and slope b in

the GR distribution, Eq. 1, are constant. For non-

stationary sequences the rate kðmj �m\mjþ1; tÞ is

still given by Eqs. 5 and 6, but now the GR

parameters, a(t) and b(t), are understood to vary with

time t, that is:

kðmj �m\mjþ1; tÞ ¼ Pðmj �m\mjþ1; tÞ
NðMmin �m�Mmax; tÞ;

ð7Þ

where the expected number of earthquakes

NðMmin �m�Mmax; tÞ per unit time duration in the

range m ¼ ½Mmin;Mmax�, is redefined as:

NðMmin �m�Mmax; tÞ ¼ 10aðtÞ�bðtÞMmin � 10aðtÞ�bðtÞMmax :

ð8Þ

Similar expressions hold for Eqs. 3 and 4 to

compute the probability of occurrence of a magnitude

bin Pðmj �m\mjþ1Þ in a time-varying frame:

Pðmj �m\mjþ1; tÞ ¼ FMðmjþ1; tÞ � FMðmj; tÞ; ð9Þ

where FMðmÞ is redefined as:

FMðm; tÞ ¼ 1 � 10�bðtÞðm�MminÞ

1 � 10�bðtÞðMmax�MminÞ
: ð10Þ

The considered Mmin and Mmax magnitudes in

Eqs. 8 and 10 are however kept fixed. These non-

stationary earthquake rates will be used in the

generation of synthetic earthquake catalogs and to

verify the occurrence statistics.

2.2. Poisson Distribution and Derived Statistical

Quantities for the Seismic Hazard Analysis

The Poisson distribution describes the number of

events within a certain time interval for stationary

earthquake rates, and it has been traditionally

assumed to describe the temporal distribution of

earthquakes (Cornell 1968; Assatourians and Atkin-

son 2013; Baker 2013; Anagnos and Kiremidjian

1988). The stationary Poisson distribution is defined

as (Cornell 1968):

P½N ¼ n; ta; tb� ¼
knðtb � taÞn

e�kðtb�taÞ

n!
; ð11Þ

where P½N ¼ n; ta; tb� is the probability of n occur-

rences happening in a time interval Dt ¼ tb � ta, for

start and end times ta and tb respectively, and k is the

rate of occurrence of events per unit time duration.

By definition 0! ¼ 1. Note that Eq. 11 only depends

on the time interval Dt ¼ tb � ta, instead of the

individual start and end times. For the stationary case,

k is equivalent to the rate of earthquakes

kðmj �m\mjþ1Þ per unit time duration for a mag-

nitude bin, Eq. 5. Thus, kðtb � taÞ equals the number

of events of this magnitude bin within the considered

time interval. The probability of at least one event

happening in a time interval P½N [ 0; ta; tb� is defined

as (Baker 2013):

P½N [ 0; ta; tb� ¼ 1 � e�kðtb�taÞ: ð12Þ

The non-stationary Poisson model has a rate of

occurrence that varies with time. In this case, we use

the mean mkðta; tbÞ of the time-dependent rate,

instead of a constant rate of occurrence. The non-

stationary Poisson distribution is defined as (Sigman

2013):

P½N ¼ n; ta; tb� ¼
mn

kðta; tbÞðtb � taÞn
e�mkðta;tbÞðtb�taÞ

n!
;

ð13Þ

where mkðta; tbÞ is the mean of the time-varying rate

of occurrence kðtÞ in the time interval t ¼ ½ta; tb�,
defined as (Sigman 2013):

mkðta; tbÞ ¼
R tb

ta
kðsÞds

ðtb � taÞ
: ð14Þ

For instance, kðtÞ could be equivalent to the time-

varying rate of earthquakes kðmj �m\mjþ1; tÞ per

unit time duration for a magnitude bin, Eq. 7, and

mkðta; tbÞ results in the mean rate of earthquakes

mkðmj �m\mjþ1; ta; tbÞ for a magnitude bin in the

time interval Dt ¼ tb � ta. kðtÞ could also be the rate

of earthquakes kðMmin �m�Mmax; tÞ per unit time

duration for the entire range m ¼ ½Mmin;Mmax�, that

is:

kðMmin �m�Mmax; tÞ ¼ PðMmin �m�Mmax; tÞ
NðMmin �m�Mmax; tÞ;

ð15Þ

where NðMmin �m�Mmax; tÞ is given by Eq. 8 and

PðMmin �m�Mmax; tÞ is a modification of Eq. 9,

resulting in:
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PðMmin �m�Mmax; tÞ ¼ FMðMmax; tÞ � FMðMmin; tÞ:
ð16Þ

Replacing kðtÞ by kðMmin �m�Mmax; tÞ in

Eq. 14, mkðta; tbÞ results in the mean rate of earth-

quakes mkðMmax �m�Mmin; ta; tbÞ for the entire

range m ¼ ½Mmin;Mmax�, in the time interval

Dt ¼ tb � ta.

Analogous to Eq. 12, the probability of at least

one event for the non-stationary Poisson distribution

is defined as:

P½N [ 0; ta; tb� ¼ 1 � e�mkðta;tbÞðtb�taÞ; ð17Þ

The non-stationary Poisson distribution, Eq. 13, is

also applicable if multiple independent sequences

occur such as a constant background seismicity and

non-stationary induced seismicity. In this case the

rate kðtÞ in Eq. 14 to compute the mean rate of

occurrence mkðta; tbÞ simply becomes the sum of the

rates of all sequences, that is:

mk;totðta; tbÞ ¼
R tb

ta
ðkbgðsÞ þ kindðsÞÞds

ðtb � taÞ
; ð18Þ

where the background and induced rate of earth-

quakes are given by kbgðtÞ and kindðtÞ respectively.

Eqs. 11–18 can be used to compute analytic expec-

tations given known or estimated (non-)stationary GR

magnitude-frequency distributions. For instance,

Eqs. 12 and 17 can be used to determine the likeli-

hood that an event with a magnitude between 4.5 and

5.5 occurs in the next five years.

The rate of exceedance kexcðm�mj; tÞ per unit

time duration for a magnitude level is another useful

statistical variable for seismic hazard analysis. It

represents the number of events at time t in excess of

a certain magnitude per unit time duration. It is

defined as:

kexcðm�mj; tÞ ¼ Pðmj �m�Mmax; tÞNðMmin �m�Mmax; tÞ;

ð19Þ

where NðMmin �m�Mmax; tÞ is given by Eq. 8, and

Pðmj �m�Mmax; tÞ is the time-varying probability of

occurrence of a magnitude m occurring in the range

m ¼ ½mj;Mmax�, that is:

Pðmj �m�Mmax; tÞ ¼ FMðMmax; tÞ � FMðmj; tÞ:
ð20Þ

The cumulative distribution function FM is again

given by Eq. 10. If required, we can define a separate

rate of exceedance per unit time duration for the

background seismicity kexc;bg and the induced seis-

micity kexc;ind.

Equations 19 and 20 are extensions of Eqs. 4, 5

and 7 for the rates of events within a single magni-

tude bin. It is possible to define a mean rate of

exceedance mk;excðm�mj; ta; tbÞ for a magnitude

level in a time interval Dt ¼ tb � ta, by inserting the

appropriate exceedance rate kexcðm�mj; tÞ into

Eq. 14. Note also that by inserting the mean rate of

exceedance mk;excðm�mj; ta; tbÞ into Eq. 17, and then

inverting the resulting expression, we obtain:

mk;excðm�mj; ta; tbÞ ¼
� lnð1 � P½N [ 0; ta; tb�Þ

tb � ta

:

ð21Þ

Equation 21 is used to relate the probability

P½N [ 0; ta; tb� of at least one event to exceed a

magnitude m in a time interval ½ta; tb� to a mean

annual rate of exceedance mk;excðm�mj; ta; tbÞ. This

is useful since probability P½N [ 0; ta; tb� is often

provided in seismic hazard analyses as will be shown

later. This expression is valid for stationary and non-

stationary sequences. However, for non-stationary

sources, the time interval ½ta; tb� has to be identical for

both quantities.

If the GR parameters have known uncertainties

then it is possible to compute upper, lower and

middle (average) curves, reflecting for instance one

times the standard deviation. This will be described in

more detail in the implementation section.

2.3. Generation of Synthetic Earthquake Catalogs

Using the Monte Carlo Method

The quantities shown previously can also be

obtained from synthetic earthquake catalogs by

counting, creating simultaneously a verification pro-

cedure to ensure all computations are correct. On the

other hand, the generation of these synthetic earth-

quake catalogs are the first step in the PSHA
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methodology using the Monte Carlo simulation

method.

The generation of synthetic earthquake catalogs

using the Monte Carlo method can be summarized in

two main steps: (1) simulation of a temporal point

process to obtain event origin times; (2) simulation of

earthquake magnitudes. For the non-stationary case,

the simulation of temporal point process is given by

the thinning method for a non-stationary Poisson

process (Sigman 2013; Zhuang and Touati 2015).

This method provides the event origin times of the

synthetic events, in the context of non-stationarity.

The simulation of a stationary Poisson process is

performed by applying Monte Carlo sampling to the

inverse cumulative distribution function (CDF) of the

Poisson distribution with constant rate k (Zhuang and

Touati 2015):

s ¼ � lnðrÞ
k

; ð22Þ

where s is a random temporal variate, k is the rate of

occurrence, and r is a random number obtain from a

uniform distribution between [0,1]. In order to gen-

erate a sequence of events in the time frame ½ta; tb�,
we define the following algorithm:

Algorithm 1: Simulation of event times of a

stationary Poisson process with rate k between times

ta and tb (Zhuang and Touati 2015):

1. Set t ¼ ta, K ¼ 0.

2. Generate r.

3. t ¼ t þ �lnðrÞ
k . If t� tb, then stop.

4. Set K ¼ K þ 1 and set tK ¼ t.

5 Go to step 2

where tK is the vector that contains the desired event

origin times and K the number of event origin times.

However, for the thinning Poisson process to handle

non-stationary sequences, an extra ’rejection’ step is

added and the rate of occurrence of events k is a

function of time.

For the thinning process, we simulate a stationary

Poisson process at rate k�, where k� �maxðkðtÞÞ. The

rate k� is larger than needed for the actual process, so

for each simulated time arrival, we independently

generate another random number r to decide whether

to keep it or reject it. If r � kðtÞ=k�, we keep the

arrival time (Sigman 2013).

Algorithm 2: Simulation of event times of a non-

stationary Poisson process with rate kðtÞ between

times ta and tb (Sigman 2013; Zhuang and Touati

2015):

1. Consider k� such that k� �maxðkðtÞÞ.
2. Set t ¼ ta, K ¼ 0.

3. Generate r.

4. t ¼ t þ �lnðrÞ
k� . If t� tb, then stop.

5. Generate r.

6. If r � kðtÞ=k�, then set K ¼ K þ 1 and set tK ¼ t.

7. Go back to step 3.

Note that time t keeps advancing in this algorithm

irrespective if an event is accepted or rejected. For

the generation of synthetic earthquake catalogs in the

entire range m ¼ ½Mmin;Mmax�, the rate of occurrence

kðtÞ is equivalent to the time-dependent rate of

earthquakes kðMmin �m�Mmax; tÞ, Eq. 15.

Once we generate the K event origin times in the

time period ½ta; tb�, we sample the GR distributions

considering that the event origin times are grouped in

intervals equivalent to the time samples used to

describe the temporal evolution of the GR parame-

ters. For the generation of magnitudes m, we apply

Monte Carlo sampling to the inverse cumulative

distribution function (CDF) of the GR distribution

(Zhuang and Touati 2015):

m ¼ � lnðrÞ
bðtÞlnð10Þ þ Mmin; ð23Þ

where r is again a random number obtain from a

uniform distribution between [0,1]. During the sam-

pling, any m[Mmax is excluded (Truncated GR

distribution), and the sampling is repeated until we

get K values with m�Mmax. We pair the event origin

times in a time sample t0, with magnitudes sampled

from the GR distribution at time t0, defined specifi-

cally by aðt0Þ and bðt0Þ.
By repeating the simulation of event origin times

and sampling of the GR distributions, we create

multiple realizations of the synthetic earthquake

catalog. The use of multiple independent realizations

is useful since it allows for computing more robust

statistics in particular for short or rapidly varying

sequences.

It is possible to simulate multiple independent

processes. For instance, we could have stationary
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background seismicity combined with a time-limited

induced seismicity sequence, each described by its

own set of GR distributions, Eq. 1. In this case, the

background seismicity would have an intercept abg

and slope bbg which are time independent, whereas

the induced seismicity sequence would have an

intercept aindðtÞ and slope bindðtÞ leading to different

earthquake rates kbg and kind in Eqs. 5 and 15.

The key is to create each synthetic catalog

independently and separately. Once created they

can be combined for further analysis. As a practical

note we recommended using the same time units,

time durations and again the same Mmin and Mmax

magnitudes. How to deal with uncertainties in

estimated GR parameters will be described in the

next section.

3. Implementation

The generation and evaluation of the synthetic

magnitude catalogs is done in three steps, namely: (1)

computation of the relevant earthquake rates, (2)

Monte Carlo simulation, and (3) computation of the

analytic expectancies and verification.

3.1. Computation of the Earthquake Rates

For a given set of seismic parameters (a(t)-and

b(t)-values, Mmin and Mmax), we calculate the time-

dependent rate of earthquakes kðMmin �m�Mmax; tÞ,
Eq. 15. The rates are calculated for each time sample

t in a given range (e.g. t ¼ ½ta; tb�), where the time

samples are defined by the used time unit (e.g. day,

week, month, year).

We will assume that the seismic parameters are

known, for instance from historic catalogs in the case

of natural (background) seismicity or by evaluating

current and past induced seismic catalogs. If the

appropriate seismic parameters are unknown as is

likely for future induced seismicity then the proposed

methodology still allows for evaluating scenarios

where for instance the GR intercept aind is twice that

of the background seismicity abg for a limited time-

frame.

One caveat is that it is important to ensure that the

derived a-value is normalized per unit area when

comparing different catalogs such as for natural and

induced seismicity. This explains for instance the role

of the activation parameter as used by (Ghofrani and

Atkinson 2016), which plays a normalization role

instead of representing a likelihood of occurrence.

3.2. Monte Carlo Simulation

For the generation and evaluation of synthetic

earthquake catalogs, we define five steps: (1) gener-

ation of event origin times, (2) generation of

magnitudes, (3) multiple processes, (4) inclusion of

uncertainties, and (5) extract relevant statistics.

Generation of event origin times Following the

thinning method for non-stationary Poisson process

(algorithm 2), we can generate a single realization of

event origin times for the rate of earthquakes

kðMmin �m�Mmax; tÞ. Again, these will be the event

origin times for the magnitudes in the full range

m ¼ ½Mmin;Mmax�. We can repeat this process until

we generate Nr realizations of event origin times, see

Fig. 1. In the case of stationary sources, we simply

apply the stationary Poisson simulation (algorithm 1),

keeping a constant rate of earthquakes

kðMmin �m�MmaxÞ.
Generation of magnitudes Once the event origin

times have been generated, we group them into time

intervals that correspond to the different GR distri-

butions per time sample. Then, we sample each GR

distribution, using Eq. 23, and pair the sampled

magnitudes with the corresponding event origin times

contained in that time sample. The grouping is purely

done to reflect that observed GR parameters are

always estimated within certain time interval in

historical earthquake catalogs. This step is not

required for continuous distributions.

To make comparisons between the simulations

and the statistical quantities possible, we group the

synthetic magnitudes in magnitude bins, given a

defined bin size. This is needed since all analytical

occurrence statistics are computed for magnitude

ranges (e.g. Eq. 5).

The resulting synthetic earthquake catalog con-

tains event time, realization number and magnitude,

for a seismic source defined by either stationary or

non-stationary GR parameters. Such catalogs are

equally needed for analysis of ground motion in a full

2304 M. Reyes Canales and M. van der Baan Pure Appl. Geophys.



seismic hazard analysis (Assatourians and Atkinson

2013). Figure 1 shows a sketch of the Monte Carlo

simulation methodology for the generation of non-

stationary earthquake catalogs.

Multiple processes If multiple processes occur

such as natural and induced seismic sources with

different statistical properties, then we simulate each

process independently using their appropriate GR

parameters, creating two or more separate synthetic

catalogs. The processes may have different time

durations or activity levels (See synthetic example,

Fig. 2). The synthetic catalogs can be combined in

order to extract the statistics and study the related

hazard.

Inclusion of uncertainties During the estimation

of the GR parameters from historical catalogs, we

take the uncertainties in the a-and b-values into

account. Hazard studies (Halchuk et al. 2014) rely on

the error in the b-value by defining 3 sets of GR

parameters, namely upper (b-value ? error), lower

(b-value - error), and middle curves (b-value). The

corresponding a-values are correlated to the b-values,

and they are simply calculated from the b-values and

N, Eq. 1.

PSHA uses the logic tree approach, which gives a

weight to each set of GR parameters (Assatourians

and Atkinson 2013). Generally, the middle curve gets

a weight of 0.68 (Halchuk et al. 2014), considering

that in a Gaussian distribution 68% of the data values

are within one standard deviation of the mean. In

order to include the weights, we multiply the number

of earthquakes N0 of each set of GR parameters,

Eq. 2, by its corresponding weight. Next, we simulate

independently each weighted set of GR parameters

(Upper, lower and middle curves) generating 3

different catalogs. Finally, we combine the 3 catalogs

to generate a unique synthetic catalog that counts for

the uncertainties in the GR parameters. The same

three sets of GR parameters are used to compute the

analytic expressions, yielding again upper, lower and

middle curves.

Extract relevant statistics From the synthetic

earthquake catalogs we can extract important statis-

tical quantities for the hazard analysis. The mean rate

of earthquakes mkðmj �m\mjþ1; ta; tbÞ in a time

Figure 1
Sketch of the Monte Carlo simulation methodology for the generation of non-stationary earthquake catalogs. a Definition of the time-

dependent a(t)-and b(t)-values, and b equivalent rate of earthquakes. Notice how each temporal sample might correspond to a different GR

distribution. c Generation of multiple realizations containing different event origin times, using the thinning method for non-stationary

Poisson process. d Sampling of the GR distributions. e Synthetic catalog containing time, realization and magnitude
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interval can be obtained by counting the number of

events within that magnitude bin, and then dividing

this count by the length of the time interval t ¼ ½ta; tb�
and the number of realizations Nr.

The probability P½N ¼ n; ta; tb� of n occurrences

with magnitudes between Mmin and Mmax in a time

interval Dt ¼ tb � ta can be obtained from the

synthetic catalogs by counting the number of real-

izations with 0, 1, 2,... n occurrences and dividing by

the number of realizations (Nr). Clearly this can be

done for any magnitude range. Likewise, by dividing

the relevant time duration it is possible to obtain

expectancies that annually n events occur in a

specified magnitude range for the considered time

interval.

Finally, the mean rate of exceedance

mk;excðm�mj; ta; tbÞ for a magnitude level in a time

interval can be obtained by counting the number of

events with magnitude m bigger than a certain

magnitude level, and again dividing by the length

of the time interval Dt ¼ tb � ta and the number of

realizations Nr. It is important to use multiple

realizations for non-stationary processes in particular

for those that are very limited in duration, since all

derived statistical quantities have estimation vari-

ances that are inversely proportional to the number of

realizations. Contrary to stationary sequences, it is

not possible in these cases to average over longer

time durations.

3.3. Analytical Expectancies and Verification

In order to verify the Monte Carlo simulation

results, we will compare some statistical quantities

derived from the simulations with the equivalent

analytical quantities. These analytical quantities are:

(1) the probability P½N ¼ n; ta; tb� of n occurrences

with magnitudes between Mmin and Mmax in a time

interval Dt ¼ tb � ta; (2) the mean rate of earthquakes

mkðmj �m\mjþ1; ta; tbÞ for a magnitude bin in a time

interval Dt ¼ tb � ta; and (3) the mean rate of

exceedance mk;excðm�mj; ta; tbÞ for a magnitude

level in a time interval Dt ¼ tb � ta.

The probability P½N ¼ n; ta; tb� of n occurrences

with magnitudes between Mmin and Mmax in a time

interval Dt ¼ tb � ta, is calculated theoretically using

Figure 2
a Temporal evolution of the annual a(t)-and b-values for the background and the induced seismicity. b Equivalent annual rate of earthquakes

in the range m ¼ ½4:0; 6:0� for the background, induced and combined seismicity. The total seismicity rate is the sum of rates for background

and induced seismicity, Eq. 18. However induced seismicity is limited to the years 10 through 19. All seismicity returns to the natural pattern

starting year 20
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Eqs. 13–15. Likewise, the mean rate of earthquakes

mkðmj �m\mjþ1; ta; tbÞ for a magnitude bin in a time

interval Dt ¼ tb � ta, is given by inserting the rate of

earthquakes kðmj �m\mjþ1; tÞ per unit time dura-

tion for a magnitude bin, Eq. 7, into Eq. 14. The rate

kðmj �m\mjþ1; tÞ is given by the expected number

of earthquakes NðMmin �m�Mmax; tÞ per unit time

duration in the range m ¼ ½Mmin;Mmax�, Eq. 8, and

the probability of occurrence Pðmj �m\mjþ1; tÞ of a

magnitude bin, Eq. 9, where the probability

Pðmj �m\mjþ1; tÞ depends on the cumulative dis-

tribution function FMðm; tÞ, Eq. 10. The expected

number of earthquakes NðMmin �m�Mmax; tÞ and

the cumulative distribution function FMðm; tÞ are both

directly determined by the GR parameters, and the

minimum and maximum magnitude, Mmin and Mmax,

Eqs. 8 and 10.

The mean rate of exceedance mk;excðm�mj; ta; tbÞ
for a magnitude level in a time interval Dt ¼ tb � ta,

is given by inserting the rate of exceedance

kexcðm�mj; tÞ per unit time duration for a magnitude

level, Eq. 19, into Eq. 14. Simultaneously, the rate of

exceedance kexcðm�mj; tÞ is given by the expected

number of earthquakes NðMmin �m�Mmax; tÞ, Eq. 8

and the probability of occurrence Pðmj �m�Mmax; tÞ
of a magnitude m occurring in the range

m ¼ ½mj;Mmax�, Eq. 20, where the probability

Pðmj �m�Mmax; tÞ depends on the cumulative dis-

tribution function FMðm; tÞ, Eq. 10.

These analytical quantities can be directly com-

pared with the same quantities derived from the

Monte Carlo simulations for verification. All vari-

ables can be extended to include spatial variations in

the GR parameters such that ground motion predic-

tions can be made, which is the ultimate goal of

probabilistic seismic hazard analysis (Cornell 1968;

Assatourians and Atkinson 2013).

4. Synthetic Example

For illustration purposes we consider the follow-

ing situation. A region has a stationary natural

seismicity with GR parameters: abg ¼ 4, producing

N0 ¼ 10; 000, Eq. 2, and bbg ¼ 1. An induced seis-

micity sequence occurs between the years 10 through

19. Starting year 20, only natural seismicity occurs.

While the induced seismicity is active, the GR

parameters are equal to:

bðtÞ ¼1 þ
cosðpðt�10Þ

9
Þ

5
; ð24Þ

aðtÞ ¼4 þ
cosðpðt�10Þ

9
Þ

2
; ð25Þ

where t is a discrete temporal sample, starting at t ¼
10 years. The time unit used in this example is year.

We consider a minimum and maximum magnitude of

Mmin ¼ 4:0, Mmax ¼ 6:0 respectively and a magnitude

bin size of Mbin ¼ 0:1. Figure 2a shows the temporal

variation of the GR values for the background and

induced sources. Figure 2b shows the rate of earth-

quakes per year in the range m ¼ ½4; 6�, for both

sources and the resulting combined seismicity in the

period [10, 19]. It also shows a hypothetical moving

time interval with limits ta and tb. This time interval

will be used to illustrate the changes in the hazard

statistics given by the temporal variations in the

source parameters.

We compute 5 independent simulations each

comprising Nr ¼ 10; 000 realizations with a time

duration of 30 years. Both sources were simulated

independently and their catalogs were combined for

the statistical analysis. The number of realizations is

chosen because of the low rates for both the lowest

and highest magnitudes of interest, combined with

the short duration of the induced seismicity sequence.

This also allow us to validate the theoretical predic-

tions for non-stationary sequences.

We evaluate the importance of the start ta and end

tb times of the time interval, and how the inclusion of

sections with active induced seismicity alters the

statistics. Figure 3a, b show how the mean annual

rate of earthquakes mkðmj �m\mjþ1; ta; tbÞ and the

mean annual rate of exceedance mk;excðm�mj; ta; tbÞ,
change for 10-year length intervals with different

start times. The total rate while both processes are

active is simply the sum of both processes. As

expected, the mean rates increase with the duration of

induced seismicity in the interval. For instance, the

annual rate of earthquakes kð4�m\4:1; tÞ for the

magnitude bin m ¼ ½4; 4:1Þ equals 0.2, 0.27 and 0.42

events per year for the periods of t ¼ ½0; 9�,
t ¼ ½5; 14�, and t ¼ ½10; 19�, respectively (Fig. 3a).
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The spread in the predictions for different realizations

is indicative of the estimation variances of the Monte

Carlo simulations. Both theoretical (solid lines) and

simulated predictions (dots) agree very well in all

cases.

Note that the mean rate of exceedance

mk;excðm�mj; ta; tbÞ tail off towards the end and

deviate from a straight line (Fig. 3b). This occurs

because we limited the maximum magnitude Mmax to

6. In other words, magnitudes in excess of 6 are not

possible, and the annual rate kð5:9�m\6Þ and the

rate of exceedance kexcðm� 5:9Þ for the largest

magnitude bin are thus identical. This indicates in

turn that although we compute all occurrence prob-

abilities assuming a Gutenberg-Richter distribution

for event magnitudes, generated synthetic event cat-

alogs by Monte Carlo simulation by design do not

follow this distribution for the largest magnitude

events.

We can relate a probability of exceedance

P½N [ 0; ta; tb� in a time interval ½ta; tb� to an annual

rate of exceedance kexcðm�mj; tÞ for a magnitude

Figure 3
a Mean annual rate of earthquakes as a function of magnitude within a 10 year interval starting respectively at 0, 5 and 10 years.

b Corresponding annual rate of exceedance as a function of magnitude. The likelihood of occurrence of 10% in 10 years is indicated in the

plot. c Probability as a function of number of occurrences within the magnitude range m ¼ ½4; 6� for the 10 year time interval starting at at 0, 5

and 10 years. d Equivalent probability as a function of number of occurrences within the magnitude range m ¼ ½5; 6�. The (partial) presence of

induced seismicity clearly affects the occurrence statistics. Theo theoretical values, Sim simulation number, each using 10,000 realizations
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level, using Eq. 21. In Fig. 3b we highlight the

probability of exceedance of 10% in 10 years, which

is equivalent to kexcðm�mj; tÞ ¼ 0:01. This value

results from Eq. 21, using P½N [ 0; ta; tb� ¼ 0:1 and

Dt ¼ 10 years. We use a 10 year period since this is

the length of the considered time interval. For the

10% probability in 10 years, we find for this hypo-

thetical example m ¼ 5:68, m ¼ 5:72 and m ¼ 5:85

for the periods of t ¼ ½0; 9�, t ¼ ½5; 14�, and

t ¼ ½10; 19�, respectively.

Figure 3c shows the probability of n occurrences

within the magnitude range m ¼ ½4; 6�, for different

intervals with constant length of 10 years with start

times ta of respectively 0, 5 and 10 years. The first

time interval t ¼ ½0; 9� has no induced seismicity (no

overlap), the second interval t ¼ ½5; 14� half overlaps

the induced seismicity period, and the third interval

t ¼ ½10; 19� full overlaps the period of induced seis-

micity. The theoretical values, Eqs. 13 and 18, appear

as a solid line, and the Monte Carlo simulation results

appear as dots. Figure 3d shows the probability of

n occurrences within the magnitude range m ¼ ½5; 6�,
for the same intervals with constant length of 10

years. Both figures show how the induced seismicity

significantly impacts the magnitude-frequency dis-

tributions. For instance, the likelihood of exactly 3

events in the magnitude range m ¼ ½5; 6� to occur is

respectively 0.16, 0.20, and 0.26 for the periods of

t ¼ ½0; 9�,t ¼ ½5; 14�, and t ¼ ½10; 19� (Fig. 3d). As we

can see in these examples, the amount and duration of

induced seismicity contained in the time interval

alters the hazard statistics.

To illustrate the influence of the length of the time

interval ½ta; tb�, the duration of the predictions, we

evaluate different lengths while both sources are

active. The time intervals are changing to respec-

tively 1, 3, 5 or 10 years length, all starting at ta ¼ 10

years. As before, we compute both the theoretical

expectations and five Monte Carlo simulations using

10,000 realizations each.

Figure 4a, b show the mean annual rate of earth-

quakes mkðmj �m\mjþ1; ta; tbÞ and the mean annual

rate of exceedance mk;excðm�mj; ta; tbÞ, for the dif-

ferent time interval lengths. As we expected, the

mean annual rate of earthquakes increases while the

time interval includes increasing amounts of accel-

erating induced seismicity. For instance, the annual

rate of earthquakes for the magnitude bin m ¼
½4:5; 4:6Þ equals 0.094, 0.095, 0.10 and 0.13 events

per year for time intervals with 1, 3, 5 and 10 years

length, respectively (Fig. 4a). Given the design of

this synthetic example, The curves in Fig. 3 for the

time interval t ¼ ½10; 19�, are equivalent to the curves

in Fig. 4 for the 10-years time interval. Both cases

share the same interval length and period, and thus

seismicity.

Figure 4c, d show the probability of n occurrences

within the magnitude range m ¼ ½4; 6� and m ¼ ½5; 6�,
respectively, for the same four models. Again, the

solid lines show the theoretical values and the dots

show the results from the Monte Carlo simulations.

As in Fig. 3d, c, the probability to have at least one

occurrence increases while the time interval includes

period of combined induced and background seis-

micity. For instance, the most likely number of events

in the range m ¼ ½4; 6� is 1, 4, 8 and 21 for the time

intervals with 1, 3, 5 and 10 years length, respectively

(Fig. 4c).

5. Horn River Basin Case

5.1. Area of Study and Data

We study the impact of induced seismicity on

hazard analysis, using the recent activity in the Horn

River Basin, Northeast B.C. as an example. Several

studies have been made in the Horn River Basin due

to the significant increase of seismicity related to the

hydraulic fracturing activities conducted between

Dec. 2006 and Dec.2011 (BC oil and gas commission

2012; Farahbod et al. 2015a, b), particularly in the

Etsho area (Fig. 5a, b). The detected seismicity in the

area was very low prior to 2006, but with an

important increase since Dec. 2006, particularly

between 2010 and 2011 in line with the amount of

human activity.

Due to the lack of recorded seismicity at the Horn

River Basin, we assume that the GR parameters

before Dec. 2006, for natural seismicity, are based on

the GR parameters described by the 2015 National

seismic-hazard model of Canada (Halchuk et al.

2014). For the period between Dec. 2006 and Dec.

2011, we assume that the GR parameters are based on

Vol. 176, (2019) Including Non-Stationary Magnitude–Frequency 2309



calculations made using the catalog from Farahbod

et al. (2015b), which contains induced earthquakes in

the Horn River Basin. This catalog consists of 338

events recorded between Dec. 2006 and Dec. 2011,

with magnitudes ranging between m ¼ 1:0 and

m ¼ 3:6.

Analysing the catalog from Farahbod et al.

(2015b), it is possible to distinguish 2 periods where

the induced seismicity has clearly different recur-

rence statistics: a first period with lower earthquake

rates between Dec. 2006 and Dec. 2009, and a second

period with higher rates between Dec. 2009 and Dec.

2011. Figure 5c shows the earthquake magnitudes vs.

time, as well as the indicated two periods with

different recurrence statistics. The difference between

periods is thought to be related to a considerable

increase in the injection rates after Dec. 2009

(Farahbod et al. 2015a), see Fig. 5d, leading to

increased earthquake activity. After Dec. 2011 we

Figure 4
a Mean annual rate of earthquakes as a function of magnitude within 1, 3, 5 and 10 year length intervals, starting at year 10 (First year of

induced seismicity). b Corresponding annual rate of exceedance as a function of magnitude. c Probability as a function of number of

occurrences within the magnitude range m ¼ ½4; 6� for the 1, 3, 5 and 10 year length intervals. d Equivalent probability as a function of

number of occurrences within the magnitude range m ¼ ½5; 6�. The time interval length, as well as the inclusion of induced seismicity, affects

the occurrence statistics. Theo theoretical values, Sim simulation number, each using 10,000 realizations. TI time interval length
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assume that the seismicity rates return to their natural

state.

5.2. Seismic Parameters from the Different Time

Periods

We focus on the Etsho area within the Horn River

Basin (Fig. 5a, b) where much of the induced

seismicity occurred between 2006 and 2011 (BC oil

and gas commission 2012). We first compute relevant

GR parameters for the natural and induced sequences.

Because natural and induced seismicity cover differ-

ent areas, one must normalize the derived a-values

per unit area before computing occurrence statistics.

For the GR parameters of natural seismicity,

before Dec. 2006 and after Dec. 2011, we use the

Foothills source area, as described by Halchuk et al.

(2014). The total Foothills area is 308,349.10 km2. To

count for the uncertainty in the GR parameters,

Halchuk et al. (2014) uses a mix of three GR

distributions for this area. Table 1 shows the GR

parameters for the Foothills area and the rescaled

Figure 5
a Location of the Horn River Basin, Northeast British Columbia. The Etsho area (circle in red) is described as the area with much seismic

activity in the basin [from Farahbod et al. (2015b)]. b Location of the seismic events (yellow dots) using the catalog from Farahbod et al.

(2015b). The blue square (IS) indicates the seismic source area used in this study. The polygons in the picture represent some of the natural

sources defined by the 2015 seismic-hazard model of Canada (Halchuk et al. 2014). FTH foothills, ROCN Rocky Mountain fold/thrust belt

north, MKM Mackenzie Mountains, SCCWHC stable cratonic core western Canada H. c Earthquake magnitudes as a function of time, using

the catalog from Farahbod et al. (2015b). The two distinctive periods of induced seismicity are shown. d Monthly injection rates in the Horn

River Basin. Notice the subtantial increase in the injection volumes after Dec. 2009 (vertical arrows). From Farahbod et al. (2015a)
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values for the Etsho area. The weights of each

distribution are shown in the table. The rescaled N0

are obtained by first calculating the density of

earthquakes and then by multiplying these densities

with the area of induced earthquakes. Using Eq. 2,

we have the following earthquake densities: (1) 8.88

� 10�4, (2) 3.51 � 10�3, and (3) 2.29 � 10�4

earthquakes/km2/year. The Etsho area is 8,262.57

km2 (blue square Fig. 5b).

Finally when combining all three sets, the N0

values of each set are first multiplied with their

respective weights. For the analytical results, we

calculate the rates from the weighted sets, and then

sum the results. In the case of the Monte Carlo

simulations, we simulate each weighted set, and then

combine all simulation cubes to obtain a unique

catalog. It is important to emphasize that using a

somewhat different natural seismicity rate does not

greatly affect the hazard computations during the

period of induced seismicity since the latter domi-

nates then.

To study the temporal evolution of the GR

parameters during the periods of induced seismicity,

we define a moving time window to screen the

catalog. In this case, we define a 1-year sliding time

window. Then, the GR values are assigned to the

corresponding central month in each time window.

This process is repeated by moving the entire time

window one month ahead every time, until the central

month equals the last month of the catalog. For the

end points, the time window will include sections of

the natural events.

For the calculation of the GR parameters in each

time interval, we use only the earthquakes with

magnitude equal or bigger than the magnitude of

completeness (Mc) estimated for the Horn River

Basin. According to the calculations of Farahbod

et al. (2015b), the magnitude of completeness equals

Mc ¼ 2:4 for the induced events in the Horn River

Basin between Dec.2006 and Dec.2011. To estimate

the b-values, we use a modified version of the

maximum likelihood method [MLM, Aki (1965),

Wiemer and Wyss (1997)], that accounts for the

magnitude binning. The annual a-values are calcu-

lated from the b-values and Eq. 1. However, we

convert annual a-values to corresponding monthly

ones. This is done by dividing their N0 values by 12,

and then transforming these back using Eq. 2.

The uncertainties in the GR parameters are also

included. This is done by adding or subtracting the

errors estimated for the b-values, resulting in 3 curves

for both the a-and b-values. For the estimations of the

b-value error, we use the method described by Shi

and Bolt (1982). For the middle set of GR parame-

ters, we assign a weight of 0.68 for the Monte Carlo

simulations. For both the upper and lower set

obtained by adding or subtracting the errors in the

b-values, we assign a weight of 0.16.

Figure 6a, b shows the temporal evolution of the

a-and b-values in the Horn River Basin. Notice the

constant GR parameters before and after the induced

seismicity period and the decrease of the b-values

around Dec. 2010, likely associated with the

increased injection rates. Again, the temporal evolu-

tion of GR parameters indicates 2 distinctive periods

of induced seismicity. For all periods, we consider a

minimum and maximum magnitude of Mmin ¼ 2:5,

and Mmax ¼ 5:0 respectively, based on the range of

magnitude earthquakes recorded in the catalog.

We choose Mmax ¼ 5:0 based on previous hazard

assessments for induced seismicity in Western

Canada. For instance, Atkinson et al., (2015) made

a preliminary hazard evaluation for Fox Creek

(Alberta, Canada) using values for the maximum

magnitude between Mmax ¼ 4:5 and Mmax ¼ 6:5.

These values are smaller than the maximum magni-

tude for natural seismicity in the area, which range

between Mmax ¼ 6:5 and Mmax ¼ 7:5. The largest

earthquake recorded in the Horn River Basin is

m ¼ 3:6. Based on these observations, we consider

that a Mmax ¼ 5:0 would be appropriate for the hazard

Table 1

GR parameters for the natural seismicity at the Foothills area and

the rescaled values for the Etsho area. These are annual anat-

values. w: weight of each GR distribution

Lower curve

(w = 0.16)

Middle curve

(w = 0.68)

Upper curve

(w = 0.16)

GR

foothills

anat;3 ¼ 1:84 anat;1 ¼ 2:43 anat;2 ¼ 3:034

N0 ¼ 69:18 N0 ¼ 269:15 N0 ¼ 1081:43

bnat;3 ¼ 0:64 bnat;1 ¼ 0:8685 bnat;2 ¼ 1:090

GR etsho aetsho;nat;3 ¼ 0:26 aetsho;nat;1 ¼ 0:85 aetsho;nat;2 ¼ 1:44

N0 ¼ 1:837 N0 ¼ 7:12 N0 ¼ 28:17

bnat;3 ¼ 0:64 bnat;1 ¼ 0:8685 bnat;2 ¼ 1:090
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analysis instead of Mmax ¼ 7:5 as used in the fifth

generation seismic hazard model for Canada (Hal-

chuk et al. 2014) . We will briefly address this point

further in the discussion section.

Contrary to the synthetic example we do not

simulate the natural and induced sequence separately

but assume a single time-varying GR distribution in

both the analytic computations and Monte Carlo

simulations. This simplifies the calculations but also

means we do not need to identify natural from

induced events between Dec. 2006 through Dec.

2011.

5.3. Hazard Analysis

We compute 5 independent simulations each

comprising Nr ¼ 10; 000 realizations with a time

duration of Nt ¼ 120 months (Dec. 2004 up to Dec.

2014), based on the seismicity and GR parameters

described before. We consider a magnitude bin size

of Mbin ¼ 0:1, and monthly rates of earthquakes. In

the case of the background seismicity, the

transformation to monthly rates leads to the following

a-values: aetsho;nat;1 ¼ � 0:226, aetsho;nat;2 ¼ 0:37,

aetsho;nat;3 ¼ � 0:81. For consistency purposes, we

later transform the analytical and simulated monthly

rates to annual rates of earthquakes by multiplying by

12.

Figure 7a, b show the predictions for the mean

annual rate of earthquakes mkðmj �m\mjþ1; ta; tbÞ,
and the mean annual rate of exceedance

mk;excðm�mj; ta; tbÞ, for the periods before and after

the induced events, as well as the first and second

period of the induced seismicity. Both the theoretical

predictions and the quantities derived from the five

Monte Carlo simulations are plotted. The upper,

middle and lower analytic curves are included in

order to show the variable range of rates generated by

the uncertainties in the GR parameters. The occur-

rence statistics of these curves are calculated by using

the time-dependent GR parameters described in

Fig. 6 and the expressions in the theory section. These

curves are not necessarily straight lines, because they

Figure 6
Temporal evolution of the a b-values, and b monthly a-values in the Horn River Basin. For the periods before Dec. 2006 and after Dec. 2011,

only background seismicity is assumed. The induced seismicity parameters were calculated from the observed catalog (Fig. 5c). The

uncertainties in the GR parameters are also included, by adding or subtracting the errors in the b-values. The green, blue and red curves

describe the set of GR parameters for the upper, middle and lower curves in the occurrence statistics. Vertical arrow indicates change in

injection volume, separating first and second period of induced seismicity. MLM = Maximum likelihood method

Vol. 176, (2019) Including Non-Stationary Magnitude–Frequency 2313



are obtained by averaging multiple curves resulting

from time-dependent GR parameters.

For instance, the mean annual rate of earthquakes

mkð2:5�m\2:6; tÞ, for the magnitude bin

m ¼ ½2:5; 2:6Þ, is equal to 0.0088 events per year

for the periods before and after the induced seismic-

ity, and increases to 2.59 and 11.44 events per year

for the first and second period of induced seismicity,

respectively. On the other hand, the annual rate of

exceedance mkðm� 2:5Þ for magnitudes m� 2:5, is

equal to 0.048 events per year for the periods before

and after the induced seismicity, and increases to 7.39

and 51.49 events per year for the first and second

period of induced seismicity, respectively. The cat-

alog contains annually respectively 7 and 48.5 events

of m� 2:5 for the same periods. This confirms the

substantial increase in seismicity in the period Dec.

2006 through Dec. 2011 in the Horn River Basin, as

shown in Fig. 5c.

Using different time intervals ½ta; tb�, we compute

the probability of n occurrences within the magnitude

range m ¼ ½2:5; 4Þ, in order to study the impact of the

induced seismicity in the Horn River Basin. We

choose the ranges m ¼ ½2:5; 4Þ to properly compare

the predictions with the recorded catalogs, since the

largest recorded magnitude was m ¼ 3:6 (Fig. 5c).

Figure 8a shows the probability of n occurrences

(Eq. 17), within the magnitude ranges m ¼ ½2:5; 4Þ,
for a 3-year time interval for the natural seismicity,

that is, before Dec. 2006 and after Dec. 2011. This

plot shows, for instance, that the likelihood of zero

natural events in the magnitude range m ¼ ½2:5; 4Þ to

occur within three years equals 0.87.

Likewise, Fig. 8b shows the probability of n oc-

currences within the magnitude range m ¼ ½2:5; 4Þ,
for the 3-year interval in the first period of induced

seismicity (Dec. 2006–Dec. 2009). The most likely

number of events, within the magnitude range

m ¼ ½2:5; 4Þ, is 21 events with a probability of

0.088. This prediction is similar to the actual number

of earthquakes m ¼ ½2:5; 4Þ recorded in the catalog of

Farahbod et al. (2015b) between Dec. 2006 and Dec.

2009, which was 21 events.

Finally, Fig. 8c shows the probability of n occur-

rences within the magnitude range m ¼ ½2:5; 4Þ, for

the 2-year interval in the second period of induced

seismicity (Dec. 2009–Dec. 2011). The most likely

number of events within the magnitude range

m ¼ ½2:5; 4Þ, is 99 events with a probability of

0.040. This prediction is similar to the actual number

Figure 7
a Mean annual rate of earthquakes as a function of magnitude for the periods before and after the induced seismicity, as well as the first and

second period of induced seismicity. b Corresponding mean annual rate of exceedance as a function of magnitude. The continuous lines show

the analytical values for the upper, middle and lower curves resulted from the averaging of the GR parameters in Fig. 6. Sim simulation

number, each using 10,000 realizations
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of earthquakes m ¼ ½2:5; 4Þ recorded between Dec.

2009 and Dec. 2011, which was also 99 events.

We can also obtain the likelihood of larger-

magnitude events, for instance, the probability of

n occurrences within the magnitude range

m ¼ ½4:0; 5:0�. Figure 8d shows the probability of

n occurrences within the magnitude range

m ¼ ½4:0; 5:0�, for the 3-year interval in the first

period of induced seismicity (Dec. 2006–Dec. 2009).

The most likely number of events was 0, with a

probability of 0.90. Figure 8e shows the probability

of n occurrences within the magnitude range

m ¼ ½4:0; 5:0�, for the 2-year interval in the second

period of induced seismicity (Dec. 2009–Dec. 2011).

There is a predicted probability of 0.07 to have no

earthquakes within the magnitude range

m ¼ ½4:0; 5:0�. Fortunately, no events in this magni-

tude range actually occurred. We can enumerate a

couple of reasons why this prediction seems to fail.

First, it is possible that the observations fell in the

Figure 8
Probability as a function of the number of occurrences within the magnitude range m ¼ ½2:5; 4:0Þ for a the periods before and after induced

seismicity, b the first period of induced seismicity and c the second period of induced seismicity. Once more, the presence of induced

seismicity clearly affects the occurrence statistics. The actual number of events in the first and second period of induced seismicity are

indicated with a red line. Probability as a function of the number of occurrences within the magnitude range m ¼ ½4:0; 5:0� for d the first period

of induced seismicity, and e the second period of induced seismicity. These results confirm the change in the hazard statistics between the two

periods of induced seismicity. The continuous lines show the analytical values for the upper, middle and lower curves resulting from the

uncertainties in the GR parameters. Sim simulation number, each using 10,000 realizations
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0.07 probability of no occurrence. However, it is

more likely that the discrepancy between observed

and predicted likelihood for an m ¼ ½4:0; 5:0� earth-

quake is caused by the large uncertainties in the

predictions for moderate to larger magnitude events

(Figs. 7, 8d).

Traditional PSHA is typically based on earth-

quake catalogs that cover several decades. Any

magnitude events that have average recurrence peri-

ods that are well contained (sampled) within the

length of available observations will have reasonable

estimation variances in terms of their occurrence

rates. Conversely, magnitudes that occur only rarely

or are not observed will have large uncertainties in

estimated occurrence rates. Their occurrence rates are

in practice estimated by extending (extrapolating) the

frequency-magnitude statistics beyond the range of

well-constrained observations. In this case the largest

observed magnitude is 3.6. Therefore obtaining

reliable estimates for the occurrence likelihoods of

events with magnitudes m ¼ ½4:0; 5:0� is very chal-

lenging. These uncertainties are further compounded

if we are dealing with non-stationary sequences since

the magnitude-frequency statistics will now vary over

time, thus making it even more difficult to reliably

establish the occurrence periods of the largest events

of interest.

6. Discussion

Traditional seismic hazard analysis has always

assumed that the earthquake rates are stationary such

that long-term predictions become feasible (Cornell

1968; Baker 2013). Clearly, induced seismicity is

determined by anthropogenic patterns and is thus

likely strongly correlated to the amount of industrial

activity (Brodsky and Lajoie 2013; Langenbruch and

Zoback 2016; van der Baan and Calixto 2017; Con-

vertito et al. 2012; Bourne et al. 2014). Treating

induced seismicity as a stationary process is thus

likely to lead to biased long-term predictions. This is

one of the reasons why Petersen et al. (2016) and

Petersen et al. (2017) opted for one-year hazard

predictions.

The developed analytical expressions and Monte

Carlo simulations can handle both stationary and non-

stationary sequences thus allowing for a true assess-

ment of the likelihood of larger magnitude events to

occur within a certain timeframe. The good match

between the actual number of earthquakes in the

catalog and the prediction from the non-stationary

Poisson model supports the use of the Poisson model

for injection induced seismicity, as suggested by

Langenbruch et al. (2011) and Langenbruch and

Zoback (2016).

The use of the Poisson model has allowed for

computing hazard statistics analytically (Cornell

1968; Baker 2013). The Poisson model assumes

however that the earthquakes occur randomly in time

and space. This is not accurate since earthquakes tend

to cluster temporally and spatially (e.g. as seen in

aftershock sequences). Conversely, mainshocks have

been shown to be temporally independent Gardner

and Knopoff (1974), leading some authors (Gardner

and Knopoff 1974; Reasenberg 1985) to strongly

advocate that earthquake catalogs are declustered by

(1) identifying mainshocks, and (2) removing all

associated aftershock sequences. The GR parameters

are then computed from declustered catalogs, and

subsequently used in hazard predictions (e.g., Peter-

sen et al. (2016)). The GR parameters of the

declustered catalogs tend to have smaller a-values

and thus a reduced number of predicted earthquakes,

Eq. 2. On the other hand, the b-value is often

enlarged, indicating a larger likelihood for the

occurrence of larger magnitude events, Eq. 3.

Declustered catalogs thus tend to increase the pre-

dicted hazard. Other authors argue that declustering is

only needed to minimize spatial distortions in earth-

quake occurrences and may lead to significant

underestimation of the true seismic hazard if no

compensation is applied to correct for the removed

seismicity (Marzocchi and Taroni 2014). Further-

more, final predictions can depend strongly on the

used declustering algorithm (van Stiphout et al.

2012).

The Monte Carlo simulation method described

here can be changed to handle the occurrence of

aftershocks, following mainshocks. However, this

would require extensive knowledge of the recurrence

patterns both in space and time. This may not be

feasible in practice but it would allow for testing the

hypothesis if using mainshock/aftershock sequences

2316 M. Reyes Canales and M. van der Baan Pure Appl. Geophys.



instead of a random temporal occurrence has a sub-

stantive influence on hazard predictions on the

timescales of years to decades. It is important to

emphasize however that the short-term non-station-

arity due to the occurrence of mainshock/aftershock

sequences is different from the intermediate to long-

term non-stationarity considered in this paper since

the former only have a minor influence on the GR

parameters describing long-term time scales. Con-

versely, induced seismicity can strongly fluctuate as it

is determined by the amount of industrial activity

(Brodsky and Lajoie 2013; Langenbruch and Zoback

2016; van der Baan and Calixto 2017).

Further work is necessary to create a complete

hazard analysis for induced seismicity. Some of the

future aspects include:

1. The GR parameters are not known beforehand;

however, the developed methodology allows us to

evaluate different hazard scenarios from a diverse

set of time-varying GR parameters. The GR

parameters might be obtained from alternative

sources of information, for instance, the seismo-

genic index (Shapiro et al. 2010), models based on

compaction (Bourne et al. 2014, 2015, 2018), or

the in-situ state of stress Roche et al. (2015).

Future approaches may relate injection rates with

a-values, as proposed by Shapiro et al. (2010).

This might be specially useful for current activ-

ities in order to forecast hazard seismicity, as

applied in Oklahoma by Langenbruch and Zoback

(2016).

It is unclear if the total or only mainshock

seismicity is proportional to the net injection

volumes. For instance, various studies related to

salt-water disposal in Texas and Oklahoma, USA,

find that the total seismicity, including mainshocks

and aftershocks, is proportional to the injected

volumes (Keranen et al. 2014; Hornbach et al.

2015; Langenbruch and Zoback 2016). Con-

versely, Brodsky and Lajoie (2013) determine a

direct correlation between the net volume (in-

jected minus produced) and the seismic activity in

the Salton Sea Geothermal field after they remove

aftershocks using the model of Ogata and Zhuang

(2006). Total seismicity and net or injection

volume are uncorrelated in their case history.

They thus postulate that only the level of main-

shock seismicity is proportional to net volume.

Clearly in order to predict temporal changes in

seismic hazard it will be very important to

establish what causal relationship is most appro-

priate for a specific region and/or type of industrial

activity.

2. An important aspect is the specification of the

maximum magnitude Mmax. One of the reasons to

define a maximum magnitude Mmax is due to

geological conditions since the magnitude is

related to the fault area (Wyss 1979; Scholz

1982). For instance, we would not expect an

earthquake larger than a certain magnitude m if

there are no faults of sufficient size. The second

reason is related to the very low likelihood of the

large magnitude events. Estimation variances in

Monte Carlo simulations are proportional to the

number of realizations and inversely proportional

to the likelihood of occurrence. In other words,

very rare events have large estimation uncertain-

ties, in that a single drawn event can greatly

influence final predictions. This explains for

instance the increasing deviation from the theo-

retical curves in Fig. 7a, b for the rarest events. To

circumvent this issue, Monte Carlo simulations

often impose a maximum magnitude to stabilize

predictions.

3. The above methodology is very flexible and

devised such that it can be easily extended to

handle also spatial variations in seismicity in order

to generate a full seismic hazard analysis in terms

of expected peak ground motion within a certain

timeframe. In case of the Monte Carlo simulations

this implies defining spatial occurrence statistics

and incorporating appropriate ground motion

predition equations, using a similar numerical

scheme as used by Assatourians and Atkinson

(2013) and Musson (2000).

7. Conclusions

A method to compute synthetic earthquake cata-

logs and associated occurrence earthquake statistics is

developed for non-stationary seismicity, using Monte
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Carlo simulations. The Poisson model remains rele-

vant for analysing and computing non-stationary

induced seismicity. However, non-stationary Guten-

berg-Richter (GR) parameters have to be included in

order to properly assess the hazard for this type of

seismicity. In both examples, tests showed excellent

agreements between analytical predictions and

numerical results.

In the simulated forecasts, we assume that the GR

induced parameters are known. The next steps will

include incorporating relationships between earth-

quake parameters and injection volumes, and

extensions to handle spatial source distributions as

well as ground motion evaluation in order to generate

a complete methodology for non-stationary proba-

bilistic seismic hazard analysis.
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