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Abstract—Probabilistic seismic hazard analysis (PSHA) can

accommodate various sources of uncertainties and it provides a

rational framework for the precise portrayal of the hazard of a

given region. Often, the information used in the PSHA is incom-

plete and uncertain; therefore, the question arises how the

uncertainty of the input data affects the estimated hazard charac-

teristics. In this study, sensitivity analysis (SA) was conducted to

identify the most dominant inputs affecting the assessment of the

key seismicity parameters (SPs), including the mean seismic

activity rate k, b value of Gutenberg–Richter, and the maximum

possible earthquake magnitude mmax. The study was applied in five

areas of Iran, for which such analyses have not been conducted in

previous studies. Subsequently, Monte Carlo simulation was

employed to determine the effects of the uncertain input parameters

on PSHA relevant to spectral accelerations corresponding to 10%

and 2% probability of exceedance at least once in 50 years. For this

purpose, a unified and declustered earthquake catalogue was used

for the five major seismotectonic provinces of Iran (Alborz-

Azarbayejan, Zagros, Central-East Iran, Koppeh Dagh, and Mak-

ran). The results showed that the last (complete) part of the

catalogue has a significant effect on the estimated value of seismic

activity and the b value. In contrast, its influence is insignificant on

the area-characteristic maximum possible earthquake magnitude,

for which the most influential inputs are the maximum observed

earthquake and its uncertainty. Furthermore, the uncertainties of

the input SPs affected the seismic hazard estimates substantially

and led to significant variability in the estimated ground motion

characteristics.

Key words: PSHA, sensitivity analysis, uncertainty analysis,

seismicity parameters.

1. Introduction

Probabilistic seismic hazard analysis (PSHA)

provides estimates of the probability of exceedance

(PE) of a ground motion intensity measure at a given

site during a given period of exposure. The input

parameters required to assess PSHA are determined

from historical, instrumental, and geological obser-

vations (Cornell 1968; Sokolov and Wenzel 2015).

The seismicity parameters (SPs), including the slope

of the Gutenberg–Richter (G–R) relationship (b

value = b/ln10), earthquake activity rate (k), and the

maximum magnitude (mmax), are the principal inputs

of any PSHA. The estimates of the SPs can be

established by studying the spatial and temporal

distribution of the earthquakes, as well as the fre-

quency of occurrence of the earthquake magnitudes

(i.e., Gutenberg–Richter law). In most PSHA studies,

these parameters are assumed to remain constant over

time and space; however, their significant spatial and

temporal variations are evident (Zolfaghari 2015;

Khodaverdian et al. 2016; Yadav 2016; Kazemian

and Hatami 2017; Kazemi-Beydokhti et al. 2017).

Such spatial and temporal differences combined with

the uncertainties in occurrence time, size, and loca-

tion of the recorded earthquakes can affect the

reliability of the seismic hazard assessment signifi-

cantly (Kagan 2003; Woessner and Wiemer 2005).
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The uncertainties in PSHA are divided commonly

into two categories, namely, aleatory and epistemic.

Aleatory variability derives from an apparent ran-

domness in nature that is irreducible. On the other

hand, epistemic uncertainty derives from a lack of

knowledge of the appropriate model and its parame-

terisation. The epistemic uncertainties can be divided

further into parameter and model uncertainties.

Parameter uncertainty stems from difficulties in

estimating the parameters due to the limited number,

poor representativeness, and imprecision of data,

whereas model uncertainty is subject to the choice of

variables, dependencies, assumptions, and the pro-

cesses (Rohmer et al. 2014). Generally, the

uncertainties related to the SPs are categorised as the

epistemic uncertainty (McGuire 2004). Therefore, the

uncertainty of the input parameters should be anal-

ysed to evaluate their effects on the variability of the

PSHA results. Traditionally, such analysis consists of

choosing the distribution that represents the extent of

uncertainty in the inputs (i.e., uncertainty modelling),

then the extent of uncertainty in the outputs is com-

puted (i.e., uncertainty propagation) and finally the

contribution of each model inputs to the output

variability is determined (De Rocquigny et al. 2008).

The latter technique is known as sensitivity analysis

(SA). In other words, the SA can be applied to study

(qualitatively or quantitatively) how changes in the

model input affect the resulting response (Saltelli

et al. 2000).

Iran is a highly seismic-prone country that fre-

quently suffers destructive and catastrophic

earthquakes, causing significant loss of life and

widespread damage (Yazdani and Kowsari 2013). To

boost confidence in the assessment of seismic hazard

in the country, it is vital to understand the effects of

SP uncertainties. Several such SP studies have been

conducted in Iran (Mirzaei et al. 1997; Tavakoli and

Ghafory-Ashtiany 1999; Bastami and Kowsari 2014;

Kalaneh and Agh-Atabai 2016; Khodaverdian et al.

2016; Madahizadeh et al. 2016; Mohammadi et al.

2016; Salamat et al. 2017; Raeesi et al. 2017); how-

ever, the effect of SP uncertainties on the PSHA

estimates has not always been quantified explicitly.

Therefore, we performed uncertainty analysis (UA)

and SA to determine the contribution of the data and

to establish the most significant parameters affecting

the estimated SPs. Furthermore, UA was conducted

to show how the uncertainties in the SPs could affect

the PSHA results. Our study results revealed the

primary sources of hazard uncertainties and could

help to prioritize efforts to reduce hazard variability.

2. The Study Region and Data Used

The Iranian Plateau lies in the Alpine seismic and

orogenic belt that frequently experiences destructive

earthquakes. Over the past four decades, such catas-

trophic events have caused more than 100,000

casualties. The seismic activity stems primarily from

the location of the area, i.e., a 1000-km-wide zone

that accommodates the 35-mm/yr convergence rate

between the Eurasian and Arabian plates by strike-

slip and reverse faults (Berberian and Yeats 1999;

Engdahl et al. 2006). As the seismic characteristics of

all the areas of this plateau are not similar (Ansari

et al. 2009), the whole area may not be characterized

as a single unit for the study of seismic hazard.

Therefore, it is reasonable to divide the region into

subregions with similar seismological characteristics,

called seismotectonic provinces. Such subregions can

be defined as geographic areas with a comparable

tectonic setting, and geophysical and seismological

similarity, as well as a unified seismicity pattern.

Several researchers have studied the seismotectonic

provinces of Iran, including Stocklin (1968), Takin

(1972), Berberian (1976), Nowroozi (1976), Tavakoli

(1996), and Mirzaei et al. (1998). Mirzaei et al.

(1998) divided Iran into five major seismotectonic

provinces, namely Alborz-Azarbaijan, Zagros, Cen-

tral-East Iran, Koppeh Dagh, and Makran, as shown

in Fig. 1. This relatively simple model was derived

from the most recent study of the available earth-

quake catalogue and the tectonic and regional

geomorphology and seismicity pattern.

A homogenous earthquake catalogue is required

to perform appropriate PSHA for a region. As the

earthquake catalogue in Iran is based on different

magnitude scales, converting these magnitude scales

to facilitate interpreting all the earthquakes at the

same scale is mandatory. Karimiparidari et al. (2013)

employed the orthogonal regression technique to

compile a seismic catalogue for Iran by converting
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the diverse types of magnitude into moment magni-

tude. Shahvar et al. (2013) published uniform

earthquake catalogues by dividing the territory of the

Iranian Plateau into two domains to derive empirical

relationships in order to convert the original magni-

tudes to a uniform scale. More details on and a

discussion of their study can be found in Mirzaei

et al. (2014) and Shahvar et al. (2014).

More recently, Mousavi-Bafrouei et al. (2015)

provided a new earthquake catalogue of Iran with all

the magnitudes de-clustered and converted into a

moment magnitude (Mw) catalogue. The time- and

distance-window algorithm of Gardner and Knopoff

Figure 1
Distribution of historical (pre-1900) and instrumental earthquakes (1900–2012) in the Iranian Plateau. The boundary of the Iranian

seismotectonic provinces is shown, based on Mirzaei et al. (1998)
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(1974) and Uhrhammer (1986), and the cluster

method proposed by Reasenberg (1985) were used to

eliminate the dependent shocks. The entire magnitude

range (EMR) method (Woessner and Wiemer 2005)

was used to evaluate the magnitude of completeness

of the seismotectonic provinces proposed by Mirzaei

et al. (1998). In the current study, we used the

earthquake catalogue provided by Mousavi-Bafrouei

et al. (2015) because of their detailed analysis of each

seismotectonic province. Table 1 shows the magni-

tude of completeness and b values for instrumental

earthquakes that occurred during three periods,

namely 1900–1963, 1964–1996 (i.e., after the

development of seismic networks in Iran), and

1997–2012 in each and all major seismotectonic

provinces of Iran. This assessment of completeness of

the Iranian earthquake catalogue has been confirmed

by the most recent studies (e.g., Talebi et al. 2017).

3. Estimation of Seismicity Parameters

The SPs can be determined in various ways, but,

after the fundamental work by Aki (1965), the max-

imum likelihood procedure has been the most popular

method for assessing SP. Unfortunately, the simple

estimator of the b value, as suggested by Aki (1965),

can be applied only when the seismic event catalogue

is complete. Several attempts have been made to

extend the Aki b value estimator in instances of

incomplete catalogues and, specifically, when the

level of completeness varies with time (Molchan

et al. 1970; Rosenblueth 1986; Rosenblueth and

Ordaz 1987; Kijko and Smit 2012). Of these, the best-

known and most applied method is the estimator

derived by Weichert (1980). The most common

approach to estimating SPs in instances where the

seismic event catalogue contains historic (largest

events only) and instrumental (complete catalogues,

with varying level of completeness) is the procedure

by Kijko and Sellevoll (1989, 1992).

Kijko and Sellevoll (1989, 1992) introduced a

maximum likelihood procedure to estimate SP (re-

ferred to as KS-1 and KS-2, respectively) that

combines the incomplete (historic) and complete

parts of a catalogue, with an account of the uncer-

tainty of the earthquake magnitude. In addition, the

procedure can accommodate the observational gaps

in the catalogue and the common phenomenon that

the completeness of the catalogue varies with time.

Despite KS-2 requiring numerical integration, the

approach is applied widely (e.g., Bayrak et al. 2009;

Kalaneh and Agh-Atabai 2016; Khodaverdian et al.

2016; Hamdache et al. 2017). However, the flexible

and generic KS-1 and KS-2 procedures do not

address the problem of the uncertainties associated

with the applied earthquake occurrence models. This

problem has been addressed recently by the intro-

duction of simple, mixed (compound) distributions

and the treatment of both the k and the b value as

random variables, each described by the gamma

distribution (Kijko et al. 2016). However, such

approach (utilising mixed distributions) is not unique.

An alternative method to consider model parameter

uncertainties is the application of the Bayesian for-

malism (Pisarenko and Lyubushin 1999; Tsapanos

et al. 2001; Tsapanos 2003; Tsapanos and Christova

2003; Yadav et al. 2013; Yazdani and Kowsari 2013).

Table 1

The magnitude of completeness (Mc) and b value for three time intervals in each and all major seismotectonic provinces of Iran (Mousavi-

Bafrouei et al. 2015)

Seismotectonic province Magnitude of completeness (Mc) b valuea

1900–1963 1964–1996 1997–2012 1900–1963 1964–1996 1997–2012

Alborz-Azarbayejan 5.0 4.4 4.0 1.000 0.852 1.060

Central-East Iran 5.7 4.5 4.1 0.898 0.738 1.030

Kopeh Dagh 4.8 4.7 4.0 0.767 0.104 0.945

Makran 5.4 4.7 4.4 0.760 0.918 1.260

Zagros 5.6 4.9 4.1 1.420 1.290 0.968

Iran 5.7 4.7 4.3 0.927 0.967 1.020

ab value = b/ln(10)
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After adopting the assumption that the earthquake

occurrence in time follows the Poisson distribution

and the earthquake magnitude is distributed accord-

ing to a doubly truncated G–R relation, the seismic

activity rate can be written as (McGuire and Arabasz

1990):

k mð Þ

¼ k mminð Þ exp �b m� mminð Þ½ � � exp �b mmax � mminð Þ½ �
1 � exp �b mmax � mminð Þ½ �

ð1Þ

where mmin is the level of magnitude completeness

and mmax is the area-characteristic maximum possible

earthquake magnitude. Usually, earthquake cata-

logues are incomplete and riddled with errors in

respect of magnitude determination. However,

worldwide, in most earthquake catalogues, both

incompleteness and the magnitude determination

errors decrease with time.

Among the SPs, mmax is considered a key

parameter in hazard studies. Any PSHA requires an

appropriate estimate of mmax for each source zone to

avoid the inclusion of unrealistically large earth-

quakes (Wheeler 2009). Although there is no

generally accepted technique to estimate mmax, the

two approaches currently used are the deterministic

and the probabilistic methods (Kijko 2004). Selecting

either the deterministic or the probabilistic method

depends on the available information related to fac-

tors such as the seismicity, geology, and tectonics of

the investigated region. In the deterministic approach,

in most cases, the estimates of mmax are obtained

through an empirical relationship, referred to as the

source-scaling relationship, which describes the tec-

tonic features and the seismological and geological

information for the region of interest (Wells and

Coppersmith 1994; Anderson et al. 1996; Stein and

Hanks 1998; Field et al. 1999; Somerville et al. 1999;

Hanks and Bakun 2002; Shaw 2009; Leonard 2010;

Shaw 2013). On the other hand, in the probabilistic

approach, mmax can be estimated by applying an

appropriate statistical procedure, as well as the

information related to the seismicity of the region

being investigated. Based on the available informa-

tion on earthquake magnitude distribution, Kijko

(2004) derived a generic equation for the estimation

of mmax in three different instances. These are (1)

when the magnitudes are distributed according to the

‘classic’, doubly truncated G–R relation, (2) when the

empirical magnitude distribution deviates moderately

from the G–R relation, and (3) when no specific type

of magnitude distribution is assumed. The ‘classic’

Kijko–Sellevoll probabilistic procedure can be esti-

mated as follows:

mmax ¼ mobs
max þ

E1 n2ð Þ � E1 n1ð Þ
b � exp �n2ð Þ þ mminexp �nð Þ

ð2Þ

where n denotes the number of seismic events,

n1 ¼ n= 1 � exp �b mmax � mminð Þð Þ½ �, n2 ¼
n1 exp �b mmax � mminð Þð Þ; and E1(z) is an exponen-

tial integral function, which can be approximated as

E1 zð Þ ¼ z2þ2:33zþ0:25
z z2þ3:33zþ1:68ð Þ exp �zð Þ. Therefore, the maxi-

mum possible earthquake in the region

is equal to the maximum observed magnitude plus

a positive correction factor. The value of the cor-

rection depends of the investigated area—the longer

the catalogue is, the smaller is the correction factor

(Kijko and Singh 2011).

Despite statistical procedures (particularly based

on the mathematical formalism of extreme values,

see, e.g., Vermeulen and Kijko 2017; Beirlant et al.

2018) providing powerful tools to evaluate mmax, they

have one weak point, namely that the available

seismic event catalogues are often too short and are

not able to provide reliable estimates of mmax.

Therefore, Bayesian procedures are considered

superior, as they allow the inclusion of alternative

independent information such as local geology, tec-

tonics, geophysical data, palaeoseismicity, similarity

to another seismic area, and the like. In most

instances, these procedures can provide assessments

of mmax that are more reliable than any other proce-

dure. Unfortunately, the frequently used Bayesian

procedure derived by Cornell (1994) contains a

mathematical flaw and should therefore be used with

particular caution (Kijko 2012).

4. Sensitivity Analysis

SA can reveal the relative contribution of each

input variable (parameter) to the output variability,

either qualitatively or quantitatively. To simplify the
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analysis problem, the uncertain variables that do not

contribute much to the uncertainty in the model

output can be fixed at their best estimates, rather than

be treated as random variables. On the other hand, the

variables that contribute significantly to the overall

output uncertainty should be analysed properly to

reduce the variability (Porter et al. 2002). These SA

methods are categorised often as either local or glo-

bal. In the local analysis, the sensitivity of each

uncertain input is computed by keeping the other

variables fixed and varying only the certain input

variable in a local area around its nominal value

(Gustafson et al. 1996). The local SA methods are

used frequently because of their relatively low com-

putational burden. However, one of the negatives of

the local SA approach is that the sensitivity study is

performed at the central estimate of input variables,

whereas the results could be quite different at another

point nearby. The local SA methods do not account

for the interactions between the input variables

(Saltelli et al. 2010). Moreover, these methods do not

quantify the difference in the importance of a given

unknown input variable compared with that of

another. In other words, they provide qualitative

sensitivity measures (i.e., the input factors are ranked

simply in order of significance; Feyissa et al. 2012).

In contrast, the global SA apportions the output

variability to the variability of the input variables

when they vary over their entire uncertainty domain.

Therefore, the quantitative relative importance of

each input variable can be measured by using the

global SA approach.

In this study, a global SA method based on

information-theory tools was used to quantify the

relationship between the input parameters and the

output distribution (Auder and Iooss, 2008). One of

the major advantages of our chosen SA approach is

its shorter computational time compared with that of

the most often used variance-based global SA

method.

Following Shannon (2001), let us assume that an

observation x from the domain X, with probability

p xð Þ, contains information of � log2 p xð Þ bits. The

entropy H Xð Þ of the probability distribution p xð Þ that

describes the uncertainty in a random variable

because of input errors is of the form

H Xð Þ ¼ �
Z

x2X

p xð Þ log2 p xð Þdx: ð3Þ

Following (3), the conditional entropy of the

model parameters H, given all possible observations

x, can be quantified as

H HjXð Þ ¼
Z

x2X

p xð ÞH Hjxð Þdx

¼ �
Z

x2X

Z

h2H

p xð Þp hjxð Þ log2 p hjxð Þdhdx

ð4Þ

The mutual information, I, quantifies the amount

of information held in a random variable through the

other random variable. In other words, it is defined as

the difference in output uncertainty with and without

knowledge of X

I H;Xð Þ ¼
Z

H

Z

X

p x; hð Þ log2

p x; hð Þ
p xð Þp hð Þ

� �
dxdh; ð5Þ

where p x; hð Þ is the joint probability distribution

equal to p hjxð Þp xð Þ.
Then the mutual information takes the simple

form

I H;Xð Þ ¼
Z

H

Z

X

p hjxð Þp xð Þ log2

p hjxð Þp xð ÞÞ
p xð Þp hð Þ

� �
dxdh

¼
Z

H

Z

X

p hjxð Þp xð Þ log2 p hjxð Þdxdh

�
Z

H

Z

X

p hjxð Þp xð Þ log2 p hð Þdxdh

¼� H HjXð Þ �
Z

H

log2 p hð Þ
Z

X

p hjxð Þp xð Þdx

2
4

3
5dh

¼� H HjXð Þ �
Z

H

p hð Þ log2 p hð Þdh ¼

� H HjXð Þ þ H Hð Þ
ð6Þ

Therefore, the parameter
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g ¼ I H;Xð Þ
H Hð Þ ¼ �H HjXð Þ þ H Hð Þ

H Hð Þ ¼ 1 � H HjXð Þ
H Hð Þ ;

ð7Þ

can be treated as a sensitivity index (Krzykacz-

Hausmann 2001). The defined sensitivity index takes

the values between 0 and 1 and describes the effect

(contribution) of input random variable X to the

variability of the output.

5. Uncertainty Analysis in PSHA

Conventionally, PSHA is carried out for a speci-

fied region to estimate the annual probability of

exceeding the ground motion levels for the parame-

ters of interest, e.g., peak ground acceleration (PGA)

or spectral acceleration. This process is dependent on

various inputs and models related to the identification

of possible earthquake sources, description of the

seismic activity for each source, selection of appro-

priate ground motion models (GMMs), and, finally,

the integration of all possible earthquake scenarios.

However, the uncertainties of the most basic param-

eters are not given and, likely, are not considered.

Therefore, it is vital to have a clear understanding of

which parameters affect the hazard results under

various circumstances, particularly for applications

that build on PSHA, which can be performed by SA

and UA.

In PSHA, the aleatory variability can be handled

by integrating over the distribution of ground motion

amplitudes about the median. On the other hand, the

epistemic uncertainty has been modelled by the use

of alternative models in a logic tree framework.

Another way to account for the epistemic uncertainty

in PSHA is the assignment of probability distribu-

tions to the model inputs (Molkenthin et al. 2017).

Accordingly, in this study, we employed uncertainty

analysis by using the Monte Carlo simulation tech-

nique and a Latin hypercube sampling method

(McKay et al. 1979; Robert 2004) to present an

example showing how the epistemic uncertainties

associated with the SPs affected the PSHA results.

Figure 2 shows schematically the procedure

employed for this analysis. Different sources of

uncertainties can be identified and quantified in all

the PSHA steps, including the characteristics of the

seismic sources, definition of the SPs, and the

selection of GMMs (Sabetta 2014). In particular, the

selection of appropriate GMMs is crucial since the

largest uncertainties in PSHA estimations can be

caused by uncertainties in GMMs (e.g., Hintersberger

et al. 2007; Scherbaum et al. 2005). The uncertainty

of the median predicted by different GMMs is epis-

temic and it is generally incorporated into PSHA by

using multiple GMMs in a logic tree or backbone

approaches (Atkinson et al. 2014; Bommer et al.

2015; Akkar et al. 2018; Douglas 2018a, b). There-

fore, to avoid the inclusion of uncertainties associated

with seismic sources and GMMs, a single line source

and one GMM were considered in this example. The

line source, defined as a uniform earthquake potential

source, is shown in step 1, along with a plan view of

the site and its orientation to the source. In step 2,

different sets of SPs were generated, with the corre-

sponding probability distributions. Subsequently, for

each generated SP, the ground motion intensity

measure of interest was estimated by the selected

GMM. Finally, PSHA calculations were performed

for each set of generated ground motions and the

different hazard curves were obtained accordingly.

6. Results and Discussion

Any deficiencies in PSHA assessments have their

roots in the application of incorrect models, as well as

the use of uncertain inputs (Klügel 2008; Musson

2012). Therefore, we investigated the influence of the

uncertainties associated with the SPs on the PSHA

results. Using the Monte Carlo methods and infor-

mation theory, UA and SA, respectively, were

conducted for the five different seismotectonic pro-

vinces of Iran. As regards UA, we performed

thousands of MC simulations, with the data for each

run in the input catalogue randomly sampled from the

predefined probability distributions. The Latin

hypercube sampling method was used in the com-

putations to generate random stochastic inputs from

the respective probability distributions. The superior

efficacy of this method has been proven in terms of

convergence and robustness (McKay et al. 1979).

However, the analysis should be carried out for

Vol. 176, (2019) Quantifying Seismicity Parameter Uncertainties and Their Effects 1493



independent input parameters. The relevant scatter

diagrams of the SPs and their Pearson correlation

coefficients (q) for Central-East Iran are shown in

Fig. 3. Only the results for Central-East Iran are

presented here for the sake of brevity; however, the

same behaviour was observed for the other seismo-

tectonic provinces. The values close to ± 1 indicated

a strong correlation between the two variables. The

value close to ? 1 indicated that as one variable

increased, the value of the second variable also

increased, i.e., the variables were correlated posi-

tively. Conversely, the value close to –1 showed a

negative correlation, meaning that as one variable

increased, the value of the other variable decreased.

To perform the information-theoretic sensitivity

analysis, a probabilistic approach is used by evalu-

ating the model for multiple sets of randomly and

independently selected input values drawn (Lüdtke

et al. 2008). From Fig. 3, the high correlation

between b, k, and mmin indicates that these parame-

ters should not be analysed together because many of

the SA methods are intended for cases where the

inputs are mutually independent (Eggels and Crom-

melin 2018).

The uncertainty analysis deals with the propaga-

tion of uncertainty through a model, from inputs to

outputs. In other words, the UA investigates the effect

of input parameter uncertainties on the variability of

the outputs. In this vein, the uncertainty in the SPs is

modelled using a normal distribution with a mean and

Figure 2
Schematic illustration of the basic steps of uncertainty analysis in the PSHA

1494 M. Kowsari et al. Pure Appl. Geophys.



standard deviation proposed in Mousavi-Bafrouei

et al. (2015). The results of the UA on the SPs are

shown in Fig. 4. This figure shows the uncertainty in

the output (i.e., the SPs) due to the variability of

inputs along with the histograms of SPs and the

corresponding fitted, log-normal distributions.

However, only the histograms of the SPs in Alborz-

Azarbayejan are presented here for the sake of

brevity. The results can be used for Monte Carlo

PSHA, where the generated synthetic sub-catalogues

are based on SP distributions (Musson 1999, 2004;

Atkinson 2012; Assatourians and Atkinson 2013).

Figure 3
Scatter diagrams of seismicity parameters, with the value of the correlation coefficient (q) for Central-East Iran

Figure 4
Histograms of seismicity parameters in the Alborz-Azarbayejan seismotectonic province
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We used the information theory approach to

investigate the influence of the uncertainty in each

input variable on the SPs. To estimate the Krzykacz–

Hausmann sensitivity indices of entropy and the

mutual parameter dependence, we used the nearest-

neighbour procedure (Kozachenko and Leonenko

1987; Kraskov et al. 2004). A major advantage of the

chosen procedure is its relatively short computational

time compared with that of the density estimation

method (Huoh 2013). It should be noted that the

applied nearest-neighbour algorithm requires a rea-

sonably large sample size. Some preliminary tests

showed that a sample size of 5000 is required to

assure the reliable assessments of the sensitivity

values.

In our analysis, we used the earthquake catalogue

provided by Mousavi-Bafrouei et al. (2015). The

complete part of the catalogue was divided into

periods with different threshold magnitudes, namely

1900–1963 (Mc1), 1964–1996 (Mc2), and 1997–2012

(Mc3). As the applied catalogue is highly inhomoge-

neous, a special effort was made to assess the

uncertainty of the earthquake magnitude determina-

tion, as it plays a crucial role in the estimation of the

SPs. Different magnitude determination uncertainties

were assumed for the historical and the instrumental

parts of the catalogue. Regarding the instrumental

part of the catalogue, the uncertainty of the Mw

magnitudes of some earthquakes has been reported

occasionally by various researchers (e.g., Ambraseys

2001) and agencies. Consequently, the effect of the

magnitude determination uncertainty was also con-

sidered, denoted as MU in Table 2. The results

showed that the last complete part of the catalogue

(Mc3), which contains the minimum observed mag-

nitude, played a crucial role in the estimation of the

hazard parameters. In other words, the minimum

magnitude, which is defined as the lower limit of

integration over the earthquake magnitudes, was the

crucial parameter input among the threshold magni-

tudes (Bommer and Crowley 2017).

Various definitions of the maximum possible

earthquake magnitude exist; however, in this study, it

refers to the upper limit of the earthquake size in a

given region. This implies that no earthquake is

expected to exceed this maximum possible earth-

quake magnitude (Kijko 2004). Moreover, there are

several probabilistic procedures to estimate the mmax

(for more details, see Kijko and Singh 2011). All the

procedures are based on the underlying principle that

the estimated mmax value is equal to the maximum

observed magnitude plus a positive correction factor.

Therefore, in the SA, the effect of model selection is

also considered as one of the inputs. The other inputs

are the maximum observed magnitude, magnitude

uncertainty and the earthquake catalog with different

threshold magnitudes for three time intervals, namely

1900–1963 (Mc1), 1964–1996 (Mc2), and 1997–2012

(Mc3). The contribution of each input on the mmax is

shown in Fig. 5. The results showed that the mmax

values tended to be controlled by the maximum

observed value in the catalogue, as has been shown

already by Musson (2004). As most catalogues cover

a relatively short time period and the occurrence of

mmax is rare relative to the period of observation, the

probabilistic approaches might underestimate the

mmax estimates in a region under study. Thus, pale-

oseismic investigations can be used to get more

reliable estimates of the maximum earthquake mag-

nitude (McCalpin 2009). Salamat et al. (2017)

calculated the confidence intervals for the maximum

magnitude in six seismotectonic zones of Iran.

However, their analysis did not provide clear results,

as, in some regions, mmax was estimated with

acceptable confidence, whereas, in others, the

uncertainty of the estimated mmax was unrealistically

high. As the magnitude uncertainty is another

Table 2

Sensitivity indices (percentage) for the different seismotectonic

provinces of Iran and the totals for the country

Output Input

variables

AA CE KD ZG MK IR

b Mc1 1.48 2.37 0.67 1.37 3.22 1.77

Mc2 3.58 2.27 1.27 2.50 10.75 4.07

Mc3 91.18 95.12 97.52 95.46 84.95 92.84

MU 3.77 0.23 0.54 0.66 1.09 1.30

k Mc1 4.93 7.48 17.80 20.01 1.95 16.10

Mc2 0.68 1.41 2.49 0.41 3.47 1.74

Mc3 74.54 84.69 71.61 75.67 91.88 75.92

MU 18.11 4.22 7.21 1.32 1.10 3.24

Mmaxobs 1.75 2.19 0.89 2.56 1.59 2.97

AA Alborz-Azarbayejan, CE Central-East Iran, KD Kopeh Dagh,

ZG Zagros, MK Makran, IR Iran, MU magnitude uncertainty in

earthquake catalogue
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important parameter that affects the estimation of

mmax, the earthquake catalogue has to be analysed,

checked, and prepared meticulously. The choice of

the earthquake occurrence model, as well as the

choice of the estimation procedure (Kijko and Singh

2012; Vermeulen and Kijko 2017; Beirlant et al.

2018), can also affect the estimated value of mmax. As

can be expected, the choice of the level of com-

pleteness has a marginal effect on the estimated mmax.

In this study, PSHA was applied to a hypothetical

site located in Iran. To show the effect of the

uncertainties associated with the SPs, we used a

single line source and specified GMM proposed by

Akkar and Bommer (2010). The site was assumed to

be located 30 km from a single fault, which could

produce earthquakes up to magnitude 7 (Fig. 2).

Figure 6 shows the results of the uncertainty analysis

on PSHA for spectral accelerations corresponding to

10 and 2% PE in 50 years. The figure illustrates the

mean ± 2 standard deviations of the uniform accel-

eration response spectra. The values of the standard

deviation varied from 0.11 to 0.35 in the base 10

logarithms, indicating that the uncertainty associated

with the SPs increased with an increase in the

Figure 5
Pie charts of factor prioritisation sensitivity indices for Mmax in the different seismotectonic provinces of Iran and the country as a whole

Vol. 176, (2019) Quantifying Seismicity Parameter Uncertainties and Their Effects 1497



structural periods. In other words, the predicted

ground motion was more sensitive at higher periods

than at lower ones. Such a dependency on the struc-

tural periods has been pointed out previously, e.g., by

Sokolov et al. (2004, 2009). In addition, we observed

that when the ground motion levels changed (i.e., for

10% and 2% PE in 50 years), the epistemic uncer-

tainties of the PSHA estimates remained unchanged.

As a result, the uncertainties of the SPs affected the

hazard curves significantly and led to considerable

variability in the intensity measures of ground

motion.

7. Conclusion

In PSHA, all possible earthquake magnitudes,

distances, and predicted ground motions are consid-

ered, along with their associated uncertainties.

However, it is important to assess the effect of the

PSHA uncertainties associated with the uncertainty of

the input data. Furthermore, estimating the SPs

requires knowledge of the different information,

which is always uncertain. In the first part of this

study, UA and SA were performed to identify the

most dominant factors that affected the estimated

SPs. Both UA and SA were conducted for five major

seismotectonic provinces in Iran that have diverse

seismological characteristics. However, the SA

showed quite similar behaviour in all the analysed

regions. Among the input variables, including dif-

ferent threshold magnitudes, maximum magnitude,

and magnitude uncertainty in the earthquake cata-

logue, it was demonstrated that the last (most

complete) part of the catalogue (Mc3) had a most

significant effect on the estimates of the b and k
parameters. However, regarding mmax, the maximum

observed earthquake and the magnitude determina-

tion uncertainty were the most influential factors.

In the second part of the study, the effect of the

uncertain input parameters on the PSHA was inves-

tigated by using the Monte Carlo simulation. The

analysis showed that the uncertain SPs had a signif-

icant effect on the estimated hazard characteristics.

The effect of the uncertainty of the SP parameters on

the seismic hazard curves for two analysed ground

motion levels was fairly similar; however, this

increased gradually with the increasing structural

periods.

Figure 6
Mean ± 2 standard deviations of the uniform hazard spectra obtained from Monte Carlo simulations: a 10% probability of exceedance in

50 years, b 2% probability of exceedance in 50 years
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In conclusion, the quality of the input data is the

key factor that determines the quality of the seismic

hazard estimates. Unfortunately, this obvious factor is

often ignored in calculating and interpreting seismic

hazard characteristics. In earthquake engineering,

accounting for uncertainties in a seismic hazard is

costly; therefore, the value of this study lies in

helping to improve the understanding of the source

and degree of such uncertainties.
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