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Abstract—Assessment of the land surface models (LSMs) on

monsoon studies over the Indian summer monsoon (ISM) region is

essential. In this study, we evaluate the skill of LSMs at 10 km

spatial resolution in simulating the 2010 monsoon season. The

thermal diffusion scheme (TDS), rapid update cycle (RUC), and

Noah and Noah with multi-parameterization (Noah-MP) LSMs are

chosen based on nature of complexity, that is, from simple slab

model to multi-parameterization options coupled with the Weather

Research and Forecasting (WRF) model. Model results are com-

pared with the available in situ observations and reanalysis fields.

The sensitivity of monsoon elements, surface characteristics, and

vertical structures to different LSMs is discussed. Our results reveal

that the monsoon features are reproduced by WRF model with all

LSMs, but with some regional discrepancies. The model simula-

tions with selected LSMs are able to reproduce the broad rainfall

patterns, orography-induced rainfall over the Himalayan region,

and dry zone over the southern tip of India. The unrealistic pre-

cipitation pattern over the equatorial western Indian Ocean is

simulated by WRF–LSM-based experiments. The spatial and

temporal distributions of top 2-m soil characteristics (soil temper-

ature and soil moisture) are well represented in RUC and Noah-MP

LSM-based experiments during the ISM. Results show that the

WRF simulations with RUC, Noah, and Noah-MP LSM-based

experiments significantly improved the skill of 2-m temperature

and moisture compared to TDS (chosen as a base) LSM-based

experiments. Furthermore, the simulations with Noah, RUC, and

Noah-MP LSMs exhibit minimum error in thermodynamics fields.

In case of surface wind speed, TDS LSM performed better com-

pared to other LSM experiments. A significant improvement is

noticeable in simulating rainfall by WRF model with Noah, RUC,

and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the

importance of choosing/improving LSMs for simulating the ISM

phenomena in a regional model.

Key words: Indian summer monsoon, high-resolution model,

land surface models, error analysis.

1. Introduction

Indian Summer Monsoon (ISM) is one of the

spectacular features of the global atmospheric general

circulation and is an important potential tipping ele-

ment of the climate system (Krishnan et al. 2003).

India receives more than 80% of the annual rainfall

during summer monsoon months (e.g., Webster et al.

1998; Rajeevan et al. 2013) and reliable monsoon

prediction is highly challenging task due to its nature

of complexity (Webster et al. 1998; Prasanna 2014).

It is recognized that the interactions between land,

ocean, and atmosphere strongly influence the ISM

(e.g. Levermann et al. 2009; Boos and Kuang 2013).

Moreover, a strong and rapid heating (cooling) of the

land in the seasonal cycle has a large impact on

atmospheric differential heating (cooling) between

land and ocean. The changes in land surface fields

modulate the surface fluxes, temperature, circulation,

and precipitation patterns (Levermann et al. 2009;

Unnikrishnan et al. 2013). Asharaf et al. (2012)

demonstrated that land surface process affects the

ISM in a complex way due to the interactions

between land and atmosphere.

The previous studies confirmed that the land and

atmosphere interactions have been identified as one

of the important sources of monsoon variability (e.g.,

Shukla and Mintz 1982; Webster 1983; Meehl 1997;

Ferranti et al. 1999; Koster et al. 2004; Takata et al.

2009; Saha et al. 2012). It is also worth mentioning

that the land surface is a slowly varying forcing of the

ISM. Due to lack of land surface observations, it

restricts the ability to demonstrate the impact of land

surface on the monsoon rainfall. Therefore, it is

essential to understand and improve the physical
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process-associated ISM using high-resolution regio-

nal models.

In recent years, regional models have been

adopted for a wide variety of applications including

weather and climate forecasting (e.g., Liang et al.

2012; Wang et al. 2004). The dynamical downscaled

regional models significantly improved the repre-

sentation of ISM due to the advantage of spatial

resolution and more accurate representation of dif-

ferent physical process (Giorgi 2001; Wang and Yang

2008; Hariprasad et al. 2011; Liang et al. 2012;

Srinivas et al. 2013; 2015; Raju et al. 2014, 2015a).

In regional models, the land surface parameterization

(LSM) plays an important role as it controls the

surface fluxes of momentum, heat, and moisture

between the surface and atmosphere (Betts et al.

1996; Pielke 2001; Srinivas et al. 2014).

The performance of the model highly depends on

the representation of different physical processes and

is mainly from LSMs through the representation of

land–atmosphere interactions (Viterbo and Beljaars

1995; Liang et al. 2005; Yuan and Liang 2011; Xu

et al. 2014). Different LSMs use different approaches

to describe the complex land surface processes in the

regional models and are important to study the effect

of different LSMs on seasonal-scale simulations.

Though the recent developments in LSMs signifi-

cantly improved the model performance, it is still a

challenging task to improve the accuracy of land

surface processes (Cai et al. 2014). Recently, Srinivas

et al. (2014) reported that the physical processes of

land surface energy influence the regional behavior of

the monsoon system at regional scale. Kar et al.

(2014) used the Weather Research and Forecasting

(WRF) model to examine the importance of vegeta-

tion green fraction in the context of the regional

hydroclimate over the India with 1-month simula-

tions. Singh et al. (2007) studied the influence of

LSM on the ISM circulation characteristics for the

month of July and suggested the importance of

LSMs. Clearly, these studies suggest that land surface

process has a significant impact on the ISM. It is

important to consider that the high-resolution regio-

nal models are beneficial in resolving the regional

processes in more accurate and detail. Earlier studies

are mostly configured with coarse resolutions and the

length of the simulations is limited.

In this study, we used four different LSMs in the

WRF model for the simulation of the ISM-2010,

about 4 months at a high resolution of 10 km. Among

these four schemes, the TDS scheme is the simplest,

the Noah-MP is complex, and the Noah and RUC

schemes are at an intermediate level of complexity.

Hence, the primary goal of the present study is to

evaluate the performance of WRF model with dif-

ferent LSMs (from simple LSM to multi-physical

LSM) in simulating the ISM-2010 features. The ISM-

2010 is a normal monsoon year with the seasonal

rainfall of 102% of its long-term average (Raju et al.

2014). It is also influenced by different regional and

global features, and is also witnessed with an intense

La Niña (Pai and Sreejith 2011; Mujumdar et al.

2012).

The paper is organized as follows. Section 2

presents the model, the experimental design and the

details of LSMs. Section 3 examines the ability of the

model in reproducing the mean monsoon features.

Error analysis for LSM is provided in Sect. 4, and the

summary and conclusions are presented in Sect. 5.

2. Model, Experimental Design, and Methodology

2.1. Model Details and Experimental Design

The regional model, WRF model version 3.4.1

(Skamarock et al. 2008) employed in this study is a

limited area, non-hydrostatic primitive equation

model with various physical parameterization

schemes. The physics options used in this study

consist of the Purdue Lin (Chen and Sun 2002)

scheme for microphysics, Betts–Miller–Janjic (Janjic

1994) scheme for the convective parameterization,

the Rapid Radiative Transfer Model (Mlawer et al.

1997) for longwave radiation, Dudhia scheme (Dud-

hia 1989) for shortwave radiation, the Monin–

Obukhov (Monin and Obukhov 1954) similarity

scheme for surface layer, and the Yonsei University

planetary boundary layer scheme for boundary layer

(Noh et al. 2003). The land surface processes are

resolved using different LSMs. The main character-

istics of various LSMs are summarized in Table 1.

The model domain extends between 40�E–130�E
zonally and 30�S–40�N meridionally with 10-km grid
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spacing. The vertical grid consists of 40 full sigma

levels, more densely spaced within the planetary

boundary layer. The lowest sigma level set to near the

surface (top layer of 1 cm) and the top of the

atmosphere are prescribed at 50 hPa. The model has

been integrated for about 5 months starting from 1

May to 30 September. National Centers for Environ-

mental Prediction (NCEP) final analysis data (FNL)

on 1� 9 1� spatial resolution is used for the initial

and boundary conditions. Six-hourly interval meteo-

rological data including wind, temperature, water

vapor, pressure, and land surface state variables from

the NCEP FNL data are used to generate the initial

and lateral boundary conditions. The time varying sea

surface temperature, monthly vegetation fraction,

monthly land surface albedo, and Leaf Area Index

(LAI) data are used as low boundary conditions. The

simulation corresponding to June to September

(JJAS) is used for analysis allowing the first month

(i.e., May) as a spin-up time. One-month spin-up time

is sufficient to obtain the dynamical equilibrium

between the lateral forcing and the internal dynamics

of the model (Anthes et al. 1989). It also removes

spurious effects of the top layer soil moisture

adjustment. The daily real-time global sea surface

temperature (Thiebaux et al. 2003) is used as the slow

varying lower boundary conditions in the model.

Topography, snow cover, and the land surface

properties such as albedo and vegetation fraction

are obtained from United States Geological Survey

(USGS) available at spatial resolution 3000.

2.2. Data Used

The European Center for Medium-Range Weather

Forecasts (ECMWF) Interim reanalysis (ERAI) data

available (Simmons et al. 2007) at a spectral resolu-

tion of T255, which is approximately 0.75� 9 0.75�
resolution, is used to compare the model simulated

fields. ERAI data are considered for validation as it is

an independent data source for model validation. The

design of experiments is in such a way that NCEP

analyses are used for the initial and lateral boundary

conditions, and ERAI data are used to validate model

predictions. The daily precipitation from the model is

compared with the daily gridded rainfall data of India

Meteorological Department (IMD) available at

0.25� 9 0.25� resolution (Rajeevan et al. 2006) for

the land areas, and the Tropical Rainfall Measuring

Mission (TRMM) 3B42 data at 0.25� 9 0.25� reso-

lution for the land and oceanic regions (Huffman

et al. 2007).

2.3. Description of Land Surface Models

The WRF model provides a choice of different

LSMs differing in the number of prognostic vari-

ables, accounted processes, and complexity of their

Table 1

Main characteristics of land surface schemes used in this study

Characteristics TDS Noah RUC Noah-MP

Soil vertical

levels

5-layers (1, 2, 4, 8, and

16 cm thick) of soil

temperature

4 layers (10, 30, 60, and

100 cm) temperatures and

moistures and frozen soil

6 soil levels (0, 5, 20, 40,

160, and 300 cm) and

snow 2 levels

4 layers (10, 30, 60, and

100 cm) temperatures and

moistures and frozen soil

Land-use

classification

USGS-modified

categories

USGS-modified categories USGS-modified categories USGS-modified categories

Vegetation

fraction, Leaf

Area Index

(LAI)

Not consider explicit

vegetation effect

Dominant vegetation type in one

grid cell with prescribed LAI

from USGS

Specified from USGS data Dominant vegetation type in one

grid cell with dynamic LAI

from USGS

Snow Not considered 1 layer snow lumped with the

top soil layer

2 layer snow Up to three layers

Vegetation

process

No Yes Yes Yes

Soil variables Temperature Temperature, water, ice Temperature, water, ice Temperature, water, ice
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representation. This study uses four different LSMs

that are described here.

The thermal diffusion scheme (TDS) uses the

force-restore method to solve the thermal diffusion

equation to estimate the soil temperature at five soil

layers of 1, 2, 4, 8, and 16 cm (Dudhia 1996). It does

not predict the soil moisture and computes the

relative amount of latent heat flux based on the

available moisture that depends on land-use category,

which is constant in time and no explicit vegetation

processes involved in the model. Furthermore, the

model does not consider the dynamics of soil

moisture and it does not contain a snow scheme.

The rapid update cycle (RUC) scheme solves the

heat diffusion and Richards’s moisture transfer

equations at six or more levels (Smirnova et al.

1997, 2000, 2016). The RUC model is largely

focused on accurate characterization of the soil up

to 6–9 soil levels reaching down to a soil depth of

300 cm. The physics of snow and phase change in

soil are well characterized in RUC (Smirnova et al.

1997, 2000). Soil moisture coefficients are specified

as functions of 11 textural classes of soil plus peat

presented in Clapp and Hornberger (1978). Soil

classification used in RUC is STATSGO classifica-

tion with 16 categories. Energy and moisture budgets

are solved in a thin layer spanning the ground surface

and including half of the top soil layer and half of the

first atmospheric layer, with corresponding heat

capacities and densities. Vegetation impact on evap-

oration is taken into account with canopy moisture

being a prognostic variable and evapotranspiration

parameters depending on the vegetation type (e.g.,

McCumber, 1980; Smirnova et al. 1997). The model

uses a basic approach to characterize evapotranspi-

ration from the canopy (e.g., Pan and Mahrt 1987). In

our experiments, six vertical levels are considered

and albedo, greenness, and LAI specified based on

USGS. We also specify land-use parameters based on

a mosaic approach (i.e., mosaic_soil = 1 and

mosaic_lu = 1).

The Noah LSM is a 1-D column model that can be

applied in coupled or uncoupled mode. In the Noah

LSM, soil temperature and soil moisture are predicted

in four layers of 10, 30, 60, and 100 cm (from top to

bottom) based on canopy moisture and water-equiv-

alent snow depth (Chen and Dudhia 2001). The Noah

LSM has one canopy layer, and its total depth of soil

layers is 2 m. The upper 1 m of soil serves as the root

zone depth and the lower 1 m of soil serves as a

reservoir with the gravity drainage. The surface skin

temperature is calculated based on a single linearized

surface energy balance equation that represents the

surface vegetation. Soil temperature is estimated by

solving the thermal diffusion equation, and the

Richards equation is used to estimate the soil

moisture. The vegetation impact on evaporation is

taken into account similar to RUC, but canopy

resistance is parameterized in terms of four environ-

mental stress functions. Vegetation classification,

using monthly estimates of albedo and fraction of

green vegetation cover, is based on 16 land-cover

classes of the SSiB model (Loveland et al. 1995;

Dorman and Sellers 1989). The soil texture is

determined from the 16-category soil data set (Miller

and White 1998). Evapotranspiration is modelled by

the Ball–Berry equation by taking both the physics of

water flow through the soil and plants as well as the

physiology of photosynthesis into account.

Multi-parameterizations are available within the

Noah model (referred as Noah-MP) to improve the

model to maximize complexity for dominant pro-

cesses, while using simpler modeling approaches for

other processes to conserve computational require-

ments (Ek et al. 2003; Niu et al. 2011). Noah-MP

includes the response of transpiration to the changes

in site water via soil moisture and variations of the

response of conductance to soil matric potential. Site

hydrology can be modelled as in Noah with the leaky

bottom either with the simplified calculations of

surface runoff or with more complex calculation of

surface runoff based on the Biosphere–Atmosphere

Transfer Scheme (Yang et al. 1995). Alternatively,

the TOPMODEL-based (Niu et al. 2005) calculation

of surface runoff and groundwater discharge is

available with varying levels of complexity in

modeling groundwater. Noah-MP has adopted new

model processes developed over the past decade or

so, including interactive vegetation canopy, ground-

water, and multilayer snow. As opposed to prescribed

LAI from observations, interactive vegetation canopy

means that LAI is a prognostic variable that responds

to the variability of precipitation, temperature, radi-

ation, and availability of nutrients (Dickinson et al.

3674 R. Attada et al. Pure Appl. Geophys.



1998; Thornton et al. 2007). Although, introducing

this type of dynamic leaf models may sometimes

degrade model performance (Rosero et al.

2009, 2010), this approach adds vegetation as a

memory process to the land system for seasonal

climate forecasts (Jiang et al. 2009). Moreover,

Noah-MP (Niu et al. 2011) divides the snowpack

into three and five layers, respectively, depending on

total snow depth. Such multilayer snowpack physics

could potentially improve the accumulation and melt

of snow, and thus improve the timing of runoff

generation. The inclusion of these processes has

improved the model’s performance in simulating

moisture (Cai et al. 2014). The various options of

these scheme used in this study are given in Table 2.

In the subsequent sections, the performance of all

LSMs is studied by analyzing various variables such

as temperature, pressure, wind components, water

vapor, soil moisture, and soil temperature and rainfall

including diagnostic variables like tropospheric tem-

perature, moist static energy, and precipitable water.

3. Results and Discussion

3.1. Mean State

In this section, the mean ISM features from WRF

model with different LSMs are assessed during ISM-

2010. Figure 1 shows the spatial distribution of mean

sea-level pressure and tropospheric temperature dur-

ing monsoon season. ERAI (Fig. 1a) shows the heat

low extending from Pakistan to eastern Myanmar, the

offshore trough over the west coast of India and a

steep surface pressure gradient between the northern

India and the southern Indian Ocean. The WRF

model with selected LSMs is able to simulate the

surface heat low and meridional pressure gradients as

seen in ERAI. However, model simulations with

Noah and Noah-MP LSMs produced higher spatial

correlation coefficients (SCC) 0.98 and 0.98, respec-

tively, than TDS (SCC = 0.96) and RUC

(SCC = 0.97)-based experiments. The spatial distri-

bution of tropospheric temperature (TT; averaged

between 700 and 400 hPa) from ERAI and WRF

model exhibits the meridional gradient in TT (i.e.,

higher temperature over the Tibetan region and lower

temperature over the southern Indian ocean). The

WRF experiments with Noah, RUC and Noah-MP

LSMs show higher temperature (* 270 K) over

Tibetan plateau. It has been widely accepted that

the Tibetan plateau provides an elevated heating

source to the middle troposphere, and therefore, the

land–atmosphere interactions play an important role

in formation of the ISM (Yanai et al. 1992; Yanai and

Wu 2006; Xu et al. 2010). The differential heating

between the ocean and land over the Indian subcon-

tinent is a major factor in the creation of the monsoon

circulations. Therefore, the mean lower (at 850 hPa)

tropospheric monsoon circulation from ERAI and

model are presented in Fig. 2. The major circulation

features (Fig. 2a) include the lower tropospheric

monsoon circulation; low-level jet (Somali jet) over

Arabian Sea (AS) and easterly winds at the south of

the equator are well captured in the WRF model with

all LSMs (Fig. 1b–e) but with strong westerlies

compared to ERAI. The core of low-level jet is

stronger and extended towards the Indian land region

in RUC and Noah-MP LSM-based model experi-

ments. The strong winds in RUC and Noah-MP LSM-

based experiments are may be due to the stronger

tropospheric temperature gradient (TTG) between

land and ocean. RUC-based experiment shows high-

est mean TTG (2.7) followed by Noah-MP (2.5)-,

Noah (2.2)-, and TDS (2.0)-based experiments.

Overall, the low-level monsoon circulation is better

Table 2

Summary of Noah-MP LSM options used in this study

Noah-MP Option

Dynamic vegetation model Off

Stomatal resistance Ball-Berry

Surface layer drag coefficient Original Noah

Runoff and groundwater Original surface and subsurface runoff

Snow/soil temperature time scheme Implicit
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(a)

(b) (c)

(d) (e)

Figure 1
Spatial distribution of mean sea-level pressure (hPa; shaded) and tropospheric temperature (K; contours) during monsoon season 2010 from

a ERAI, and b TDS, c Noah, d RUC, and e Noah-MP LSM-based model simulations

3676 R. Attada et al. Pure Appl. Geophys.



(a)

(b) (c)

(d) (e)

Figure 2
Same as Fig. 1 but for low level (at 850 hPa) winds (ms-1; vectors) and magnitude of wind (ms-1; shaded). a ERAI, and b TDS, c Noah,

d RUC, and e Noah-MP
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represented in the Noah-based experiments compared

to other selected LSMs.

Moist Static Energy (MSE) in the lower troposphere

(1000–600 hPa) is a good indicator for convective

instability during the ISM (Srinivasan and Smith 1996).

Maximum values of MSE over the central, northern,

and eastern ISM season are seen in ERAI (Fig. 3a). The

WRF model with different LSMs is able to simulate the

distribution of MSE over the Indian subcontinent but

with considerable differences. The model experiments

with TDS LSM (Fig. 3b) show the displacement of

maximum MSE zone towards the west compared to

ERAI and also it failed to simulate higher values over

north-eastern region. In case of Noah LSM (Fig. 3c),

maximum MSE (high unstable) region is in good

agreement with ERAI, but its extension towards the

north-eastern region is limited. The WRF model with

RUC (Fig. 3d) and Noah-MP (Fig. 3e) LSMs displays

a better spatial distribution of MSE compared to that of

ERAI. We also computed vertically integrated precip-

itable water (PW) from model simulations and ERAI. It

is observed that the maximum values of PW (about

60 kg m-2) are located over the land region (MCR and

north-eastern India) along with adjacent oceanic

regions. The higher values of PW lead the higher

values of MSE at the surface and lower troposphere,

indicating the unstable air to form convective ascent

and rainfall (e.g., Sabin et al. 2013). Overall, the

characteristics of MSE and PW are simulated reason-

ably well from the WRF model with all selected LSMs

with a slight underestimation over the equatorial Indian

Ocean.

Figure 4 shows the spatial distribution of mon-

soon seasonal rainfall from TRMM (satellite

observations) and model simulations. TRMM

(Fig. 4a) shows the maximum rainfall over the west

coast of India, north-eastern India, eastern equatorial

Indian Ocean and foot hills of Himalayas, and

minimum rainfall over north-west India and southeast

peninsular India. WRF model with all LSMs is able

to produce the maximum and minimum rainfall

regions during ISM-2010 and are in well agreement

with observations. However, model overestimated the

rainfall patterns over the Bay of Bengal (BoB) and

adjacent regions. Interestingly, WRF model with all

these LSMs are captured the finer details of oro-

graphic driven precipitation along the foothills of the

Himalayas as in the observations. Moreover, all

WRF-LSMs produce the unrealistic Inter Tropical

Convergence Zone (ITCZ) type of precipitation

pattern in the equatorial western Indian Ocean region.

It is evident that this unrealistic ITCZ is not sensitive

to LSMs and it might be due to the model inherent

problem (Raju et al. 2015a, b). Overall, the WRF

model with selected LSMs is produced seasonal mean

features of ISM and it needed further analysis before

making any conclusion on the importance of LSMs.

3.2. Spatial and Temporal Distribution of Soil

Temperature and Soil Moisture

3.2.1 Spatial Distribution

The spatial distribution of soil temperature and soil

moisture at top 2-m soil column during the monsoon

season from observations and model simulations are

presented in Fig. 5. It is important to emphasize that

the vertical structure of soil layers is distinct in

different LSMs. In this work, we consider top 2-m

soil column that obtained by linear interpolation of

LSM layers among them for one-to-one comparison.

ERAI (Fig. 5a) shows maximum soil temperature

([ 305 K) over the north-west India and Pakistan,

where the monsoon heat low is located, and also over

Indo-Gangetic plain and southern tip of India.

Minimum soil temperature values (\ 300 K) are

observed over the west coast, north-eastern India, and

central India. The soil temperature distribution is

simulated by WRF model with these LSMs, but

considerable differences are noticed. The WRF

simulation with the Noah (Fig. 5b) LSM exhibits

overestimation of soil temperatures over north-west-

ern region, whereas RUC (Fig. 5c) and Noah-MP

(Fig. 5d)-based experiments display the realistic

distribution of soil temperature compared to ERAI.

Soil moisture, which is the water stored in the

upper soil layer, is a crucial parameter for a large

number of applications including flood forecasting,

agricultural drought assessment, and water resources

management. Spatial distribution of soil moisture

from model and observations is illustrated in Fig. 5e–

h. Maximum soil moisture (0.3–0.4 m3 m-3) is

observed over the southwest coast of India, monsoon

core region (MCR) and north-eastern parts of India,

3678 R. Attada et al. Pure Appl. Geophys.



(a)

(b) (c)

(d) (e)

Figure 3
Same as Fig. 1 but for moist static energy (J m-2; shaded) and precipitable water (kg m-2; contours). a ERAI, and b TDS, c Noah, d RUC,

and e Noah-MP
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(a)

(b) (c)

(d) (e)

Figure 4
Spatial distribution of mean rainfall (mm day-1) during monsoon season 2010 from a TRMM, and the WRF model with b TDS, c Noah,

d RUC, and e Noah-MP LSMs

3680 R. Attada et al. Pure Appl. Geophys.



where high rainfall occurs during monsoon. Low soil

moisture (less than 0.2 m3 m-3) is observed over the

southeast India and north-west India, where less

rainfall occurs. All LSMs experiments with WRF

model are simulated the soil moisture distribution

comparable to the ERAI. Noah-, RUC-, and Noah-

MP-based WRF model simulations show higher

values of soil moisture along the foothills of the

Himalayas, north-eastern regions of India and MCR.

However, WRF with RUC LSM is slightly reduced

over the foothills of Himalayas, but it is in good

agreement with Noah-MP based experiment over the

MCR. Our results are well agreeing with the high-

resolution land surface derived data for the ISM by

Unnikrishnan et al. (2013). WRF experiments with

RUC and Noah-MP LSMs perform better in repre-

senting soil moisture due to their subsurface soil

interactions.

3.2.2 Temporal Distribution

Soil temperature and moisture are considered the slowly

varying boundary conditions and so has a longer period

of feedback to the atmosphere. Figure 6a shows the

temporal evolution of top 2 m soil column of soil

temperature averaged over the MCR during ISM-2010.

ERAI shows a higher soil temperature (about 305 K)

during the initial phase of monsoon and a gradual

decrease with the monsoon progression (reached to

302 K). Except TDS LSM, remaining all simulations

with LSMs show the maximum soil temperature at the

initial phase of the monsoon and also daily variation of

soil temperature (decreasing trend). Most of the season,

WRF with RUC LSM is close to the ERAI soil

temperature evolution, whereas WRF with Noah LSM

is well matched in phase changes over MCR compared

to ERAI. It is also noted that model simulations with

Noah-MP, RUC, and TDS underestimated the soil

temperatures at top 2-m layer during entire monsoon

season. Similar results are noticed in bottom soil layers

(figure not displayed), but the WRF with RUC LSM is

performing relatively better in simulating soil temper-

ature over the MCR.

Figure 6b depicts the temporal evolution of top 2-m

soil column of soil moisture averaged over the MCR

during ISM-2010. The soil moisture from ERAI shows

less value (0.2 m3 m-3) at the initial stage of the

monsoon, and it gradually increased with the monsoon

progression as monsoon rainfall contributes the soil

wetness. Here, we showed the soil moisture from Noah-

, RUC-, and Noah-MP-based experiments only, since

TDS-based experiment cannot provide soil moisture

information. WRF model with selected LSMs display

less soil moisture (0.3 m3 m-3) during the initial stage

of monsoon (where less rainfall occurs) and then

gradually increases (0.4 m3 m-3) with the monsoon

progression but with the higher rate of increase

compared to ERAI. Overestimation of soil moisture in

the model with these LSMs may be due to the moist

bias in the WRF dynamics, and also the choice of

microphysics and convection schemes. Therefore,

analysis indicates that the proper representation of soil

moisture and soil temperature is great challenge in the

WRF-LSMs model. The inaccurate representation of

the surface soil characteristics over the MCR may cause

improper surface energy budget estimation in different

LSMs (e.g., Asharaf et al. 2012).

4. Error Analysis

To quantify the model skill, we have computed

different statistical measures (described below)

between the different LSM-based WRF simulations

and ERAI. The spatial distribution of errors is time

average value for each grid point and temporal errors

are an average value for all grid points. The rainfall

forecast is compared with the IMD gridded rainfall.

An improvement parameter (IP; Eq. 1) in mm day-1

is used to quantify the improvements in the model

with different LSM-based experiments. Forecast

impact (FI; Eq. 2) is also computed for different

LSM-based experiments (e.g., Raju et al. 2015c). It

gives the percentage improvement in predicted

parameter with respect to CNT:

IP ¼ d

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

CNTi � OBSið Þ2
v

u

u

t

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

EXPi � OBSið Þ2
v

u

u

t ; ð1Þ
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(c)

(d)

(e)

(f)

(g)

(h)
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FI¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN
i¼1 CNTi �OBSið Þ2

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN
i¼1 EXPi �OBSið Þ2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN
i¼1 CNTi �OBSið Þ2

q � 100;

ð2Þ

RMSD CNTð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

CNTi � OBSið Þ2
v

u

u

t ;

BIAS CNTð Þ ¼ 1

N

X

N

i¼1

CNTi � OBSið Þ;

where ‘‘CNT’’ is the forecast when TDS LSM (as it is

simplest LSM) is used for ISM prediction, and

‘‘EXP’’ is the forecast when RUC, Noah and Noah-

MP LSMs are used for prediction, and ‘‘OBS’’ is the

ERAI analysis or IMD rainfall; N is the total number

of grid points. A positive (negative) value of IP/FI

provides improvement (degradation) in the model

prediction compared to TDS LSM (CNT) experi-

ments. Student’s t test, which is provided below, has

been applied to identify the most statistical significant

zones at 95% confidence level:

t ¼ �x � �y
ffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
1

n1
þ s2

2

n2

q :

It is applied on number of days (during JJAS).

Here, ‘‘x’’ is referred as ‘‘TDS’’ LSM-based run and

‘‘y’’ is referred as other LSM like Noah-, RUC-, and

Noah-MP-based runs. Here, �x and �y are mean of x and

y, s2i are unbiased estimator of the variance of each of

the two samples with ni equal to number of partici-

pants in group i (i = 1 or 2).

4.1. Temperature

Spatial distribution of RMSD in 2-m air temper-

ature from the experiment with TDS LSM against

ERAI shows minimum (less than 2 �C) error over the
oceanic regions (Fig. 7) and maximum RMSD is

(a)

(b)

Figure 6
Temporal evolution of top 2-m a soil temperature (K) and b soil moisture (m3 m-3) averaged over monsoon core region during monsoon

season 2010 from ERAI, and WRF model with TDS, Noah, RUC, and Noah-MP LSMs

bFigure 5

Spatial distribution of JJAS mean top 2-m soil temperature (K; left

panel) and 2-m soil moisture (m3 m-3; right panel) during

monsoon season 2010 from a ERAI, and WRF model with

b Noah, c RUC, and d Noah-MP LSMs. The values of the top 2-m

layer calculated using linear interpolation of the soil tempera-

ture/moisture content in the LSM layers

Vol. 175, (2018) Assessment of Land Surface Models in a High-Resolution Atmospheric Model During 3683



found over land regions mainly over the northern

India, Pakistan, Afghanistan, Tibetan plateau region,

Saudi Arabia, Iran, and Iraq. It is also noted that the

highest RMSD (7–10 �C) is found over the Iran and

Saudi Arabia compared to other regions. A cold

(warm) BIAS is noticed over land (oceanic) region in

TDS LSM experiment compared to ERAI (figure not

shown) and is larger than 5 �C over the Iran and

Saudi Arabia regions. Similar patterns of cold BIAS

are also seen in WRF runs with Noah and Noah-MP

LSM, whereas WRF with RUC LSM represents less

BIAS over these regions. RUC- and Noah LSM-

based experiments show warm BIAS over the north-

ern India region, and BIAS is less in Noah-MP LSM-

based experiment. Spatial distribution of IP (Fig. 7b–

d) shows that the RUC-, Noah-, and Noah-MP-LSM-

based WRF model experiments improve the 2-m air

temperature prediction compared to model simulation

with the TDS LSM. The maximum (more than

2–5 �C) improvement in temperature is found over

the Iran and Saudi Arabia regions when RUC LSM is

used in the place of TDS LSM in the model. The

largest improvement in RUC LSM-based experiment

over this region among the LSMs might be related to

precise estimation of surface fluxes that depends on

the accuracy of the soil temperature/moisture profiles.

Significant improvements are also observed over the

Indian and Tibetan plateau regions. The accountabil-

ity of high vertical resolution of soil layers may also

be the reason for these improvements in WRF

simulation with RUC LSM. Noah- and Noah-MP

LSM-based experiments also show similar improve-

ment in temperature against TDS-based experiment.

Domain average value of FI is * 38, 31, and 27%

Figure 7
Spatial distribution of a RMSD in 2-m temperature (�C) for TDS-based LSM experiments against ERAI analysis. Improvement parameter (FI)

in surface temperature for b RUC LSM-, c Noah LSM-, and d Noah-MP LSM-based experiments as compared to TDS-based LSM

experiments during monsoon season 2010. Domain averaged FI is given for each LSM
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for Noah-, RUC-, Noah, and Noah-MP-based exper-

iments, respectively. The improvements of these

LSMs over TDS advocate the importance of soil

moisture, which lacks in TDS LSM.

Figure 8 displays the temporal distribution of

BIAS and RMSD in 2 m air temperature during ISM-

2010. Figure represents that Noah- (- 0.02 �C) and
Noah-MP LSM (- 0.36 �C)-based experiments have

less BIAS compared to TDS and RUC LSM-based

experiments (Fig. 8a). It is interesting to note that

TDS (- 0.87 �C)- and RUC LSM (0.39 �C)-based
WRF runs show that the BIAS in temperature is

opposite in nature, i.e., TDS (RUC) LSM-based

experiment represents cold (warm) BIAS. It is also

observed that the mean temperature forecasts show

that the WRF with RUC (TDS) underestimates

(overestimate) surface temperature against ERAI.

Domain average value of RMSD (Fig. 8b) of 2-m

temperature shows that the WRF with TDS LSM has

a maximum error in predicting the 2-m temperature

as compared to other three LSMs during monsoon

season. Noah- and Noah-MP LSM-based experiments

are slightly better than TDS LSM-based model

simulation; however, Noah-based model simulation

is slightly better than Noah-MP. On the other hand,

2-m temperature prediction in RUC LSM-based

model simulation is improved after June, which

may be due to the subsurface layer processes, and its

feedback to the atmosphere compared to other LSM-

based experiments. Overall, it is also noted that the

time mean of RMSD of 2-m temperature in RUC

(2.11 �C)-based model simulation is less than the

TDS (3.04 �C)-, Noah (2.3 �C)-, and Noah-MP

(2.44 �C)-based model simulations during ISM-2010.

An accurate representation of land surface physics

not only improves the near surface representations

but also modifies the upper level meteorological

parameters through the land-atmospheric feedbacks.

Figure 8
Time series of daily a BIAS and b RMSD in 2-m temperature (�C) for TDS LSM-, RUC LSM-, Noah LSM-, and Noah-MP LSM-based

experiments against ERAI analysis during 01 June 2010–30 September 2010
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To verify this, the BIAS and RMSD for vertical

profile of temperature are shown in Fig. 9. The

minimum value of BIAS is found (Fig. 9a) in TDS

LSM-based model simulation at low levels

(1000–850 hPa), and all selected LSM-based model

simulations produced similar nature of BIAS and

RMSD. The maximum error in boundary layer is

noted from RUC LSM-based model run, and slightly

more BIAS is found in Noah-MP-based experiment

compared to Noah LSM-based experiment. At mid-

levels (800–550 hPa), Noah-based model simulation

shows the minimum BIAS compared to other LSM-

based experiments. Vertical profile of domain aver-

age RMSD from different LSM-based model

simulation shows (Fig. 9b) that RMSD is minimum

in Noah- and RUC LSM-based model simulation at

surface, whereas TDS- and Noah-MP based model

simulations show maximum. However, WRF runs

with Noah and Noah-MP LSM perform better in

entire troposphere than TDS- and RUC LSM-based

model run for temperature during ISM-2010. It is

important to mention that all LSM-based model

simulations show the minimum errors in the middle

troposphere. Though the land surface processes are

strongly coupled with different layers of the atmo-

sphere, monsoon-induced diabetic heating process

may be playing important role in the middle

troposphere.

In general, monsoon system is manifested by low-

level and upper level circulation. Analyzing meteo-

rological variables at upper level (200 hPa) is equally

important in model. Figure 10a is the spatial distri-

bution of RMSD for upper level (200 hPa)

temperature in WRF run with TDS LSM. Maximum

RMSD over the northern India particularly over the

Tibetan plateau and minimum (less than 1.5 �C) over
the land and oceanic regions is noticed. Spatial

distribution of IP in RUC (Fig. 10b), Noah (Fig. 10c),

Figure 9
Vertical profile of a BIAS and b RMSD in temperature (�C) for TDS LSM-, RUC LSM-, Noah LSM-, and Noah-MP LSM-based experiments

against ERAI analysis during monsoon season 2010
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and Noah-MP (Fig. 10d) over TDS LSM-based

model simulation shows a significant improvement

over the Tibetan region indicates that LSM plays an

important role on upper level temperature prediction.

These large improvements in these LSM-based model

runs are mainly because of the subsurface soil

moisture representation, which is not available in

TDS LSM-based model run. Approximately around 8

and 12% improvement in domain average value of FI

is found in RUC- and Noah-based runs compared to

TDS-based model simulation. This improvement is

significantly higher in Noah-MP LSM-based model

run where multi-parameterization play role in mod-

ulating upper level weather. The major improvements

in the WRF model with Noah-MP LSM may be due

to the better representation of sensible and latent heat

fluxes over Tibetan regions, which help in better

representation of the circulation and temperature in

the upper troposphere.

4.2. Water Vapor Mixing Ratio

Spatial distribution of RMSD in 2-m water vapor

mixing ratio (WVMR) for TDS LSM-based model

simulation shows (Fig. 11) less error over the oceanic

region and Indian landmass. More than 3 g kg-1

RMSD is found over the Saudi Arabia, Iran, Pakistan,

and southern Afghanistan region; between 2 and

3 g kg-1 is seen over the Indian landmass; and is less

than 2 g kg-1 over the western Ghats (WG). The

moisture prediction with RUC-, Noah-, and Noah-MP

LSM-based model simulations is improved signifi-

cantly over the foothills of Himalayas, Tibet, China,

and Iran region. Slightly positive impact is found

over the southern India in Noah- and Noah-MP LSM-

based model runs compared to TDS LSM-based

model run. However, the WRF model with Noah

LSM degrades the forecast over the northern India

region. This region shows very less to negligible

Figure 10
Same as Fig. 7 but for upper level (200 hPa) temperature (�C). Domain averaged FI is given for each LSM
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improvement when Noah-MP LSM is used for ISM

prediction in the WRF model. Similar kind of

negative impact over the northern India is found in

the WRF model with RUC LSM. The degradation of

2-m WVMR over this semi-arid region compared to

TDS-based model simulation is observed in these

models. Domain average value of FI indicates that the

RUC-, Noah-, and Noah-MP LSM-based model

simulations significantly improved the WVMR pre-

diction of 7.6, 2.8, and 7.6%, respectively, compared

to TDS LSM-based model simulation. Spatial distri-

bution of FI for upper level water vapor from all

LSM-based model experiments (Figure not shown)

display a significant improvement in RUC- and

Noah-MP-based model simulations.

Figure 12 shows daily BIAS and RMSD in 2-m

dew point temperature prediction from different

LSM-based model simulations during 01 June

2010–30 September 2010. Noah (- 0.49 �C)- and

Noah-MP LSM (- 0.15 �C)-based experiments show

less BIAS compared to TDS (0.78 �C) and RUC (-

0.87 �C) LSM-based experiments. It is interesting to

note that the dew point temperature shows reverse

nature of BIAS compared to RUC- and TDS LSM-

based model simulations. Dew point temperature

prediction displays positive (negative) BIAS in TDS

(RUC) LSM-based experiment. Initially, for 01 June–

30 June, the minimum value of RMSD is found in

TDS-based model run and started increase RMSD

throughout the period. Noah- and RUC LSM-based

model simulations show higher RMSD compared to

the experiment with Noah-MP LSM for dew point

prediction. However, after 15 August 2010, RMSD is

more or less similar in RUC-, Noah-, and Noah-MP

LSM-based model simulations. The large RMSD at

initial stage of monsoon suggests that the 1-month

long spin-up period may not be sufficient for models

to adjust in land surface processes. The time mean of

Figure 11
Same as Fig. 7 but for 2-m WVMR (g kg-1). Domain averaged FI is given for each LSM
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RMSD is 3.44, 3.37, 3.34, and 3.19 �C with the

Noah-, RUC-, TDS-, and Noah-MP LSM-based

model simulations, respectively.

4.3. Wind Speed

Spatial distribution of RMSD of 10 m wind speed

shows more than 2 ms-1 (Fig. 13a) over the study

region and slightly higher wind speeds over the BoB

compared to the AS. Large error is found over the

Iran, southern Pakistan, and Himalayan regions in

TDS LSM-based model simulation. Interestingly, the

WRF model with TDS LSM shows high RMSD

(3–5 ms-1) over the oceanic convective regions.

Implementing of RUC, Noah, and Noah-MP LSMs

do not show much positive impact on the surface

wind speed prediction. The domain average of FI is-

10, - 2, and - 4% for RUC, Noah, and Noah-MP

based model simulations, respectively. Slightly pos-

itive impact is seen in RUC LSM-based experiment,

but over the oceanic region, large degradation is

found in this LSM compared to TDS LSM-based

model run. Marginal positive impact is found in Noah

and Noah-MP LSM-based model runs over the AS

near the Oman, but more degradation is found in

Noah-MP-based model experiment compared to

WRF model with Noah LSM.

Similar results are seen in the daily surface wind

speed prediction, and it indicates that the wind speed

prediction is better in TDS LSM-based model run

compared to other three LSM-based experiments. All

the LSM-based model simulations show positive

BIAS in predicting 10-m wind speeds during ISM-

2010 (Fig. 14a). Higher BIAS is found in RUC-based

experiment (0.97 ms-1) compared to Noah-MP

(0.71 ms-1)-, Noah (0.63 ms-1)-, and TDS

(0.52 ms-1)-based model runs. RMSD in wind speed

forecast (Fig. 14b) shows that during June and July,

the WRF model with RUC (TDS) LSM exhibits the

maximum (minimum) error. RMSD is slightly less

for Noah LSM-based model run for the remaining

period. The time mean of RMSD for wind speeds

is 2.66, 2.52, 2.46, and 2.42 ms-1 for RUC-, Noah-

MP-, Noah-, and TDS LSM-based model simulations,

Figure 12
Same as Fig. 8 but for 2-m dew point temperature (�C)
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respectively. In case of upper level wind speeds

(figure not shown), TDS-based model run has higher

RMSD over entire domain. FI with respect to TDS-

based experiment shows a slight degradation over

Tibetan region in RUC-based model run.

4.4. Rainfall

Assessment of regional distribution of rainfall

during monsoon is ultimate aim of any model. In our

previous analysis, from Fig. 4, the high rainfall is

observed over the WG, north-east India, and

Himalayan regions and less rainfall over the western

India and rain-shadow region of peninsular India. All

LSM-based model experiments are able to reproduce

the similar rainfall distribution during ISM-2010. The

spatial distribution of daily average IMD gridded

rainfall and WRF model with different LSMs

predicted rainfall over the Indian landmass region

(figure not shown) are analyzed. Compared to IMD

rainfall, TDS- and RUC LSM-based model simula-

tions overestimate the rainfall over the central India

and are not able to capture the high rainfall over the

orographic region of north-east and WG. Slight

overestimation of rainfall is found over the WG

region in RUC-based experiment, whereas Noah

LSM-based model run could capture the rainfall over

the central India compared to other two WRF-LSMs.

Figure 15 shows the spatial distribution of RMSD

between the WRF model with TDS LSM and IMD

gridded rainfall. Higher errors over the WG, north-

eastern India and central India regions, and lower

errors over the rain-shadow region in peninsular India

and Rajasthan desert are noticed. Spatial distribution

of IP in RUC-, Noah-, and Noah-MP LSM-based

model runs over TDS LSM-based model run is

presented in Fig. 15b–d. It clearly indicates the

implementation of RUC, Noah, and Noah-MP LSM

Figure 13
Same as Fig. 7 but for surface (10-m) wind speed (ms-1). Domain averaged FI is given for each LSM
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significantly improved the rainfall prediction com-

pared to TDS LSM during ISM-2010. More than

5 mm of IP is found over the most of the Indian land

regions, whereas a few pockets of degradations are

also seen over the WG, Gangetic plain, and north-

eastern part of India. Domain average value of FI is

significantly higher (6.8%) in Noah LSM-based

model simulation compared to other LSM-based

experiments. The improvement in rainfall found over

the India in RUC (3.7%)- and Noah-MP (3.6%)-

based model simulations but slight improvement seen

in RUC LSM experiment. A significant improvement

in rainfall with Noah LSM-based model simulation is

due to the better representation of the surface

characteristics and the vertical structures of thermo-

dynamic variables. We also performed the regional

statistics for 2-m air temperature, 2-m dew point

temperature, and 10-m wind speed over the monsoon

core region (i.e., 69�E–88�E and 18�N–28�N).
Results suggest that the model simulations with

RUC, Noah, and Noah-MP LSMs have better skill on

the temperature, moisture, and rainfall prediction

than the experiment with TDS LSM.

5. Summary and Conclusions

A series of simulations at a 10-km spatial reso-

lution using the WRF model was performed for 5

months starting from May to September during the

year of 2010 to assess the skill of different LSMs in

simulating ISM-2010 characteristics. This study also

focuses on the better performance of multi-physical

LSMs (i.e., Noah, RUC, and Noah-MP) over the

simple LSM (TDS) in simulating ISM-2010. The

model validation is carried out with the state-of-the-

art reanalysis (ERAI), in situ (IMD), and satellite

(TRMM) observations. Analysis revealed that the

basic monsoon characteristics such as the monsoon

trough, mid-tropospheric temperature, low-level jet,

moist instability, and major precipitation zones are

fairly reproduced by the WRF experiments with all

LSMs with some regional discrepancies. The WRF

model with selected LSMs is able to reproduce the

broad ISM rainfall patterns including the orography-

induced rainfall over the Himalayan region and the

dry zone over the southern tip of India. The unreal-

istic precipitation over the equatorial western Indian

Figure 14
Same as Fig. 8 but for surface wind speed (ms-1)
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Ocean is simulated by all LSM-based model simu-

lations which are reflected from driving analysis

(Raju et al. 2015a, b). Recently, Raju et al. (2017)

demonstrated that the assimilation of temperature and

water vapor profiles in the model could eliminate the

unrealistic precipitation band over the western Indian

Ocean. The WRF model with RUC and Noah-MP

performed better for rainfall prediction over the

monsoon core region. All LSM-based model experi-

ments are very consistent in predicting the spatial and

temporal evolution of soil temperature and soil

moisture during ISM-2010. However, RUC- and

Noah-MP-based model simulations are in close

agreement with the observed structures of soil tem-

perature and moisture.

Detailed analysis suggests that the predictions of

surface and upper level temperature, as well as dew

point temperature and water vapor mixing ratio are

better in model simulations with Noah, Noah-MP,

and RUC LSM than TDS LSM. Particularly, the

errors over Tibetan and west Asia regions are sub-

stantially reduced with complex LSMs. Among all

LSMs, the simulation with RUC is found to be the

best in predicting surface temperature, whereas

Noah- and Noah-MP-based model simulations are

superior in middle-to-upper level temperature pre-

dictions compared to ERAI. On the contrary, the

surface water vapor prediction is much better with

RUC- and Noah-MP-based simulations than with

TDS LSM. In case of surface winds, TDS LSM-based

model experiment exhibits a better skill than the other

LSM-based model experiments. The simulations with

Noah, RUC and Noah-MP LSMs show the minimum

error in thermodynamical fields over the Indian

Figure 15
Spatial distribution of a RMSD in rainfall (mm day-1) prediction for TDS LSM-based experiments against IMD gridded rainfall.

Improvement parameter (FI) in rainfall for b RUC LSM-, c Noah LSM-, and d Noah-MP LSM-based experiments as compared to TDS LSM-

based experiments during monsoon season 2010. Domain averaged FI is given for each LSM
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region. The WRF-TDS-based model simulation sig-

nificantly improved the ISM rainfall forecast over the

north-east India. Overall, it is found that the mon-

soon-associated surface characteristics (i.e., 2-m

temperature, winds, and soil temperature and mois-

ture) in the model are sensitive to different LSMs.

Our analysis clearly suggests that the land–atmo-

sphere interactions in the WRF model have

discrepancies in simulating ISM-2010. Therefore,

further improvements are essential in LSMs for ISM

region. Our study is useful for future diagnosis of

WRF model discrepancies related to LSMs in mon-

soon prediction studies. In the future, we will carry

out longer period runs with different ensembles to

establish the robustness of the results for the monsoon

climate perspective.
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