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Abstract—The direct problem of simple geometrical bodies

plays an important role in the gravimetrical processing and mod-

elling tools. We focused on the 3D rectangular prism, which is

widely used in such processes. Even though the solution for this

body is well known, there are still some issues about it, which are

not answered or not answered completely in the available literature,

e.g. the presence of the singularities in the source-free points or a

continuity of the solutions. We present the singularity-free solution

valid for the each position of the calculation point. Next, the

analysis of the two basic types of the formulae for the 3D rectan-

gular prism’s gravitational effect is held on. We discuss the ways of

their derivation, the validity and the problems connected with them.

Later, special attention is paid at the problems with the citation of

these two formulae types within the gravimetrical literature.

Key words: Gravimetry, direct problem, 3D rectangular

prism.

1. Introduction

The right rectangular prism is a good and simple

way to approximate (in fact any) a 3D body. The

density of this prism can be constant, if there are a

large number of them and they are sufficiently small

to model any density distribution. Only limitation

was the calculation time. However, this problem

could be almost neglected with the massive

improvement of the computing technology in the

present. One can say that approximation with the

polyhedral bodies is better, or more suitable or more

accurate. In connection with this, we can see the large

‘‘reincarnation’’ of the direct problem solutions for

the polyhedron bodies in the geodetic literature in the

last several years (e.g. Hamayun et al. 2009; Çavşak

2012; D’Urso 2014; Werner 2017 a.o.). However,

any polyhedron can be approximated by a system of

rectangular prisms with the constant density with a

given or required accuracy of the calculated gravita-

tional effect. Because of this, some ‘‘refreshment’’ of

the knowledge connected with a right rectangular

prism and its gravitational effect is given in this

paper, while there are still some issues which have to

be answered.

According to our knowledge (based on the data

from the citation databases), the most cited paper

dealing with the effect of the right rectangular prism

is Nagy (1966). There are some problems connected

with this solution (validity, completeness, singulari-

ties) and we tried to identify the right source of these

problems and explain them. Next, the formula of

Sorokin (1951), as representative of another solu-

tion’s type, is discussed while similar problems occur

here too. Finally, the questions connected with the

citations in this area of the direct problem research

are investigated.

2. Theory Elements

We will start with some very elements of the

direct problem branch. The gravitational potential of

the 3D body in the Cartesian coordinate system is

given by (e.g. MacMillan 1930):

Vðx; y; zÞ ¼ G

ZZZ

s

dmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� xÞ2 þ ðg� yÞ2 þ ðf� zÞ2

q ;

ð1Þ

where dm is the mass element: dm ¼ rðn; g; fÞds; r is

the function of the density distribution within the

body and G is the gravitational constant, ds is the

volume element. The used symbolism is chosen as
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follows: the Greek letters are related with the position

of a mass element and Latin letters are connected

with the calculation point (Fig. 1). The vertical axis

of used system is pointing upwards. This is important

to mention, because one can find the publications

(e.g. Li and Chouteau 1998; Nagy et al. 2000 a.o.),

where this axis is orientated downwards—in ‘‘geo-

logical’’ way. This modification was used mostly in

the past (but still occurs from time to time in the more

recent publications, too) to avoid the depth to be a

negative number. Note that, there is in fact no pre-

ferred orientation of coordinate system—the terms

‘‘horizontal’’ and ‘‘vertical’’ have to be understood

rather as a ‘‘names’’ of the axis not as the expression

of their orientation. When the direct problem is

solved, there is only the body and the calculation

point, i.e. there is none ‘‘external’’ gravity field to tell

us ‘‘where’’ the vertical/horizontal direction is. So,

the term ‘‘vertical’’ is connected with the z axis and

‘‘horizontal’’ is assigned with the x and y axis.

The gravitational attraction vector is then given

by:

g ¼ rV ¼ oV

ox
iþ oV

oy
jþ oV

oz
k: ð2Þ

Calculated like this, the resultant vector g is

pointing from the calculation point to the body, as

common agreement says.

3. The Gravitational Attraction of the Rectangular

Prism

Basically, there are two ways to find the compo-

nents of gravitational attraction vector g—to find the

potential in the first step, and next, to carry out the

derivatives with respect to variables x, y and z. The

second option is to find the derivatives of the inte-

grated function in Eq. (1) first, and then carry out the

integration. This approach is fully valid for the

potential itself and its first derivatives (e.g. Kellogg

1929) for any position of the calculation point (out-

side, inside, on the surface of the prism). According

to this, the components of g are:

Vx ¼
oV

ox
¼ Gr

ZZZ

s

n� x

R3
dn dg df; ð3Þ

Vy ¼
oV

oy
¼ Gr

ZZZ

s

g� y

R3
dn dg df; ð4Þ

Vz ¼
oV

oz
¼ Gr

ZZZ

s

f� z

R3
dn dg df; ð5Þ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� xÞ2 þ ðg� yÞ2 þ ðf� zÞ2

q
: We can

see, that it is enough to solve the first integration

(Eq. 3) and the two others are just its variations. So,

now we will focus on the detailed solution of the first

integration. With the substitution: X ¼ n� x,

Y ¼ g� y, Z ¼ f� z; and with the corresponding

change of the symbol R to: R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2 þ Z2

p
;

Eq. (3) can be rewritten:

Vx ¼ Gr
Z

X

Z

Y

Z

Z

X

R3
dX dY dZ: ð6Þ

The integration with the respect to the variable X

is quite simple:

Vx ¼ �Gr
Z

Y

Z

Z

1

R

� �
X

dY dZ: ð7Þ

The integration with the respect to the variable Y

can be carried out with the help of substitution t ¼ Y
R

and the result is:

Vx ¼ �Gr
Z

Z

½lnðY þ RÞ�X;Y dZ: ð8Þ

z

y

x
dm (ξ,η,ζ)

P (x,y,z)

ξ2

ξ1

η1 η2

ζ1

ζ2
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F

Figure 1
The scheme of the rectangular prism and the mass element (dm)

with the position of the calculation point P in the Cartesians

coordinates
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The per partes method is used now and the result

of the last integration (through the substitution

v ¼ tffiffiffiffiffiffiffi
t2þb

p ) is:

Vx ¼ �Gr

Z lnðY þ RÞ þ Y lnðZ þ RÞ � X arctg
YZ

XR

� �
X;Y ;Z

:

ð9Þ

The result in this form is valid 8X 6¼ 0 and if

X 6¼ Y 6¼ Z 6¼ 0 what results in the contradiction with

the potential theory, because this solution has the

singularities in the source-free region. The geomet-

rical sense of X ¼ 0 is that the calculation point

(named, e.g. P) lies in the planes normal to the x-axis,

assigned by the front and back facets of the prism

(rectangles ABCD and EFGH), see Fig. 1, while the

situation X ¼ Y ¼ Z ¼ 0 refers to the calculation

point located in the one of the prism’s vertices.

Nagy et al. (2000) refer to this problem and cal-

culate the limits for these crucial positions, but we

see the problem in this approach. The existence of the

limit in the given point P, does not necessarily mean

that the function is continuous in P and more, the

limit in P describe only the situation ‘‘very close’’ to

that point, but tell us nothing about what happens

directly in the given point, as clear from the definition

of the limit. The theory says that potential and its first

derivatives must exist, be regular, finite and contin-

uous in the each point (e.g. Kellogg 1929), which is

why we cannot be satisfied with the limits as Nagy

et al. (2000). The desired solution must fulfilled all

these conditions for X ¼ 0; and so, it must be proven

that the values in these calculation point’s positions

are the same as the limits obtained by Nagy et al.

(2000). This can be done by substituting the corre-

sponding boundaries ðX1 ¼ 0 _ X2 ¼ 0Þ directly after

the integration with the respect to the variable X what

will give us some partial results for these crucial

positions of the calculation point (the same approach

can be used for the case X ¼ Y ¼ Z ¼ 0). The com-

bination of Eq. (9) and such partial results will give

us the complete continuous solution for the each

position of the calculation point. It is clear that the

program realization will be complicated in the form

of the combination of the partial results, and so, the

better alternative is to modify Eq. (9) to contain these

partial solutions for the analyzed problematic posi-

tions of the calculation point. One of the possible

modifications could be:

Vx ¼ �Gr

Z lnðY þ R þ 1� signjZjÞ þ Y lnðZ þ R þ 1� signjY jÞ
�X arctg YZ

XRþ1�signjXj

" #

X;Y ;Z

:

ð10Þ

This formula is fully valid even for the calculation

points located inside of the prism. There is, of course,

another simple possibility—choose the sampling step

precisely to avoid the calculation point hit these

crucial positions, or to shift the calculation point by

adding a small number e to its coordinates (according

to our testing made in the MatLab—this approach

works satisfactory for e � 10�6 m).

The last crucial task is the position of the calcu-

lation point on the surface of the prism—on the rest

of the facets (upper, lower, right, left), the edges and

the vertices (precisely, the edges are including in the

facets, so they have not to be discussed separately,

but the vertices have to be discussed—because of the

‘‘R’’ term within the solutions). The properties of the

potential and its first derivatives mentioned before

must hold in these points too. This is true for

Eq. (10), but is not for Sorokin (1951), Nagy (1966)

and the others. The calculation point located on the

surface of the prism is problem for the higher order

derivatives—they are not continuous here. After a

similar analysis for the rest of the potential’s

derivatives (Vy and Vz), we will obtain:

Vy ¼ �Gr

Z lnðX þ R þ 1� signjZjÞ þ X lnðZ þ R þ 1� signjXjÞ
�Y arctg XZ

YRþ1�signjYj

" #

X;Y;Z

;

ð11Þ

Vz ¼ �Gr

X lnðY þ R þ 1� signjXjÞ þ Y lnðX þ R þ 1� signjY jÞ
�Z arctg XY

ZRþ1�signjZj

" #

X;Y;Z

:

ð12Þ

Finally, substituting Eqs. (10)–(12) into Eq. (2)

gives us the singularity-free solution of the direct

problem for the rectangular prism with the constant

density for all positions of the calculation point.
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4. The Review of Nagy (1966) Solution

The discussed formula of Nagy (1966) Eq. (7)

reads:

Vzð0; 0; 0Þ ¼ Gq

x lnðy þ rÞ þ y lnðx þ rÞ � z arcsin
y2 þ z2 þ yr

ðy þ rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
" #z2;y2;x2

z1;y1;x1

;

ð13Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, q is the density and xi, yi,

zi i = 1, 2 are the integration boundaries, which

defines the size and the position of the prism. This

formula is derived for the calculation point placed in

the origin of the coordinate system. The calculation in

the other points is made by changing of the integra-

tion boundaries.

There is important issue with this formula. If the

vertical projection of the body is crossing the hori-

zontal axis, the discussed formula cannot be used

immediately. In such cases, the integration must be

divided and carried out from 0 to the upper boundary

(x2) and then from 0 to the lower boundary x1, where

the absolute values of theses boundaries has to be

used. So, the horizontal boundaries cannot have the

different signs. Practically, the body is divided into

the two parts, and the one with the boundary of the

negative sign is placed in the positive part of the axis,

in this process. The author himself mentioned this,

but he does not deal with it as with the problem.

Some other authors mentioned it too (e.g. Banerjee

and Das Gupta 1977; Li and Chouteau 1998), but

they did not explain the reason for this, nor pointed

the source of this problem in the Nagy’s derivation.

We will take a closer look on his derivation and try to

identify where this problem begins.

The first two integrations with the respect to the

variables z and y are:

Vz ¼ Gq
Z

x

Z

y

Z

z

z

r3
dx dy dz ¼ �Gq

Z

x

Z

y

1

r
dy dx

¼ �Gq
Z

x

lnðy þ rÞ dx:

ð14Þ

The last integration (with respect to the variable x)

is the crucial point of the whole derivation. Next, the

per partes method is used:

Vz ¼ �Gq x lnðy þ rÞ �
Z

x

x2 dx

rðy þ rÞ

2
4

3
5

y;z

: ð15Þ

The task is reduced to find the last integration.

Here is the place where author made the crucial steps

which lead us to the above-mentioned problems

connected with his solution. The author used the

following substitution:

u ¼ y þ r: ð16Þ

Here is the main problem. Such substitution is

valid only for the one-by-one functions (injections)

(e.g. Rektorys 1968). This is why the substitution

works correctly, only if the both boundaries are a

positive numbers—in such interval the function is an

injection. Once, the horizontal axis is crossed (the

boundaries are of a different sign), the function does

not meet the injection condition, because the function

under the integration sign is even. Next, the author

stated that:

x2 ¼ ðu � yÞ2 � y2 � z2: ð17Þ

This expression is used to calculate dx:

2xdx ¼ 2ðu � yÞdy ) dx ¼ u � y

x
: ð18Þ

There is another problem. Author wrote that:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu � yÞ2 � y2 � z2

q
; ð19Þ

which gave him the expression of dx:

dx ¼ u � yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu � yÞ2 � y2 � z2

q : ð20Þ

This step is not completely valid. Precisely it

should be:

jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu � yÞ2 � y2 � z2

q
: ð21Þ

Author’s derivation is then valid only for the

positive part of the integrated function, again. In one

word, the usage of Eq. (19) instead of Eq. (20) leads

to the loss of generality of the final solution. This

issue can be avoided by previously mentioned
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procedure—splitting body into the two parts—which

are taken separately. From the programming point of

view, this is ‘‘unforced’’ complication, while more

general solutions are available.

Next, it is important also to mention the fact

pointed out by Banerjee and Das Gupta (1977,

p. 1054), that the formula of Nagy (1966) is not

independent in the choice of the x- and y-axes (i.e.

when the x-and y-axes are interchanged). This is

caused by the problems with the used substitution in

the integration in the x-direction. Also, when setting

the limits x1, x2, y2 and y2 to the infinity we should get

the well-known gravitational attraction of an infinite

Bouguer slab, which is a true in the case of the

Sorokin’s (1951) formula (which will be discussed

next), but cannot be achieved in the case of the Nagy

(1966) formula (Banerjee and Das Gupta 1977,

p. 1055).

5. The Review of Sorokin (1951) Solution

The discussed formula of Sorokin (1951) reads

[with the symbolism similar to (1)]:

Vzð0; 0; 0Þ ¼ �Gr

n lnðgþ RÞ þ g lnðnþ RÞ þ farctg
fR

ng

� �n2;g2;f2
n1;g1;f1

;

ð22Þ

where G is the gravitational constant, r is the density,

and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2 þ f2

p
. Note that, the vertical axis

of the used coordinate system is oriented downwards.

In the contrast to the previously analyzed formula of

Nagy (1966), it contains the inverse tangent function.

Such formulae were derived earlier by, e.g. Everest

(1830) or MacMillan (1930), but the Sorokin’s ver-

sion is, according to our knowledge, the first in this

simple and usable form (note that a very similar

solution was published in the same year: Mader

1951).

The brief look show us there are the expected

problems with this formula—existence of the singu-

larities in the source-free points, and more—this

solution is not continuous in the horizontal plane

above (below) the prism. Several similar solutions

were later derived by other authors, e.g. Haáz (1953)

or Banerjee and Das Gupta (1977):

Vzð0; 0; 0Þ ¼ �Gr

n lnðgþ RÞ þ g lnðnþ RÞ � farctg
ng
fR

� �n2;g2;f2
n1;g1;f1

:

ð23Þ

We can see that this formula is a non singularity-

free version of Eq. (12). The difference between (22)

and (23) is in the argument of the inverse tangent

function—it is reciprocal in the Sorokin’s formula. Li

and Chouteau (1998) stated that: ‘‘these two solutions

are equivalent, what can be easily demonstrated by

the well-known arctgðaÞ ¼ p
2
� arctg 1

a

� �
and p

2
is

cancelled by the summation’’. This statement is not

correct for the all possible positions of the prism and

the calculation points. The mentioned property of the

inverse tangent function is not used properly. It

should be (e.g. Gradshteyn and Ryzhik 1962):

arctg(aÞ þ arctg
1

a

� �
¼ sign(aÞ � p

2
a 6¼ 0: ð24Þ

According to this, Eq. (22) can be then modified

to:

Vzð0; 0; 0Þ ¼ �Gr

n lnðgþ RÞ þ g lnðnþ RÞ þ f �sign
ng
f

� �
� p
2
þ arctg

fR
ng

� �� �n2;g2;f2
n1;g1;f1

:

ð25Þ

Now, the factor p/2 is not cancelled in the sum-

mation, and equivalency of (25) and (23) is obtained.

Another possibility is to replace the inverse tangent

function in (22) by the multi-valued inverse tangent,

signed as ATAN2(a, b) in the computer languages,

which generalize the previously mentioned property

(24).

Despite the problem with the continuousness of

Sorokin’s solution, it can be easily fixed and the

satisfactory solution is obtained, even though it is not

a singularity-free, but still better than the previously

analyzed solution of Nagy (1966).
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6. Quotation Problems

The problems connected with the paper of Nagy

(1966) do not stop with the less general prism’s

gravitational effect formula. The subject we want to

refer to is connected with the citations of the dis-

cussed paper. Let us focus on the other parts of Nagy

(1966). The author mentioned the older available

formulae of Sorokin (1951) and Haáz (1953). We

prove these two solutions can be modified to be

equivalent (even if obtained by the different approa-

ches—Haáz applied the Euler’s theorem for the

homogenous functions).

The problem we want to focus on is the fact that

paper Nagy (1966) is the most cited paper dealing

with the gravitational attraction of the right rectan-

gular prism. We did check tens of these citing papers

that these authors are using, in fact, the ‘‘Sorokin’s

type’’ of the discussed formula with the inverse tan-

gent component, because it does not require the

special procedures if the body is crossing the hori-

zontal axes. Even Nagy himself did as well in his

later papers, (see, e.g. Nagy 1973 or Nagy et al.

2000), but he did not cite the Sorokin’s work.

However, it happens somehow, that the attraction

of the prism and the paper Nagy (1966) is taken as the

‘‘synonyms’’. This is not right because his formula

has limited validity and is not easy to apply or to be

programmed. One reason for this can be that Sorokin

(1951) is not so easy to access, and more, there is no

English translation of it. However, the precise cita-

tion should at least be something like, e.g. ‘‘Sorokin

(1951) in Nagy (1966)’’. Of course, it is not Nagy’s

fault, that the commonly used formula is not correctly

cited. However, the credit has to go to the paper,

where the formula, used by majority of the commu-

nity, occurs and it is definitely not Nagy (1966).

Although, Sorokin (1951) is not the first solution

of the rectangular prism effect (see, e.g. Everest

1830; MacMillan 1930), but, it is for the first time

(according to our knowledge) where the solution is

presented in such ‘‘nice and simple’’ closed form

(along with Mader 1951 as well). These older authors

usually substitute the integration boundaries

throughout the derivation, what results into the 24

terms and looks ‘‘macabre’’ at the first sight.

So, the question is: whom to cite to stay consis-

tent? From those papers, which contain more general

solutions for the ‘‘mathematically’’ orientated coor-

dinate system (the positive part of the vertical axes is

pointing upwards—the depth is a negative number)

and easily accessible, it seems in our opinion, that it

could be the papers Mader (1951) or Banerjee and

Das Gupta (1977), despite some typographical errors.

These papers did not specify how to calculate the

effect in the other points outside of the origin of the

coordinates, but this is not a serious problem as it can

be managed by simple substitution.

7. Conclusion

In the presented paper, we have tried to explain in

an analytical way the problems which occur when

using the formula for a 3D rectangular prism’s

gravitational effect calculation derived by Nagy

(1966), as the most cited paper, and the better alter-

natives derived by Sorokin (1951), Mader (1951) or

Banerjee and Das Gupta (1977). The main problem of

the Nagy’s solution occurs when entering the nega-

tive limits of the prism in the x-direction and it is

caused by the used substitution in the integration in

the x-direction during the derivation of the formula.

This situation results in the more complicated algo-

rithm realization when compared with the formula of,

e.g. Sorokin (1951). The much more straightforward

concept of the Sorokin’s formula, during the algo-

rithm realization is a great advantage in the

comparison of the discussed and analyzed Nagy’s

formula. The problems connected (discontinuous-

ness, singularities) with the Sorokin’s formula can be

fixed in a more simple manner than those of the

Nagy’s solution. Next, we revisited the problem of

the proper quotation of some papers connected with

the direct problem for the rectangular prism where

Nagy (1966) is the leading paper. We show that there

are the papers available, where the solution is more

general, and in fact, really used by the community.

We suggest stopping the improper citations of the

incomplete formula of Nagy (1966) and turning the

focus to the better alternatives.

The singularity-free formula, valid in the each

position of the calculation point, for all the
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components of the gravitational attraction vector, is

presented too.
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